高中数学集合的表示方法教案 新课标 人教版 必修1(B)
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
人教版高中必修1(B版)1.1.2集合的表示方法教学设计一、教学目标通过本节课的学习,学生应当具备如下的能力和知识:1.掌握集合的基本概念和基本操作;2.能够使用列举法、描述法、符号法等方法表示集合;3.能够通过集合的表示方法求出集合的元素个数;4.能够应用集合的表示方法解决实际问题;5.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数。
三、教学内容和方法1. 教学内容1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数;4.应用题。
2. 教学方法1.探究式教学方法;2.演示法;3.群体讨论法;4.板书法。
四、教学过程1. 引入本节课的引入部分应该围绕一个问题展开,例如:在小学数学中,我们已经学过了集合的概念。
那么,在你们看来,什么是集合?在学生回答完之后,可以通过一个演示来说明集合的概念:比如,我们可以放一堆东西在桌子上,然后将其中同属性的东西放在一起,比如一堆苹果,一堆香蕉,一堆葡萄等等。
这些被放在一起的对象就组成了一个集合。
2. 学习集合的基本概念接下来,可以通过上述的东西组成的集合为例,让学生深入理解什么是元素和集合,什么是空集合,什么是全集合,以及集合之间的包含关系等等。
3. 学习集合的表示方法在学习了集合的基本概念之后,接下来就是学习集合的表示方法,包括列举法、描述法、符号法等等。
在学习的过程中,可以通过一些实例来进行演示,并要求学生互相交流,分享彼此的思考。
4. 学习如何求出集合的元素个数在学习了集合的表示方法之后,为了更好地掌握集合的知识,我们需要学习如何求出一个集合中元素的个数。
这一部分教学可以通过数学公式引入,并让学生自行分析,理解和掌握。
5. 应用题练习最后,为了巩固学生所学的知识和能力,我们可以通过一些集合相关的实际问题来进行练习,在解决问题的过程中复习和应用所学的知识。
1.1.2 集合的表示方法整体设计教学分析教材借助实例给出了集合的表示方法——列举法和描述法,这是用集合语言表达数学对象所必需的基本知识.教学中要注意引导学生,通过实例,从观察分析集合的元素入手,选择合适的方法表示集合.注意引导学生区分两种表示集合的方法.学习集合语言最好的方法是运用.在教学中,要创造机会让学生运用集合的特征性质描述一些集合,如数集、解集和一些基本图形的集合等.三维目标1.掌握集合的表示法——列举法和描述法,使学生正确把握集合的元素构成与集合的特征性质的关系,从而可以更准确地认识集合.2.能选择适当的方法表示给定的集合,提高学生分析问题和解决问题的能力.重点难点教学重点:集合的表示法.教学难点:集合的特征性质的概念以及运用特征性质描述法正确地表示一些简单的集合.课时安排1课时教学过程推进新课新知探究提出问题①上节所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序,相同的元素不能出现两次.又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法.描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只需去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路1例1用列举法表示下列集合:(1)A={x∈N|0<x≤5};(2)B={x|x2-5x+6=0}.解:(1)A={1,2,3,4,5};(2)B={2,3}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常明显地表示出了集合中的元素,是常用的表示法.列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所(1){-1,1};(2)大于3的全体偶数构成的集合;(3)在平面α内,线段AB的垂直平分线.解:(1)这个集合的一个特征性质可以描述为绝对值等于1的实数,即|x|=1.于是这个集合可以表示为{x||x|=1}.(2)这个集合的一个特征性质可以描述为x>3,且x=2n,n∈N.于是这个集合可以表示为{x|x>3,且x=2n,n∈N}.(3)设点P为线段AB的垂直平分线上任一点,点P和线段AB都在平面α内,则这个集合的特征性质可以描述为PA=PB.于是这个集合可以表示为{点P∈平面α|PA=PB}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.例1用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x2-9=0的解组成的集合;(4){15以内的质数};(5){x|63-x∈Z,x∈Z}.活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数通常按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足63-x∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点,如何表示数轴上的点,如何表示不等式的解.学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3)不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学1.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.2.方程ax 2+5x +c =0的解集是{12,13},则a =________,c =________. 解析:方程ax 2+5x +c =0的解集是{12,13},那么12、13是方程的两根, 即有⎩⎪⎨⎪⎧ 12+13=-5a ,12·13=c a ,得⎩⎪⎨⎪⎧ a =-6,c =-1,那么a =-6,c =-1.答案:-6 -13.用列举法表示下列集合:(1)所有绝对值等于8的数的集合A ;(2)所有绝对值小于8的整数的集合B.答案:(1)A ={-8,8};(2)B ={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.4.定义集合运算A⊙B={z|z =xy(x +y),x∈A,y∈B},设集合A ={0,1},B ={2,3},则集合A⊙B 的所有元素之和为( )A .0B .6C .12D .18解析:∵x∈A,∴x=0或x =1.当x =0,y∈B 时,总有z =0.当x =1时,若x =1,y =2时,有z =6;当x =1,y =3时,有z =12.综上所得,集合A⊙B 的所有元素之和为0+6+12=18.答案:D5.分别用列举法、描述法表示方程组⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解集. 解:因⎩⎪⎨⎪⎧ 3x +y =2,2x -3y =27的解为⎩⎪⎨⎪⎧ x =3,y =-7,用描述法表示该集合为{(x ,y)|⎩⎪⎨⎪⎧ 3x +y =22x -3y =27};用列举法表示该集合为{(3,-7)}.