深挖问题隐含条件培养数学思维能力
- 格式:pdf
- 大小:613.42 KB
- 文档页数:4
如何培养学生的数学思维能力数学思维能力的培养对于学生的数学学习和未来的发展至关重要。
而如何有效地培养学生的数学思维能力成为了教育界和家长们共同关注的问题。
本文将探讨一些有效的方法和策略,帮助学生养成良好的数学思维习惯。
一、培养问题意识培养学生的问题意识是培养数学思维能力的关键。
学生需要学会提问,并懂得在解决问题时进行思考和探索。
教师和家长可以通过以下方式来培养学生的问题意识:1. 提供挑战性问题:教师可以不限定解题方法,而是提供一些有挑战性的问题,鼓励学生运用自己的思维进行解题。
2. 培养独立思考:教师和家长应该鼓励学生独立思考,并鼓励他们提出自己的问题和解决方案。
3. 创设情境引发思考:通过创设情境,让学生在实际问题中思考数学,明确数学知识与实际问题的联系。
二、注重基础知识的建立数学思维能力的培养需要建立在扎实的基础知识之上。
教师和家长应该注重培养学生的数学基础,建立起学生对于数学概念的清晰理解和掌握。
以下是一些培养学生数学基础的方法:1. 注重概念的理解:学生需要理解数学概念的定义和特性,并能够熟练运用。
2. 多角度学习:通过教材、课外书籍、视频等多种形式,帮助学生从不同的角度理解数学知识。
3. 反复训练:通过大量的练习,巩固学生对于基础知识的理解和运用。
三、引导学生探索数学思维数学思维是一种创造性的思维方式,需要学生主动去探索和发现。
教师和家长可以通过以下方法来引导学生探索数学思维:1. 提供数学实践机会:引导学生参加数学建模、数学竞赛等实践活动,让他们从实践中体验数学的乐趣和奥妙。
2. 运用启发式教学法:引导学生通过引发问题、构建模型、寻找规律等方法进行探索和解决问题。
3. 提供资源和工具:为学生提供丰富的数学学习资源和工具,如数学软件、互联网资源等,帮助他们更好地进行数学思维。
四、培养团队合作意识数学思维能力的培养不仅仅是个体的问题,还需要通过团队合作来促进。
教师和家长可以通过以下方式来培养学生的团队合作意识:1. 小组合作学习:组织学生进行小组合作学习,让他们相互交流和合作,共同解决问题。
高中数学解题中隐含条件的挖掘方法和技巧隐含条件,是指在数学问题中没有直接给出的条件,这些条件需要解题的学生自己去挖掘。
在解题时,学生需要具备挖掘隐含条件的意识,即在审题时,就要意识到“题目中是不是包含了隐含条件?”接下来,就要能够从题目的特征中分析出题目可能存在哪些隐含条件,然后应用挖掘隐含条件的技巧来挖掘出隐含条件。
1结合习题中的概念和性质挖掘隐含条件有些题目没有直接给出隐含条件,然而这些条件包含在概念或性质中,只有挖掘出这些隐含条件,才能够正确的确定一些数值的取值范围。
在审题时,学生就需要关注概念和性质中有没有隐含条件。
例1:无穷数列中,时,则此数列的各项和为,请完成命题的证明。
解:分析数列通项,可将数列视为分段函数,这是一个隐含条件。
数列是一种特殊的函数,它的自变量是自然数构成的集合,它的值域为自然数组成的分数。
并且当n=3k-1时,即n被3除不足1时,该项将以的形式呈现,否则,当时,该项将以的形式呈现,那么将数列呈现的形式表达出来,它将以的方式呈现。
从数列的概念和性质中挖掘出题目包含的隐含条件,可以缩小无穷数列的范围,得到三个首项不同,而公比相同的三个“无穷递缩等比数列”(1)(2)(3)结合隐含条件完成证明:在解题时,需要分析数学问题的定义与性质,找出题目中可能存在的隐含条件,比如较为常见的数学问题定义和性质中包含的隐含条件为:一元二次方程的二次项系数不为零,指数函数的底数是非1正数等。
只有正确分析隐含条件,才能够正确界定变量的取值范围。
2挖掘出数学图形中呈现的隐含条件在解题时,有些隐含条件在文字中难以呈现出来,而如果忽略这些隐含条件,则解题会出现条件不足的问题。
然而如果抽象化的文化转化为直观化的图形,便会发现图形中包含着隐含条件能够呈现出。
当发现习题的条件不充分时,可以思考把文字转化为图形,挖掘图形中的隐含条件。
