备战中考 2016年山西省孝义市初三第一次模拟考试数学试题 有答案
- 格式:doc
- 大小:1004.50 KB
- 文档页数:12
学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。
九年级数学试题 第1页(共3页)2016年初中学业水平考试模拟试题(一)数学试题参考答案及评分标准一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填在题后的小括号内,每小题选对得3分. 错选、不选或多选均记零分.)3分.)13.(1)(1)x y x y -+--;14.2;15.2;16.3;17.-18.94三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.解:(1) 方程有实数解, 解得14k ≤. 该方程是一元二次方程,∴0≠k 。
∴K 的取值范围为14k ≤且0≠k .…5分(2)根据题意,得:⎪⎩⎪⎨⎧=--=+k x x k k x x 212112 0-2221=x x ,即()()12120x x x x +-=.当120x x +=时,得12k =;当120x x -=时,得0∆=,解得14k =. ∴12k = 或14k =………………………………10分20.解:(1)a =17,b =7,c =0.34.………………………………………………3分(2)4.50………………6分(3)通过树状图或表格得出:P=107……………..10分21.证明:(1)连接OA ,OB ,OC .,,AB AC OB OC AO AO === ABO ACO ∴∆≅∆BAO CAO ∴∠=∠ AB AC = AO BC ∴⊥. 四边形ABCD 是平行四边形,AO AD ∴⊥.九年级数学试题 第2页(共3页)∴AD 是⊙O 的切线。
…………………………………………………..3分 (2) 四边形ABCD 是平行四边形,ACB DAC ∠=∠∴.AC AB =ABC ACB ∠=∠∴,ABC DAC ∠=∠∴AEC DAC ∠=∠∴D D ∠=∠ ∴△DAC ∽△DEA ……………………………………………………………6分(3) △DAC ∽△DEA ,AD=6,CE=5,DADEDC AD =∴,得DC=4.4=∴AB CD AB // FC BF EC AB =∴,得BF =924……………………………………..10分22.解:(1)⎪⎪⎩⎪⎪⎨⎧≤≤<<+=)x (x)x (x y 3020120200251…………………………………4分(2)设n mx N +=,根据题意得⎩⎨⎧=+=+3010334n m n m ,解得⎪⎩⎪⎨⎧=-=3521n m ,即3521-+=x N .………………………………………………………7分(3)根据题意:当200<<x 时,1203521251=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+x x ,得)(5010舍去或==x x 。
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影票房(亿元) 大圣归来9.55 哆啦A 梦之伴我同行5.3 超能陆战队5.26 小黄人大眼萌4.36 熊出没22.88 ………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分1、《巩乃斯的马》:a、有的疯狂地向前奔跑,像一队尖兵,要去踏住那闪电;有的来回奔跑,俨然像临危不惧、收拾残局的大将;小马跟着母马,认真而紧张地跑,不再顽皮、撒欢,一下子变得老练了许多。
2016届中考数学一模考试试卷(练习)中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了中考数学一模考试试卷的内容。
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.的倒数是()(A)(B)(C)(D)2.解一元二次方程得到它的根是()(A)(B)或(C)(D)或3.事件A:若a是实数,则事件B:若实数x满足,则x正实数。
则下列关于事件A和事件B的说法正确的是()(A)事件A是必然事件,而事件B是随机事件(B)事件A是随机事件,而事件B是必然事件(C)事件A是必然事件,而事件B是必然事件(D)事件A是随机事件,而事件B是随机事件4.下列各数:①;②;③;④中是负数的是()(A)①②③(B)①②④(C)②③④(D)①②③④5.如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是()(A)(B)(C)(D)6.如图是某几何体的三视图及相关数据,则判断正确的是(A)(B)(C)(D)7.如图,A、B、C是⊙O上的三点,且A是优弧BAC上与点B、点C不同的一点,若△BOC是直角三角形,则△BAC必是()(A)等腰三角形(B)锐角三角形(C)有一个角是的三角形(D)有一个角是的三角形8.如右图所示,三角形ABC的面积为1cm2。