拓展提升问题:集合A ={x|x =a +2b ,a∈Z ,b∈Z },判断下列元素x =0、12-1、13-2与集合A 之间的关系.活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x 化为a +2b 的形式,再判断a 、b 是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.解:由于x =a +b 2,a∈Z ,b∈Z , ∴当a =b =0时,x =0.∴0∈A.又12-1=2+1=1+2, 当a =b =1时,a +b 2=1+2,∴12-1∈A. 又13-2=3+2, 当a =3,b =1时,a +b 2=3+2,而 3 Z ,∴13-2A. ∴0∈A,12-1∈A,13-2 A. 点评:本题考查集合的描述法表示以及元素与集合间的关系.课堂小结本节学习了:(1)集合的表示法;(2)利用列举法和描述法表示集合的步骤.作业课本习题1—1A 2、3、4.设计感想集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好的学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.备课资料[备选例题]例1 判断下列集合是有限集还是无限集,并用适当的方法表示.(1)被3除余1的自然数组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)二次函数y =x 2+2x -10的图象上的所有点组成的集合;(4)设a 、b 是非零实数,求y =a |a|+b |b|+ab |ab|的所有值组成的集合. 思路分析:本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.解:(1)被3除余1的自然数有无数个,这些自然数可以表示为3n +1(n∈N ).用描述法表示为{x|x =3n +1,n∈N }.(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19,则此集合中的元素有7个,用列举法表示为{3,5,7,11,13,17,19}.(3)满足条件的点有无数个,则此集合中有无数个元素,可用描述法来表示.通常用有序数对(x ,y)表示点,那么满足条件的点组成的集合表示为{(x ,y)|y =x 2+2x -10}.(4)当ab <0时,y =a |a|+b |b|+ab |ab|=-1;当ab >0时,则a >0,b >0或a <0,b <0.若a >0,b >0,则有y =a |a|+b |b|+ab |ab|=3;若a <0,b <0,则有y =a |a|+b |b|+ab |ab|=-1.∴y=a |a|+b |b|+ab |ab|的所有值组成的集合共有两个元素-1和3.则用列举法表示为{-1,3}.例2 定义A -B ={x|x∈A,x B},若M ={1,2,3,4,5},N ={2,3,6},试用列举法表示集合N -M.解析:应用集合A -B ={x|x∈A,x B}与集合A 、B 的关系来解决.依据定义知N -M 就是集合N 中除去集合M 和集合N 的公共元素组成的集合.观察集合M 、N ,它们的公共元素是2、3,集合N 中除去元素2、3还剩下元素6,则N -M ={6}.答案:{6}.。
第一课时集合-集合的概念教学目的:〔1〕使学生初步理解集合的概念,知道常用数集的概念及记法〔2〕使学生初步了解“属于〞关系的意义〔3〕使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时罗华的手稿1831年1月伽罗华在教具:多媒体个结论,他写成论文提交给法国科、实物投影仪内容分析:1.集合是中学数已证明的一个结果可以说明伽罗华学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初议科学院否定它1832年5月30日中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解忙写成后,委托他的朋友薛伐里叶集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对造福人类1832年5月31日离开了逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识,他死后14年,法国数学家X维问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是于X维尔主编的《数学杂志》上本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集〞这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔〔德国数学家〕〔见附录〕;4.“物以类聚〞,“人以群分〞;5.教材中例子〔P4〕二、讲解新课:阅读教材第一部分,问题如下:〔1〕有那些概念?是如何定义的?〔2〕有那些符号?是如何表示的?〔3〕集合中元素的特性是什么?〔一〕集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念〔1〕集合:某些指定的对象集在一起就形成一个集合〔简称集〕〔2〕元素:集合中每个对象叫做这个集合的元素〔3〕元素对于集合的隶属关系〔4〕集合中元素的特性确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可在时称属于,即a 是集合A 的元素,就说a 属于A ,记作a ∈A 集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……“∈〞的开口方向,不能把a ∈A 颠倒过来写不在时称,不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉互异性:集合中的元素没有重复无序性:集合中的元素没有一定的顺序〔通常用正常的顺序写出〕2、集合的表示方法:〔1〕列举法:在大括号内将集合中的元素一个个列举出来,元素之间用逗号隔开,具体又分以下三种情况:①元素个数少且有限时,全部列举;如{1,2,3}②元素个数多且有限时,可以列举部分,中间用省略号表示,列举几个元素,取决于能否普遍看出其规律,称中间省略列举。
1.1.1集合及其表示方法集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合等)出发,结合实例给出元素、集合的含义,体现逻辑思考的方法,如抽象、概括等.【教学目标】在高中数学课程中,集合是刻画一类事物的语言和工具,本节可以帮助学生使用集合的语言简洁、准确地表述数学的研究对象,学会用数学的语言表达和交流,积累数学抽象的经验。
【数学抽象】了解集合、元素的概念,体会集合中元素的三个特征;【数据分析】理解元素与集合的"属于"和"不属于"关系;【数学运算】掌握常用数集及其记法;【逻辑推理】掌握集合的表示方法;【教学重点】1、掌握集合、元素的基本概念2、学会用描述法表示集合3、用区间表示集合【教学难点】1、集合中元素的三个特征2、空集的理解3、记住几种常见的数集符号由于本小节的新概念、新符号较多,建议教学时教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.【新课导入】在生活与学习中,为了方便,我们经常要对事物进行分类。