图1例2:已知正方形,边长为4,,F分别是AB,AD的中点,平面ABCD且GC=2,求B点到平面EFG的距离。
浅谈数学问题中的隐含条件所谓隐含条件是指题中若明若暗、含蓄不露的已知条件。
它们常是巧妙地隐蔽在题设的背后,不易为人们所觉察。
发掘隐含条件,实质上就是要使题设条件明朗化、完备化和具体化,以便明确解题方向,寻求解题思路。
从总体上说,发掘隐含条件,需要扎实的基础知识,熟练的基本技能,灵活的思想方法,严谨的思维能力。
通常可以从数学题所及的概念、题设、图形等方面的具体特征入手,通过分析、比较、观察、联想等方法,逐步探索和转化。
一、根据概念特征挖掘隐含条件有些数学题,可以从分析概念的本质特征入手,挖掘隐含条件,发现解题契机。
例12+x 与()21-y 互为相反数,求代数式:⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---y x xy xy y x xy y x 2222481433 的值。
分析 本题的隐含条件是互为相反数的两数和为零。
由2+x 是一个非负数,()21-y 也是一个非负数,并且2+x 与()21-y 是互为相反数的。
由互为相反数的意义,得到12=-=y x , ,这样就创造了代入求值的条件。
解: ∵ 2+x 与()21-y 互为相反数 ∴ 2+x ()012=-+y ∴ 02=+x ,()012=-y ∴ 12=-=y x ,⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---y x xy xy y x xy y x 2222481433y x xy xy y x xy y x 2222421433---+-=xy xy y x 2341022--= 当12=-=y x ,原式()()()1223124121022⨯-⨯-⨯-⨯-⨯-⨯= 3840++= 51=所以⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---y x xy xy y x xy y x 2222481433 的值为51。
二、从题设条件中挖掘隐含条件有些数学问题中,只要分析题设中的条件,挖掘出隐含的条件,就能达到“柳暗花明又一村”的效果。
高中数学解题中隐含条件的挖掘【关键词】高中数学;解题;隐含条件;挖掘数学问题的完整性通常包括条件与目标两个方面.问题条件主要具有显性条件与隐含条件以及干扰项.显性条件在解答方面能够提供非常直接的帮助;隐含条件普遍都受忽视,因此需要学生独立挖掘;干扰项使题目难度增加,对学生的思考设置产生影响.在解题的过程中,学生只要对显性条件进行确认,对隐含条件进行挖掘,对干扰项进行排除,才可以使解题的效率得到提升.一、意义有些数学问题即使表面上看比较有难度,但是若是能够把数学题内存在的隐含条件挖掘出来,就可以使解题步骤得到快速简化,将题中具有的数量关系理清,使解决数学问题的效率提高.二、方法(一)已知条件方面解决高中数学问题的过程,本质就是对学生逻辑思维的考查过程.分析题中存在的隐含条件就是通过逻辑思维进行的.在学习高中数学知识的过程中,虽然教师的讲解十分重要,但是学生进行练习也是十分关键的.学生进行数学的日常练习时,基本上都会把教师在课堂上传授的知识进行变形或者拓展,属于将知识进行延伸.所以,学生在练习时,题目难度就会变大.学生在进行具体题目的解决时,若是想得到其中存在的隐含条件,就需要全面分析与研究已知条件,对已知定理或者设定进行透彻理解与分析,准确找到题目条件所包含的定义与公式,再利用公式变形将题中存在的隐含条件找出.例如:已知函数f(x)=loga(x+1)(a0,且a≠1),g(x)=loga (4-2x).求使函数f(x)-g(x)的值为正数的x的取值范围.题目自身较为复杂,学生在表象认识方面存在困难.學生第一眼看到此题目时,会认为此题所给的条件不够,无法解答.有些学生还会被禁锢于题目呈现的简单条件之中,这时若是想在其中发现隐含的条件就非常困难了.