AP垂直B的平分线BP于P。
则与三角形PBC的面积相等的长方形是()9.两个正数满足,,设,则P关于t的函数图像是A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10.如图,边长为2的正方形EFGH在边长为6的正方形ABCD 所在平面上移动,始终保持EF∥AB.线段CF的中点为M,DH的中点为N,则线段MN的长为()A、B、C、D、二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a//b,直角三角板的直角顶点P在直线b上,若,则的度数。
山西省孝义市2016届中考理综第一次模拟试题NaClKCl 2016年中考第一次模拟考试化学参考答案一、选择题:1-5 B A C A C 6-10 B B C D D三、填空题(化学方程式每空2分,其余每空1分,共15分)21.(1)O 2 红磷燃烧时产生大量白烟,集气瓶冷却后打开止水夹,烧杯中的水进入集气瓶,进入的水量约为集气瓶内空气总体积的五分之一。
(2)H 2O 吸附溶解于水中的杂质,除去臭味 将与电源正极相连的试管(或2号试管)用拇指堵住试管口从水槽中取出,将带火星木条伸入其中,带火星木条复燃。
(3) 有害气体和粉尘或烟尘(写具体的有害气体也行) 太阳能、风能、水能、氢能、生物能、海洋能(或潮汐能)、地热能。
(写其中任一种) 22.(1)51.1g(2)饱和 18g 升高温度(不能写加入氯化钠) (3)如右图(4)2 5℃(根据绘图情况,在20℃-40℃之间写一 个温度值)四、简答题(化学方程式每空2分,其余每空1分,共13分) 23.(1)将固体中的碳酸钠全部除去 Ca 2+Na +(2) 氢氧化钠部分变质 (3)铁架台(带铁圈) 玻璃棒 (4)Na 2CO 3+Ca(OH)2=CaCO 3↓+2NaOH24.(1)置换 Fe +2HCl=FeCl 2+H 2↑(或Fe +CuSO 4=FeSO 4+Cu )每个铁原子失去两个电子转变为亚铁离子,每个氢离子得到一个电子转变为氢原子,氢原子结合成氢气分子(或每个铁原子失去两个电子转变为亚铁离子,每个铜离子得到两个电子转变为铜原子)(2)CO 2+Ca(OH)2=CaCO 3↓+H 2O(3)注意:反应连接正确即可,形状不固定五、实验探究题(化学方程式每空2分,其余每空1分,共15分) 25.(1)长颈漏斗(2)在水下用毛玻璃片(有磨砂一面与集气瓶口接触)盖好集气瓶,取出集气瓶,正放在实验桌上。
(3) 稀盐酸 将燃着的木条平放在集气瓶口,若木条火焰熄灭,则说明二氧化碳气体已收集满。
山西省2016年中考模拟数学试题2015.12.10一、填空题(每小題3分,共计30分)1.下列四个数中绝对值最大的数是( )• (A)-3 (B)0 (C)l (D)22.下列计算正确的是( ).(A)931-2-=)( (B)6234)(-2a a = (C) 2)2(2-=-a (D)236a a a =÷ 3.“珍惜生命,注意安全”是一个永恒的话题.在现代化的城市,交通安全万万不能被忽视,下列四个图形是国际通用的四种交通标志,其中不是中心对称图形的是().4、已知A(x 1,y 1)、B(x 2,y 2)均在反比例函数xy 2=的图象上,若x 1<0 <x 2,则y 1、y 2 的大小关系为( )(A)y 1<0<y 2 (B)y 2<0<y 1 (C) y 1<y 2<0 (D) y 2<y 1<05.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是( )6.如图,为了测量河两岸A 、B 两点间的距离,只需在与AB 垂直方向的点C 处测得AC=a ,∠ACB=a,那么AB 等于( )(A)a.tana (B) a.sina (C)a.cosa(D)aatan7.如图,在平行四边形ABCD 中, E 是BC 延长线上一点, AE 交CD 于F.且CE=错误!未找到引用源。
BC ,则=∆∆EBAADFS S ( ) A 41 B 21 C 错误!未找到引用源。
D 94 8.某商品原价为200元,经过连续两次降价后售价为148元,禁止驶入F ED CBA设平均每次降价为a%,则下面所列方程正确的是(〉. (A) 200 (l+a%)2 =148 (B) 200 (l-a% )2=148(C) 200 (l-2a% ) =148 (D) 200 (1-a 2%)= l4B9.如图,△ABC 为等腰直角三角形,∠ACB=90°,将△ABC 绕点 A 逆时针 旋转75°,得到△AB ′C ′、过点B ′作B ′D ⊥CA,交CA 的延长线于点D, 若AC=6,则AD 的长为( ) (A) 2 (B) 3 (C)32(D) 2310、笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港 口出发,沿海岸线勻速驶向C 港,1小时后乙船从B 港口 出发,沿海岸线匀速驶向A 港,两船同时到达目的地。