例如,图书馆中的书是按照所属学科等分类摆放的,作文学习可按照文体如记叙文、议论文等进行,整数可以分成正整数、负整数和零这三类?你能说出数学中其他分类实例吗?试着分析为什么要进行分类.【新课讲授】一、集合的概念在数学中,我们经常用“集合”来对所研究的对象进行分类。
把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集),组成集合的每个对象都是这个集合的元素。
集合通常用英文大写字母A,B,C,...表示,集合的元素通常用英文小写字母a,b,c,...表示。
如果a是集合A的元素,就记作a∈A,读作“a属于A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于A”.【尝试与发现】你能举出几个用集合表达的、与数学有关的例子吗?指出例子中集合的元素是什么.【典型例题】(1)如果A是由所有小于10的自然数组成的集合,则0∈A,0.5∉A;(2)如果B是由方程x²=1的所有解组成的集合,则-1∈B,0∉B,1∈B(3)如果C是平面上与定点O的距离等于定长r(r>0)的点组成的集合,则对于以O为圆心、r为半径的圆O上的每个点P来说,都有P∈C.【思考与讨论】现在我们来考虑方程x+1=x+2的所有解组成的集合,由于该方程无解,因此这个集合不含有任何元素。
1.1.2集合的表示方法一、学习目标:1.知识与技能:①理解列举法和特征性质描述法的实质,能运用他们表示集合。
②体验用集合语言表示文字语言的过程,尝试用集合语言表示集合的方法。
③集合语言是基本的数学语言,是数学交流所需要的语言之一,学习本节内容可以帮助我们提高学习数学的兴趣,树立良好的数学信心,进一步体会形式化表达在数学学习中的重要性。
2.过程与方法:①通过实例体会集合中条件对元素的描述和限制,从元素入手,正确理解集合。
②观察实例,感受集合语言在描述客观现实和数学对象中的意义。
二、相关知识连接:1.质数的概念。
2.奇数,偶数数学表达式的转化。
3.不等式与数轴之间的关系,数轴作为工具的重要性。
三、学习中应注意的问题:①注意a 与{}a 的区别,两者的性质不同一个是元素一个是集合,他们是属于的关系。
②注意Φ与{0}的区别,Φ是不含有任何元素的集合,{0}是含有0一个元素的集合。
③在用列举法表示集合时,一定不能犯如用{}实数集或{}R 这一类错误,因为大括号已经包含了“所有”的意思。
用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,他应该具有哪一些性质,从而准确的理解集合的意义。
例如:1.{(,)}x y y x =中的元素是点。
满足条件的二元方程的解集,是成对出现的。
2. {}x y x =中的元素是实数,是函数自变量的取值范围,等价于{0}x x ≥。
3. {}y y x =中的元素是函数值,也是实数,但是与上例不同,表示函数值的取值范围,等价于{0}y y ≥。
4. {}y x =表示单元素集合,方程的解。
四、讲授表示集合的方法有两种:列举法、特征性质描述法。
这两种表示方法分别适合表示哪一类集合?(通过学生看课本,了解了一部分,但不系统,需要一起归纳)1.列举的含义是把满足条件的元素列举出来,再结合集合的表达形式,例子见课本。
表示的分类:有限集:{0,1,2,3,4,5,6,7,8,9}A =能不能表示无限集?(只能表示存在规律的集合){0,2,4,6,8,}A n =2.描述法的含义用不同的语言形式描述出限制元素的条件,从而通过限制元素来表达集合。
新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B 版必修第一册(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解空集的含义.4.能正确使用区间表示一些数集.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).5.区间的概念.教学难点:1.对元素的确定性的理解.2.描述法表示集合.【情境导学】(教师独具内容)一位渔民非常喜欢数学,但他怎么也想不明白集合的意义.于是他请教一位数学家:“先生,您能告诉我,集合是什么吗?”由于集合是不定义的概念,数学家很难向那位渔民讲清楚.直到有一天,数学家来到渔民的船上,看到渔民撒下渔网,然后轻轻一拉,许多鱼虾在网中跳动.数学家非常激动,高兴地对渔民说:“这就是集合!”你能理解这位数学家的话吗?【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A ,B ,C ,…表示集合,用英文小写字母a ,b ,c ,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a 是集合A 的元素,就记作□01a ∈A ,读作“a 属于A ”.(2)“不属于”:如果a 不是集合A 的元素,就记作□02a ?A ,读作“a 不属于A ”.知识点三空集一般地,我们把不含任何元素的集合称为□01空集(empty set),记作□02?. 知识点四集合中元素的三个特性 (1)确定性; (2)互异性;(3)无序性.知识点五集合的分类(1)有限集;(2)无限集.知识点六几个常用数集的固定字母表示知识点七集合的表示方法03描述法、□04“区间”(以及后面将集合常见的表示方法有:□01自然语言、□02列举法、□要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素□05一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个□06特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间01(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负实数集R可以用区间表示为□无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x< bdsfid="137" p=""></b的实数x<> 02[a,+∞),(a,+∞),(-∞,b],(-∞,b).的集合分别表示为□可以看出,区间实质上是一类特殊数集(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.( )(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a?A,二者必居其一且只居其一.( )(3)对于数集A={1,2,x2},若x∈A,则x=0.( )(4)对于区间[2a,a+1],必有a<0.( )(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.