因此,学生在做题时,必须将题面上所给的全部已知内容都找到,且在其中找到需要解决的问题与高中数学内一些定理的相似之处.解析:令f(x)-g(x)0,得f(x)g(x),即loga(x+1)loga(4-2x).当a1时,可得x+14-2x,解得x1.因为-1x2,所以1x当0a1时,可得x+14-2x,解得x1,因为-1x2,所以-1x1.综上所述,当a1时,x的取值范围是(1,2);当0a1时,x的取值范围是(-1,1).由解析所表达的内容可以清晰地看到,本题的解题关键在于通过已知条件进行转化,从而找到该题目的解题核心即“令f(x)-g(x)0,得f (x)g(x)”.在找到解题关键后,该题由已知条件不完整,变成了一道简单的不等式问题,这在极大程度上降低了解题难度.同时,在上述的题目解析中可以发现,高中数学问题的条件通常不会直接呈现给解题者,而是需要解题者在利用平时课堂上所学内容的基础上,合理运用逻辑思维在题干中找到解题关键.因此我们可以说,高中阶段的数学题目正是为了有效考察学生的逻辑思维,并以此锻炼学生的思维能力.(二)推理方面学生在进行高中数学的学习时,只需对方法有一定的掌握就能够使题目难度得到明显降低.题目内具有的隐含条件是将数学问题彻底解决的重要内容.学生只有不断推理和探究题目,才能发现解决问题的方法,发现解题时需要的实质内容.但是一部分题目非常复杂,很难挖掘其中存在的隐含条件,只有利用具有严密性的逻辑推理与求证,才能够将隐含条件推导出来,最终将问题解决.例如:已知A+B+C=π,求证:tan2A2+tan2B2+tan2C2≥1.学生在看到此题时,第一反应就是题目中条件不够,没有办法解题.但是若是经过较为严密的推理就可以将此题中存在的隐含条件找到.解析:利用基本不等式a2+b2≥2ab,同向不等式相加,可以得到tan2A2+tan2B2+tan2C2≥tanA2tanB2+tanC2tanB2+tanA2tanC2;然后只需证明tanA2tanB2+tanC2tanB2+tanA2tanC2=1即可.由两角和的正切公式的变形可得tan α+tan β=tan(α+β)(1-tan αtan β),结合三角形内角的关系可得tanC2=cot(A+B)2,至此即可求出结果.证明:因为tan2A2+tan2B2≥2tanA2tanB2,tan2C2+tan2B2≥2tanC2tan B2,tan2A2+tan2C2≥2tanA2tanC2,所以将三个不等式相加可得:tan2A2+tan2B2+tan2C2≥tanA2tanB2+tanC2tanB2+tanA2tanC2=tanA2ta nB2+tanC2tanA2+tanB2=tanA2·tanB2+cotA+B2tanA+B21-tanA2tanB2=1,即tan2A2+tan2B2+tan2C2≥1.由上述题目解析可知,仅凭题干的已知条件进行证明是无法直接解开此题的,需要学生进一步利用自身的知识积累来找到题中的隐含条件.类似于上述形式的数学题目,在高中阶段的“出镜率”较高,并且具有一定的难度.但是通过上述解题过程不难发现,该类题目的出题意图在于考察学生的知识储备,学生只有掌握固定的不等式关系,才能满足上述题目的解题要求.同时,学生在解题过程中,依旧需要将自身积累的数学知识运用于解题过程中,从而为题目“凑齐”解题条件.而这种思维在学生未来进行科学或学术研究时,能够为其起到一定的支撑作用.在学术研究过程中必须通过已知的知识来求证未知知识,在条件不满足的情况下,科研人员一定要具有上述的“拼凑”思维,巧妙且合理地将所有知识及条件汇聚在一起,才能解开未知的谜题.因此,学习与练习数学题目能够在一定程度上培养学生的思考能力,为其日后的工作及学习奠定良好的基础.(三)定义方面定义和性质是数学解题过程中的着手处,属于浅显的隐含条件,但若是不够重视就会成为非常隐蔽的隐含条件.例如,一元二次方程中的二次项系数不能是0,指数函数中底数必须是不是1的正数,等等.例如:已知数列{an}中,a1=3,前n项和Sn=12(n+1)·(an+1)-1.求证:数列{an}是等差数列.