山西省2016年中考数学模拟试题时间120分钟满分120分 2015.8.24一、选择题(每小题3分,共30分)1.下列四个有理数:1,﹣2,0,.其中最小的一个有理数是()A. 1 B.﹣2 C. 0 D.2.式子在实数范围内有意义,则x的取值范围是()A.x≥5B. x>﹣5 C.x≥﹣5 D. x>53.分解因式:ax2﹣a,正确的结果是()A. a(x2﹣1)B. a(x﹣1)2C. a(x+1)(x﹣1)D. ax24.某中学随机调查了15名学生一天在家里做作业的时间,列表如下:做作业时间(小时)0.5 1 2 2.5人数 3 5 4 3则这15名同学这一天在家里做作业时间的中位数与众数分别为()A. 1,1 B. 1,2 C. 1,3 D. 2,15.下列计算中,正确的是()A. a2+a3=a5B.(a+b)2=a2+b2C. ab﹣2ab=﹣ab D. a6÷a3=a26.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(﹣4,0),则A1的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣4,﹣2)7.一机器零件如图,其主视图为()A.B.C.D.8.武汉市统计局统计了今年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP 比1月份低;③这三个月的人均GDP都在增长.其中正确的结论是()A.①②③B.①②C.①③D.②③ 10题图9.将大小相同的小正方体木块按如图方式摆放于一墙角,图①中摆放有1个小正方体,图②中摆放有4个小正方体,图③中摆有9个小正方体,…,按此规律,图⑥中摆放的小正方体个数为()A. 25 B. 36 C. 49 D. 5010.如图,直角坐标系中,P点坐标为(0,4),M为线段OP上(不含O、P)一动点,以OM为直径作⊙A,PN切⊙A于N,设PN﹣PM=m,则m的值()A.为定值1 B. 0<m≤1C. 0<m≤2D.≤m≤1二、填空题(每小题3分,共18分)11.计算:2﹣(﹣1)= .12.近年来,我国高速铁路建设发展迅猛,截止今年五月,全国高速铁路总长接近12000千米.12000这个数据用科学记数法表示为.13.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为.14.甲、乙两车从A地出发以各自的速度匀速开往450km外的B地,甲车先行0.5h后乙车出发,乙车到达B地后原地休息.甲、乙两车的距离s与乙车行驶的时间t之间的函数关系如图,则此次行程中,甲、乙两车两次相遇的时间间隔为h.14题图 15题图 16题图15.如图,点A、B在双曲线y=上,AB的延长线交x轴于C,连OA.若AB=2BC,S△OAC=12,则k= .16.如图,等腰Rt△ABC中,AC=BC,AB=2,将线段AB绕A点逆时针方向旋转,B点的对应点为D,若CD∥AB,则CD的长为.三、解答题(共8小题,共72分)17.已知直线y=x+b经过点(2,3),求不等式x+b<1的解集.18.如图1,▱ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:△AED≌△CFB;(2)如图2,连AF、CE,请你判断四边形AECF的形状,并证明你的结论.19.如图所示的两张图片形状完全相同,把两张图片全部从中间剪断,再把4张形状相同的小图片混合在一起.从4张图片中随机地摸取一张,接着再随机地摸取一张.(1)用树状图法或列表法求摸取的两张小图片恰好合成一张完整图片的概率;(2)老师将四张小图片洗均匀后先由小明随机抽出两张,剩下的给小亮,谁手中的两张图片恰好能合成一张完整图片谁就可获取老师发给的一张游戏卡,经过若干轮这样的游戏后,小明与小亮谁获得的游戏卡多?请直接写出结果.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立了平面直角坐标系后,△ABC的三个顶点都在格点上,将△ABC绕(0,1)点逆时针方向旋转90°,得到△A′B′C′.(1)请画出△A′B′C′,并直接写出A′的坐标;(2)在旋转变换中,点A所经路径的长为;(3)在x轴上存在点P,使PA+PB′最小,请直接写出P点坐标.21.如图1,AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,连AC.(1)求证:AC平分∠DAB;(2)如图2,延长AB,交直线DC于E,若=,求tan∠E.22.商场经营的某品牌童装,其成本为每件80元.4月的销售额(销售额=销售量×售价)为20000元,5月份商场对这种童装售价打9折销售,结果销售量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)在“六一儿童节”商场在4月份售价基础上打折促销,在不亏本的前提条件下,销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.