( )答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是( )A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,?)填空.0________?,0________{0},0________N,-2________N *,13________Z ,2________Q ,π________R .(3)不等式2x -1≥3的解集可以用区间表示为________.答案 (1)A (2)? ∈ ∈ ? ? ? ∈ (3)[2,+∞)题型一集合概念的理解例1 下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a ,b ,a ,c .[解析] ①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a 是重复的,不符合集合元素的互异性. [答案] ①④⑤ 金版点睛判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.[跟踪训练1] 判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误. (3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确. 题型二元素与集合关系的判断与应用例2 (1)下列所给关系正确的个数是( ) ①π∈R ;②3?Q ;③0∈N *;④|-4|?N *. A .1B .2C .3D .4(2)集合A 中的元素x 满足66-x ∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)∵π是实数,3是无理数,∴①②正确;∵N *表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N ,x ∈N ,∴66-x ≥0,x ≥0,即?6-x >0,x ≥0,∴0≤x <6,∴x =0,1,2,3,4,5. 当x 分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5. [答案] (1)B (2)0,3,4,5 金版点睛1.常用数集之间的关系2.确定集合中元素的三个注意点1判断集合中元素的个数时,注意集合中的元素必须满足互异性. 2集合中的元素各不相同,也就是说集合中的元素一定要满足互异性. 3 若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.[跟踪训练2] (1)用符号“∈”或“?”填空.①0________N *;②1________N ;③1.5________Z ;④22________Q ;⑤4+5________R ;⑥若x 2+1=0,则x ________R . (2)设x ∈R ,集合A 中含有三个元素3,x ,x 2-2x . ①求实数x 应满足的条件;②若-2∈A ,求实数x 的值.答案(1)①? ②∈ ③? ④? ⑤∈ ⑥? (2)见解析解析(1)①∵0不是正整数,∴0?N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5?Z . ④∵22是无理数,∴22?Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在,∴x 为非实数,∴x ?R .(2)①根据集合元素的互异性,可知x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值;(2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求.得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 金版点睛利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.[跟踪训练3] 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值.解因为A 包含三个元素a -2,2a 2 +5a,12,且-3∈A ,所以a -2=-3或2a 2+5a =-3,解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去.当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32.题型四集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数;(3)在平面直角坐标系中所有第三象限的点;(4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集;(5)在实数范围内方程组?x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集. (5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组x 2-x +1=0,x +y =1无解,能构成集合,是空集.金版点睛集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.[跟踪训练4] 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五用列举法表示集合例5 用列举法表示下列集合:(1)方程x 2-4x +2=0的所有实数根组成的集合;(2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合.[解] (1)方程x 2-4x +2=0的实数根为2,故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由?y =x ,y =2x -1,解得?x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}.金版点睛用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素. (2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.[跟踪训练5] 用列举法表示下列集合:(1)不等式组?2x -6>0,1+2x ≥3x -5的整数解组成的集合;(2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解 (1)由?2x -6>0,1+2x ≥3x -5得3<="">又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,则:①当a >0,b >0时,|a |a +|b |②当a <0,b <0时,|a |a+|b |b=-2;③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有值组成的集合为{-2,0,2}. 题型六用描述法表示集合例6 用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合; (2)所有被3除余1的整数的集合; (3)使y =1x 2+x -6有意义的实数x 的集合.