解析:由Sn=12(n+1)(an+1)-1,得Sn+1=12(n+2)·(an+1+1)-1,两式相减后整理可得nan+1=(n+1)an-1,则(n+1)an+2=(n+2)an+1-1,两式相减整理后利用等差中项公式可判断.证明:因为Sn=12(n+1)(an+1)-1,所以Sn+1=12(n+2)(an+1+1)-1,所以an+1=Sn+1-Sn=12[(n+2)(an+1+1)-(n+1)(an+1)],整理可得,nan+1=(n+1)an-1,①所以(n+1)an+2=(n+2)an+1-1,②②-①可得,(n+1)an+2-nan+1=(n+2)an+1-(n+1)an,所以2(n+1)an+1=(n+1)(an+2+an),所以2an+1=an+2+an,所以数列{an}为等差数列.通过上述题目解析可知,在进行数学题目解答时,学生需要准确掌握使数学概念成立的充分与必要条件.在高中阶段的数学学习过程中,很多定理的存在与成立都需要一定的固有基础,同时根据定理又能得到相应的固有结论.因此,在一般的数学题目中,既定的充要条件通常不会直接呈现,学生需要通过自身对于定理的熟练掌握在解题过程中自行进行补充,从而满足题目的解题需求.因此,教师在日常的数学教学中,需要对学生在该方面进行强调,并在讲解新定理的过程中要求学生对定理的结论及条件进行记忆.但需要注意的是,教师在课程中对学生提出定理记忆要求时,需要直接配合上述类型的题目要求学生进行练习,从而使学生直观感受到记忆定理的作用.(四)联系方面在单独地、孤立无援地对已知条件进行审视时,能够在已知条件的联系中发现新的隐含条件.例如:锐角α,β满足条件sin4αcos2β+cos4αsin2β=1,求证:α+β=π2.证明:由已知可设sin2αcos β=cos θ,cos2αsinβ=sin θ,则sin2α=cos θcos β,① cos2α=sin θsin β,②①+②得:cos(θ-β)=1θ-β=2kπ,所以θ=2kπ+β(k∈Z),所以sin2α=cos θcos β=cos2β,cos2α=sin θsin β=sin2β,因为α,β为锐角,所以sin α=cos β=sinπ2-β,所以α=π2-β,即有α+β=π2.由上述类型的题目及对应解析可知,学生在进行数学习题解答的过程中,需要充分认识到题干中所存在的固有关系,而该类固有关系正是题目的隐含条件,学生只有及时发现该类隐含关系才能有效解开该类题目.此类题目在发现隐含条件后的整体运算并难,故需要教师在日常练习过程中帮助学生进行解答,并指导学生进行相应的积累.其中在要求学生进行积累时,教师要有所侧重的为学生指出解题重点,意在培养学生发现隐含条件的思维能力,切忌放任学生死记硬背.(五)认知动因方面在数学教学活动中,不但具备将认知动因进行激活的策略,也具备将认知内容和方法进行激活的策略,前面的内容依据联想,后面的内容依据类比.解题的过程不仅是联想的过程也是类比的过程.例如:在等比数列中,若S30=13S10,S10+S30=140,则S20等于多少?分析:这是一道关于等比数列的题目,要回忆等比数列的前n项和的公式.首先,由已知条件可得q≠1,S10=10,S30=130,接下来就可以利用等比数列的前n项和公式将其进行变形,进而得到关于q的方程,即可求出q10的值,然后利用等比數列的前n项和公式进行解答就可以了.解:因为S30=13S10,且数列为等比数列,所以q≠1.因为S30=13S10,S10+S30=140,所以S10=10,S30=130,所以a1(1-q10)1-q=10,且a1(1-q30)1-q=130,所以q20+q10-12=0,所以q10=3,所以S20=a11-q201-q=S10(1+q10)=10×(1+3)=40.从该类题目的解题过程中可以看出,此类题目能够很好地检验学生对题干的拆解能力,教师在为学生讲解过题目后,一定要重点对其隐含条件“q≠1”及等比数到的特征进行总结,其目的在于吸引学生对题干的注意力,从而在后续解题过程中能够发现题干中的隐藏条件.