试求商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,6月份商场市场调研发现打了m折销售时,其利润与原价销售的利润相同,求m的值.23.如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.(1)如图(1),若∠BAC=60°,求的值;(2)如图(2),CF⊥AB于F,交BD于G,求证:CG=FG;(3)若AB=13,tan∠ABC=,直接写出EC的长为.24.已知如图1,抛物线y=ax2+4ax+交x轴于A、B(A在B的左侧),过A点的直线y=kx+3k(k>)交抛物线于另一点C(x1,y1),交y轴于M.(1)直接写出A点坐标,并求a的值;(2)连BC,作BD⊥BC交AC于D,若CB=5BD,求k的值;(3)设P(﹣1,﹣2),中图2连CP交抛物线于另一点E(x2,y2),连AE交y 轴于N.请你探究OM•ON的值的变化情况,若变化,求其变化范围;若不变,求其值.参考答案一、选择题1.故选B. 2.故选A. 3.故选C4.故选:A.5. C. 6. B. 7.A. 8. C. 9.B. 10. B.二、填空题11. 3 . 12. 1.2×104. 13..14. 6 h. 15.﹣6 . 16.+1或﹣1 .三、解答题17.解答:解:把(2,3)代入y=x+b中得:3=1+b,解得:b=2,把b=2代入x+b<1得:x<﹣2.18.解答:证明:(1)在▱ABCD中,AD∥CB,且AD=CB,∴∠ADB=∠CBD,∵BE=FD,∴BE+EF=DF+EF,∴BF=DE,在△AED和△CFB中,,∴△AED≌△CFB(SAS);(2)四边形AECF为平行四边形.理由如下:由(1)△AED≌△CFB,∴AE=CF,∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.19.解答:解:(1)设:一张图片分为1和2两部分,列表如下:1 2 1 21 ﹣﹣﹣(1,2)(1,1)(1,2)2 (2,1)﹣﹣﹣(2,1)(2,2)1 (1,1)(1,2)﹣﹣﹣(1,2)2 (2,1)(2,2)(2,1)﹣﹣﹣由图表知共有12种等可能结果,其中能合成的有4种,∴P(合成)==;(2)∵两张小图片恰好合成一张完整图片的概率是,∴他们获得的游戏卡一样多,故答案为:一样多.20.解答:解:(1)所作图形如图所示:A′(﹣1,4);(2)点A所经路径的长==π;(3)P点如图所示,坐标为(﹣1,0).故答案为:(﹣1,4);π;(﹣1,0).21.解答:(1)证明:连结OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,而AD⊥CD,∴OC∥AD,∴∠1=∠2,∵OA=OC,∴∠1=∠2,∴∠2=∠3,∴AC平分∠DAB;(2)解:连结OC,如图2,由=,可设AD=4x,AB=5x,则OC=OA=x,∵OC∥AD,∴△EOC∽△EAD,∴=,即=,解得EO=x,在Rt△OCE中,CE===x,∴tanE===.22.解答:解:(1)设四月份的销售单价为a元,销量为b件,则 ab=20000,a(b+50)=27000,解得a=200,b=100.答:四月份的销售单价为200元.(2)设利润为W,则W═(×200﹣80)(﹣50x+600),=﹣1000x2+16000x﹣48000=﹣1000(x﹣8)2+16000,∵﹣1000<0,∴当x=8时,W最大,值为16000,答:当商场打8折时,利润最大,最大利润为16000元,(3)由(1)知4月份利润为100(200﹣80)=12000元,依题意:(×200﹣80)(﹣50m+600)=12000,解得m1=10(舍) m2=6.23.解答:(1)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵AD∥BC,∴∠DAC=∠ACB=60°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=30°,∴AD=2AC,∴AD=2BC,∵AD∥BC,∴=2,∴=;(2)证明:作CQ∥AB于Q,如图1所示:则,,∵AD∥BC,∴,∠ACB=∠DAC,∴,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠DAC,∵CF⊥AB,∴∠BFC=90°=∠ACD,∴△CFB∽△DCA,∴,∴,∴CQ=BF,∴=1,∴CG=FG;(3)解:作AM⊥BC于M,如图2所示:∵AC=AB=13,∴BM=CM,∠ACB=∠ABC,∵tan∠ABC=,∴tan∠ACM=tan∠ABC==,设AM=3x,则CM=2x,根据勾股定理得:(2x)2+(3x)2=132,解得:x=,∴CM=2,∴BC=2CM=4,∵∠DAC=∠ACM,tan∠CAD==,∴CD=AC=,∴AD===,∵AD∥BC,∴,即,解得:EC=.故答案为:.24.