[解] (1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x ,y )|xy ≤0,x ∈R ,y ∈R }.(2)因为被3除余1的整数可表示为3n +1,n ∈Z ,所以所有被3除余1的整数的集合为{x |x =3n +1,n ∈Z }.(3)要使y =1x 2+x -6有意义,则x 2+x -6≠0.由x 2+x -6=0,得x 1=2,x 2=-3. 所以使y =1x 2有意义的实数x 的集合为{x |x ≠2且x ≠-3,x ∈R }.金版点睛用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[跟踪训练6] 试用描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解 (1)方程x 2-x -2=0的解可以用x 表示,它满足的条件是x 2-x -2=0,因此,方程的解集用描述法表示为{x ∈R |x 2-x -2=0}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z ,且-1<7,<="" bdsfid="371" p=""> 因此,该集合用描述法表示为{x ∈Z |-1<="" 题型七="">例7 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0,∴x =2,此时A ={2},符合题意.②当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.即Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.[条件探究] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 取值范围的集合.解由题意可知方程kx 2-8x +16=0有两个不等的实根.∴?k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴k 的取值范围的集合为{k |k <1且k ≠0}.金版点睛分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k 是否为0而漏解.②由kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.[跟踪训练7] (1)设集合B =?x ∈N62+x∈N .①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.解(1)①当x =1时,62+1=2∈N .当x =2时,62+2=32?N .所以1∈B,2?B .②∵62+x ∈N ,x ∈N ,∴2+x 只能取2,3,6,∴x 只能取0,1,4.∴B ={0,1,4}.(2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得2+3=a ,2×3=b ,因此a =5,b =6.题型八集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D. [答案] D 金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表含树形图使用.[跟踪训练8]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B ={0,2},则集合A*B中的所有元素之和为( )A.0 B.2C.3 D.6答案 D解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知A*B={0,2,4},故集合A*B 中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是( )A.我国古代的四大发明B.二元一次方程x+y=1的解C.我班年龄较小的同学D.平面内到定点距离等于定长的点答案 C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为( )A.2 B.2或4C.4 D.0答案 B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a =4∈A,∴a=2符合题意;当a=4∈A时,6-a =2∈A,∴a=4符合题意;当a=6∈A时,6-a=0?A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是( ) A.1 B.2C.3 D.4答案 B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,?)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A ={1,a}.。
集合的表示方法
教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题. 教学重点、难点:用列举法、描述法表示一个集合.
教学过程:
一、复习引入:
1.回忆集合的概念
2.集合中元素有那些性质?
3.空集、有限集和无限集的概念
二、讲述新课:
集合的表示方法
1、大写的字母表示集合
2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.
例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)
自然数集N :{1,2,3,4,…,n ,…}
(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.
(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.
3、特征性质描述法:
在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:
{x ∈I | p (x ) }
例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2
>-x x x , 所有直角三角形的集合可以表示为:}|{是直角三角形x x
注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}
(2)注意区别:实数集,{实数集}.
4、文氏图:用一条封闭的曲线的内部来表示一个集合.
例1:集合}1|),{(2+=x y y x 与集合}1|{2
+=x y y 是同一个集合吗? 答:不是.
集合}1|),{(2+=x y y x 是点集,集合}1|{2
+=x y y =}1|{≥y y 是数集。
例2:(教材第7页例1)
例3:(教材第7页例2)
课堂练习:
(1) 教材第8页练习A 、B
(2) 习题1-1A :1,
小结:
本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)
P1,2 课后作业:
10。