(六)图形方面一位法国数学家曾经说过,代数和几何一旦分道扬镳,那么它们的发展范围就会变得十分缓慢,它们在应用方面就十分狭窄,但是把它们相互结合、相互联系,它们就能相辅相成、互相影响,就能够加快发展的步伐,变得更加完善.例如:已知点A(1,2),B(3,-5),P为x轴上一动点,求P到A,B的距离之差的绝对值最大时P点的坐标.分析:从题中能够看出,若不通过数形结合,则很难算出P到A,B 的距离之差的绝对值最大时P点的坐标,因此,可以利用数形结合的方式进行解题,如下图所示.易得当B′,A,P三点共线时,|PA-PB|最大,设直线AB′的解析式为y=kx+b,利用待定系数法即可求得直线AB′的解析式,点P即是此函数与x轴的交点坐标.解:设B关于x轴的对称点为B′,连接PB′,AB′,则B′(3,5),PB′=PB,所以|PA-PB|=|PA-PB′|≤AB′,则B′,A,P三点共线时,|PA-PB|最大.设直线AB′的解析式为y=kx+b,则有2=k+b,5=3k+b,可得k=32,b=12,所以直线AB′的解析式为y=32x+12.令y=0,可得x=-13,所以符合题意的点P的坐标为-13,0.数形结合不仅是数学发展历史中的重要发现,也是当下高中数学题目中隐藏条件的最好手段.因此,教师需要充分培养学生将图形与函数进行联系的能力,往往题干中的隐藏条件就存在于图形与函数之间.此外,高中数学的教学内容中包含了多种函数形式,并进一步提升了学生对于函数的理解要求.故教师要重视在日常教学中加强学生于函数的理解,并在适当时间要求学生自行进行函数图像的描绘,或通过建立函数图像来要求学生写出对应的函数表达式.三、结语学生在学习高中数学知识时,需要把所学的知识不断运用,这样才可以实现学习的目的.学生在解题时挖掘题中蕴含的隐含条件,并采取与之相关的定义将问题解决,对解题效率的提高有很大的帮助.。
巧妙挖掘数学问题引导发现隐含条件作者:陈海燕来源:《中学生数理化·学研版》2015年第11期隐含条件是指问题中不易发现的固有条件。
隐含条件往往会含而不露,正因为如此,致使我们不少同学在解决这些问题很容易失误,甚至陷入困境。
为此,在初中数学解题教学中,教师应引导各层次学生进行反复、仔细读题,细心审题,认真开采隐含条件再进行巧妙利用,从而能最佳地拓展各层次学生解题思路和策略,达到有效地解决问题的目的。
本文仅就如何指导学生巧妙挖掘数学问题,引导发现隐含条件,谈谈自己的尝试与思考。
一、重视关键语句,挖掘隐含条件众所周知,同学们在自主探索学习中,对探索数学问题的解决时,关键是指导同学们去捕捉问题中的关键词,从中寻求表象信息,并结合有关知识、方法加以分析、推理,去整合多种信息,往往就会不知不觉地得出条件中隐含“东西”,找到了解决问题的钥匙,这样就能有效地将问题解决,有利于降低同学们在解决数学问题的过程中的错误率。
另外,学生在解决问题中,通过训练开采问题中隐含条件,他们的思维得到有效锻炼,并能最好地培养学生应用数学知识解决实际问题的能力。
同时,学生的数学综合应变能力也得到提升,又有助于他们开采数学问题中的隐含条件。
例如:在探索九年级代数式复习教学中,为了挖掘隐含条件,引导同学们去重视关键语句,用多媒体展示下列问题:先将x-2x-2÷xx3-2x2化简,然后自选一个合适的x的值,代人化简后的式子求值。
同学们见到此问题非常高兴,认为这是一个中考问题,信心百倍,在小组里进行议论纷纷,七嘴八舌,他们对于此题的化简,很快都能得出正确的结果即,但有一部分学生没有抓住某些关键语句,不得其法。
为此,教者应引导学生进行如下的分析:在得出正确的结果即之后,对于的求值,在求值时,不少小组学生会将x取作0或1代入计算,以为比较简单,其实,对于这个题目来说,x并不能取作0或1,发生这种错误的原因,在于同学们未能认真审题,其实他们如能领会“合适的x的值”,这一关键词的深层含义,就可以联想到x的值的限制条件,这时就会很自然地想到探究x的取值范围(x>2),也就不会出现以0或1代入计算的错误。