解答:解:(1)∵直线y=kx+3k(k>)过点A,∴y=0时,0=kx+3k,解得:x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得:a=;(2)联立直线和抛物线解析式得:解得C(4k﹣1,4k2+2k),如图1,作DF⊥x轴于F,CG⊥x轴于G,则△BDF∽△CBG,∵CB=5BD,∴CG=5BF,BG=5DF,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k1=﹣(舍去),k2=1;(3)直线PC解析式为y=ax+a﹣2,与抛物线y=x2+x+联立消去y得:x2﹣4(a ﹣1)x+11﹣4a=0,∴x1+x2=4a﹣4,x1x2=11﹣4a,∵===(x1+1)(x2+1)=(11﹣4a+4a﹣4+1)=,∴OM•ON=OA2=.。
启用前*绝密万安中学中考数学总复习绝密资料山西省2016年名校联考中考模拟数学试题时间120分钟满分120分2016.4.10一、选择题(每小题3分,共36分)1.﹣的倒数是()A.﹣3 B.3 C.﹣D.2.某市2014年末,全州普查登记常住人口约为403.25万人.将403.25万用科学记数法表示正确的是()A.4.0325×104B.4.0325×106C.4.0325×108D.4.0325×1073.要使式子﹣有意义,字母x的取值必须满足()A.x≤B.x≥﹣C.x≥且x≠3 D.x≥4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.数据1,2,4,2,3,3,2,5的中位数是()A.1 B.2 C.3 D.2.56.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B. C. D.7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.248.如图,矩形ABCD的外接圆O与水平地面相切于点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时与地面相切的弧为()A.B.C.D.9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.10.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A. cm B. cm C. cm D.2cm11.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30°B.45°C.30°或150°D.60°12.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A.1 B.C.D.二、填空题(每小题3分,共12分)13.因式分解:xy2﹣4xy+4x= .14.已知,A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点(横,纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示).15.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,动点P从点B开始沿边BC向点C 以每秒2个单位长度的速度运动,动点Q从点C开始沿C﹣A﹣B向点B以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当P点到达C点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t= 秒时,PQ∥AB.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三、解答题(本大题共8小题,共66分)17(6分).计算: +.18(6分).如图方格中,有两个图形.(1)画出图形(1)向右平移7个单位的图形a;(2)画出图形a关于直线AB轴对称的图形b;(3)将图形b与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数.19(6分).商场销售A,B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?20(8分).卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整;(3)求以上五种戒烟方式人数的众数.21(10分).已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+AE2=DE2.22(10分).如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.求:(1)线段BE的长;(2)图中阴影部分的面积.23(8分).将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).24(14分).如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N (2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P 为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.故选:A.2.故选B.3.故选:C.4.故选:A.5.故选D.6.故选:C.7.故选B.8.故选B.9.故选C.10.故选:B.11.故选B.12.故选C.二、填空题13.故答案为:x(y﹣2)2.14故答案为:13π﹣26.15.故答案为:20.16.故答案为:(1);(2)+.三、解答题17.【解答】解:原式=+==.18.【解答】解:(1)(2)所作图形如下:(3)从图知,共2条.19.【解答】解:设A种品牌的衬衣有x件,B种品牌的衬衣有y件.依题意可得解得答:A种品牌的衬衣有100件,B种品牌的衬衣有200件.20.【解答】解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);(2)由(1)可知,总人数是200人.药物戒烟:200×15%=30(人);警示戒烟:200×30%=60,强制戒烟:70÷200=35%.完整的统计图如图所示:(3)∵五种戒烟方式中有两种是20人,其余均为1种,∴以上五种戒烟方式人数的众数是20.21.【解答】证明:(1)∵△ACB和△DCE都是等腰直角三角形,∴CE=CD,AC=CB,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠ACE=∠DCB,在△ACE和△BCD中∴△ACE≌△BCD(SAS).(2)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴在Rt△AED中,由勾股定理得:AD2+AE2=DE2.22.【解答】解:(1)连接AE.∵AB 是⊙O 的直径,∴∠AEB=90°,又∵BC ⊥DM ,∴∠ECB=90°,∴∠AEB=∠ECB ,∵直线DM 与⊙O 相切于点E ,∴∠CEB=∠EAB ,∴△AEB ∽△ECB ,∴,∴BE 2=AB •BC ,∴BE=(cm );(2)连接OE ,过点O 作OG ⊥BE 于点G . ∴BG=EG ,在Rt △ABE 中,cos ∠ABE=, ∴∠ABE=30°,在Rt △OBG 中,∠ABE=30°,BO=4, ∴OG=2,∴, ∵OE=OB ,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S 扇形OBE =,∴S 阴影=S 扇形OBE ﹣S △EOB =()cm 2.23.【解答】解:(1)从口袋中随机摸出一个,其标号为奇数的概率为;(2)列举所有等可能的结果,画树状图(列表法略):∴一共有9种情况,摸出的两个球上数字之和小于4的有3种;∴摸出的两个球上数字之和小于4的概率为=24.【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D (﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN ,AD=CN∴四边形CDAN 是平行四边形.(3)假设存在这样的点P ,使以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 因为这个二次函数的对称轴是直线x=1,故可设P (1,y 0),则PA 是圆的半径且PA 2=y 02+22,过P 做直线CD 的垂线,垂足为Q ,则PQ=PA 时以P 为圆心的圆与直线CD 相切. 由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形,由P (1,y 0)得PE=y 0,PM=|4﹣y 0|,,由PQ 2=PA 2得方程:,解得,符合题意,所以,满足题意的点P 存在,其坐标为(1,)或(1,).。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的试题2:若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1 B. C.D.试题3:若点B(a,0)在以点A(﹣1,0)为圆心,2为半径的圆外,则a的取值范围为()A.﹣3<a<1 B.a<﹣3 C.a>1 D.a<﹣3或a>1试题4:一元二次方程5x2﹣2x=0,最适当的解法是()A.因式分解法 B.配方法 C.公式法 D.直接开平方法试题5:下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.试题6:设点A(﹣1,y1)、B(1,y2)、C(2,y3)是抛物线y=﹣2(x﹣1)2+m上的三点,则y1、y2、y3的大小关系正确的是()A.y2>y3>y1 B.y1>y2>y3 C.y3>y2>y1 D.y1>y3>y2 [来源:Z§xx§k.Co试题7:如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100° B.80° C.50°D.40°试题8:关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B.C. D.