例谈数学题中隐含条件的挖掘标签:数学教学;隐含条件;挖掘从某种意义上讲,解数学题是一个从题目所列条件中不断地挖掘并利用其中的隐含条件,进行推理和运算的过程.本文结合教学中的几个典型例子,剖析解题时导致错误产生的原因以及如何注意挖掘题目中的隐含条件。
一、挖掘隐含集合元素的条件例1 已知集合A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且A∩B={3,7},求实数a的值.正解:∵A={2,3,a2+4a+2},A∩B={3,7}.∴a2+4a+2=7,解得a=1或a=-5.当a=1时,A={2,3,7},B={0,7,3,1},符合条件.当a=-5时,A={2,3,7},B={0,7,3,7},不符合集合元素互异性这一条件,应舍去.∴实数a的值为1.分析:这道题容易出错的原因是学生忽视挖掘集合元素的条件,即互异性和无序性,所以在解得a=1或a=-5后,不去检验集合B是否成立.二、挖掘隐含某一变量的条件例2 已知x≥0,y≥0,且x+2y=1,试求x2+y2的取值范围.错解:由x+2y=1,得x=1-2y.则x2+y2=(1-2y)2+y2=5(y-)2+.∵y≥0,∴5(y-)2+≥.即x2+y2≥,∴x2+y2的取值范围为[,+∞].分析:导致错误的原因是已知条件中给出了两个变量的范围,又给出了两个变量的等量关系,要运用此等量关系将所求式子转化为某个变量的二次函数式,还隐含了要利用此等量关系求得某个变量的范围.正解:∵x≥0,∴x=1-2y≥0 ,解得y≤,又∵y≥0 ,∴0≤y≤.x2+y2=(1-2y)2+y2=5(y-)2+,当0≤y≤时,≤5(y-)2+≤1 .∴≤x2+y2≤1. ∴x2+y2的取值范围为[,1].三、挖掘隐含函数奇偶性的条件例3 已知函数f(x)=ax5+bsin3x+10,且f(3)=5,求f(-3)的值.正解:设g(x)=ax5+bsin3x,则g(x)为奇函数,f(x)=g(x)+10.所以f (-3)=g(-3)+10=-g(3)+10=-[f (3)-10]+10=15 .分析:这道题容易出错的原因是忽视挖掘函数奇偶性这一条件.通常求函数值应有确切的函数解析式,本题是涉及两个参数a,b的解析式,只给出f (3)=5这一条件,无法求得参数a,b的值.仔细观察由f (3)=5,求f (-3)的值,启发我们联想函数的奇偶性,不难发现解析式中隐含着g(x)=ax5+bsin3x是奇函数这一条件,于是问题迎刃而解.四、挖掘隐含向量夹角是锐角的充要条件例4 已知向量=(1,2),=(1,m),试确定实数m的取值范围,使得与的夹角为锐角.错解:∵·=1+2m>0,与的夹角为锐角.∴·>0,即1+2m>0,解得m>-.∴实数m的取值范围是(-,+∞).分析:导致错误的原因是忽视隐含向量夹角是锐角的充要条件.对两个非零向量与,如与的夹角θ为锐角,则·>0,反之,则不一定成立.这是因为当·=cosθ>0时,与的夹角θ也可能为0.因此与的夹角θ为锐角的充要条件是·>0且与不同向,这样在上述m的取值范围(-,+∞)中应除去与的夹角为0的情况.∵与的横坐标都是1,∴当m=2时,与同向.∴实数m的取值范围是(-,2)∪(-2,+∞).。
数学解题教学中隐含条件的有效发掘探究丘荣华摘要:善于分析和解答数学问题是学生有效掌握数学知识的主要体现。
但在实际解题中,有的学生不认真读题,忽略题目中的隐含条件,找不到题目中的关键解题信息。
文章以数学解题教学为研究对象,探讨、分析隐含条件的含义、价值以及如何在数学解题中有效挖掘隐含条件,以引导学生正确解答数学题目。
关键词:初中数学;解题;隐含条件;信息;含义;价值;策略有效挖掘数学题目中的隐含条件有利于学生正确、高效解题。
但是,隐藏在数学题目背后的条件不易被学生发现、利用。
尤其是比较粗心、不爱审题的学生更容易忽略题目中的隐含条件,从而影响到解题效果。
因此,在数学解题教学中,教师有必要指导学生掌握挖掘题目中隐含条件的方法,让学生从题目中挖掘到有用的隐含条件,从而正确、高效解题。
一、隐含条件的含义隐含条件是指隐藏在题目背后的条件。