试题9:二次函数y=(x+1)2﹣2的图象大致是()A. B.C. D.试题10:如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55° B.60° C.65°D.70° [试题11:在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab= .试题12:方程x2﹣5x=0的解是.试题13:如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=1,则CD= .试题14:若关于x的方程x2﹣(k+2)x+2k﹣1=0一根小于1、另一根大于1,则k的取值范围是.试题15:点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是.试题1答案:C;试题2答案:A;试题3答案: .D;试题4答案: A;试题5答案: C;试题6答案: A;试题7答案: C;试题8答案: C;试题9答案: C;试题10答案: C;试题11答案: 12;试题12答案: x1=0,x2=5;试题13答案: 2;试题14答案:k<2;试题15答案: y2<y3<y1;。
2016年中考第一次模拟试题数学参考答案
一、选择题:1~10:ABBCD BACAB
二、填空题:11.-8≤x <6;12.3.447³1011;13.
536;14.92;
15.;
三、解答题
17. 解:原式
=1214+---------4分
34--------------------5分 (2) 解:原式=221(2)(2)4a a a a a a a ⎡⎤+--⋅⎢⎥---⎣⎦
------------3分 =2(2)(2)(1)(2)4
a a a a a a a a +---⋅-- =2224(2)(4)
a a a a a --+-----------------------4分 =21(2)
a ----------------5分 18.解:(1)如图,过点C 作CH ⊥y 轴,垂足为
把x=0代入y 1=2x+4得,y=4
把y=0代入y 1=2x+4得,x=﹣2 ∴A 点坐标为(0,4),B 点坐标为(-2,0)--------3分
∴OB=2,OA=4
∵OB ∥CH ,∴△ABO ∽△ACH ∴
2OA OB AB AH CH AC
=== 即422AH CH == 解得AH=2,CH=1
∴OH=6
∴点C 坐标为(1,6)-------5分
把点C 作标代入反比例函数解析式,得k=6 ∴反比例函数的解析式为26y x
=.--------6分 (2)0<x <1--------------8分
19.解:(1)补全的扇形图如图所示:---------2分
(2)中位数是22,众数是20,平均数是22.3-----------5分
(3)奖励标准应定为22万元.-----------6分
理由:要使称职和优秀的员工中有半数左右能获奖,应该以这些员工员工的销售额的中位数为标
60%10%6.7%
23.3%称职优秀
不称职基本称职
准.---------8分
20.解:过A 作AF ⊥BC ,垂足为F ,过点D 作DH ⊥AF ,垂足为H.----------1分 ∵AF ⊥BC ,垂足为F
∴BF=FC=12
BC=40. 根据勾股定理,得
==分 ∵∠DHA=∠DAC=∠AFC=90°
∴∠DAH+∠FAC=90°,∠C+∠FAC=90° ∴∠DAH=∠C ∴△DAH ∽△ACF-------------5分 ∴
AH AD FC AC
= ∴3040120AH = ∴AH=10
∴
HF=10+80分
答:D 到地面的高度为(
---------------8分
21.(1)509
;--------------------------3分 (2)略.--------------------------------------7分
注:不写结论的扣1分.
22. 问题一:2014年山西省海关出口额与进口额分别为多少亿元?.-------------3分 解:设2014年山西省海关出口额为x 亿元,进口额为y 亿元.---------------4分
⎩⎨⎧=-+-=+914
%)131(%)51(1000y x y x ------------------------------6分 解得⎩
⎨⎧==450550y x ---------------------------------------7分 答:2014年山西省海关出口额为550亿元,进口额为450亿元.--------------------8分 问题二:2013年到2015年山西省进出口总额平均每年下降的百分率为多少?-------3分 解:2013年的进出口总额为1000-30=970亿元.
设山西省2013年到2015年进出口总额平均每年下降的百分率为x----------------4分 970(1-x )²=914-------------------------------------------6分
(1-x )²≈0.9423
1-x=±0.97
x 1=0.03,x 2=1.97(不合题意,舍去)---------------------------7分
答:2013年到2015年山西省进出口总额平均每年下降的百分率为3%.-----------8分
23.数学思考:(1)
分
(2)BC+CD=AC---------3分
理由:延长CB 到H ,使BH=CD.-------4分
∵∠BAD+∠BCD=60°+120°=180° H
F E D
B A
D
C A
∴∠ABC+∠ADC=180°
又∵∠ABH+∠ABC=180°
∴∠ABH=∠ADC
又∵AB=AD
∴△ABH≌△ADC------------5分
∴BH=CD,AC=AH,∠BAH=∠DAC ∴∠HAC=∠BAD=60°
∴△AHC为等边三角形
∴BC+CD=BC+BH=AC.-----------6分
拓展探究:
BC+CD=k²AC
理由:延长CB到H,使BH=CD.----7分∵∠BAD+∠BCD=180°
∴∠ABC+∠ADC=180°
又∵∠ABH+∠ABC=180°
∴∠ABH=∠ADC
又∵AB=AD
∴△ABH≌△ADC----------8分
∴BH=CD,AC=AH,∠BAH=∠DAC
∴∠HAC=∠BAD,AH AB AC AD
=
∴△AHC∽△ABD--------9分
∴HC BD
k AH AB
==
∴HC=k²AH=k²AC
∴BC+CD= k²AC-------------10分
24.解:(1)∵抛物线的顶点D的坐标为(1,4),
∴设抛物线的解析式为y=a(x-1)²+4,-------------1分
把点A的坐标为(3,0)代入抛物线的解析式得:4a+4=0
解得a=-1.
∴抛物线的解析式为y=-(x-1)²+4,即y=-x²+2x+3. -------------3分(2)①当y=0时,- x²+2x+3=0.
解得x1=-1,x2=3,∴E点坐标为(-1,0),AE=4. -------------4分
∴OE=CD=1,∴△EOF≌△DCF.
∴OF=CF=1
2
OC=2. -------------5分
根据勾股定理,
-------------6分
∵C D∥AE,∴△CDG∽△AEG,∴
1
4 DG CD
GE AE
==.
∴DG=1
5
DE=
5
.-------------7分
过点P作PM⊥DE,垂足为
M.
图(1)
D
A
则△PEM ∽FE O,得
PM OF
PE EF
=
∴
1PM m =
+∴
1)m +-------------8分 ∴△DGQ 的面积S 与m 的函数关系式为: S=12DG ²PM=12
1)m +,即S=22
55m +(0≤m ≤3). ----------9分
②分两种情况
分类1:如图(2),当P 在线段OA 上,且PH ∥DF ,PH=DF
四边形DFPH 为平行四边形,
过H 作HN ⊥OA ,垂足为N ,这时易证△CDF ≌△NPH , ∴PN=CD=1,
HN=CF=2, ∴H 点的坐标为(m+1,2)
把H 点的坐标代入抛物线的解析式得:
-(m+1)²+2(m+1)+3=2
解得-------------11分 如图(3),当P 在线段OA 的延长线上,且PH ∥DF ,PH=DF 四边形DFHP 为平行四边形,
过H 作HN ′⊥OA ,垂足为N ′,同理可得△CDF ≌N ′PH , ∴PN ′=CD=1,HN ′=CF=2, ∴H 点的坐标为(m-1,-2)
把H 点的坐标代入抛物线的解析式得: -(m-1)²+2(m-1)+3=-2
解得m=2-
∴当m D ,F ,H ,P 为顶点的四边形为平行四边形.
-------------13分
图(2)。