题目不会直接给出隐含条件,需要学生从题干或已知信息中分析、推理、转换,让其变得清晰、可用,从而为解题提供有效帮助。
二、隐含条件的价值解答数学问题单靠题目中的显性条件是不够的,尤其是一些复杂的数学题目,不仅需要学生分析题目中的显性条件,还需要学生对题目中存在的关键词、涉及的公式进行重点分析。
这样才能将题目中的各种信息挖掘出来,并运用于问题的解答中。
另外,挖掘题目中隐含条件的过程也是锻炼学生思维能力的过程,可以让学生积累分析、理解、构建关系的方法和经验。
这有利于提升学生的学习能力,促使学生多角度思考问题。
三、数学解题教学中隐含条件的有效挖掘策略1.从数学题目涉及的概念中挖掘隐含条件不同的数学题目涉及的数学概念不同,而这些数学概念经常隐藏可用的解题条件。
因此,在数学解题教学中,教师可以从数学题目涉及的概念着手,引导学生利用其中的概念信息挖掘隐含条件。
当学生得到隐含条件之后,就可以综合运用各种显性和隐性的条件,解答数学问题。
以下面這道数学三角形证明题为例。
在△ABC中,∠B=2∠C,∠BAC的平分线交BC于点D,求证:AB+BD=AC。
初中数学解题中隐含条件的挖掘及应用1. 引言初中数学作为学生学习的基础学科之一,是培养学生逻辑思维的重要途径。
在数学解题过程中,常常会涉及到一些隐含条件,而挖掘并应用这些隐含条件往往是解题的关键之一。
本文将就初中数学解题中隐含条件的挖掘及应用进行探讨,希望能够帮助学生更好地理解数学知识,并提高解题能力。
2. 隐含条件的概念及意义隐含条件指的是在问题描述中并未直接提及,但对问题的解答却至关重要的条件。
在数学解题中,很多问题都存在隐含条件,如果能够正确地挖掘和应用这些隐含条件,往往可以事半功倍。
培养学生发现并应用隐含条件的能力,对于他们的数学学习至关重要。
3. 如何发现隐含条件在解决数学问题的过程中,如何发现隐含条件成为了关键。
一般来说,通过对问题进行分析和归纳,可以帮助我们找到隐含条件。
多做一些题目,在实践中培养对隐含条件的敏感度也是很重要的。
4. 隐含条件的应用一旦发现了隐含条件,正确地应用它也是至关重要的。
在实际解题中,有时候隐含条件可以帮助我们缩小解题范围,找到更加有效的解题方法。
培养学生灵活运用隐含条件的能力也是十分必要的。
5. 个人观点及总结在初中数学解题中,隐含条件的挖掘及应用是一个需要强调和重视的能力。
通过不断练习和思考,相信学生可以逐渐提高对隐含条件的发现和应用能力,从而在数学学习中取得更大的进步。
结语通过本文的探讨,希望读者能够对初中数学解题中隐含条件的挖掘及应用有所了解,并在实际学习中加以运用。
隐含条件的发现和应用不仅可以帮助我们更好地理解数学知识,也可以提高解题的效率和准确性。
希望学生们能够在今后的学习生活中不断提高这一能力,取得更好的成绩。
隐含条件在数学解题中起着重要的作用,它有时能够帮助我们找到解题的关键,缩小解题范围,甚至直接导致解题的成功。
培养学生发现和应用隐含条件的能力是十分必要的。
对于发现隐含条件,学生可以通过分析题目、归纳问题的特点来发现隐含条件。
在解决代数问题时,有时候方程中的未知数之间存在着某种关系,这种关系在题目中可能并未直接给出,但是如果能够发现并应用这种关系,往往会事半功倍。
浅析初中数学解题中隐含条件的挖掘陈丽隐含条件的挖掘是正确解题的关键,而数学题中的隐含条件千变万化,需要对其进行充分地辨识和挖掘,才能运用所学数学知识进行合理、正确的推理、解题。
因此,在初中数学的教学过程中,要逐步培养学生挖掘数学隐含条件的习惯,提高数学解题能力。
一、对初中数学解题中隐含条件挖掘的意义1.挖掘隐含条件是正确解题的基础在解答数学题的过程中,阅读审题是十分重要的环节,也是得到正确答案的关键步骤。
因此,学生除了对显性条件分析之外,还需要对隐含条件进行充分地挖掘,比如定义、定理、公式中的关键词等,这些隐含条件对数学解题起到了重要作用。
所以,数学教师要不断提高学生审题以及对隐含条件挖掘的意识,这才是学生正确解题的重要基础。
例如,解“当时,函数”这道题,学生看到这道题时,马上得出答案“就是,得”。
通过仔细分析,可以看出这样解题是错误的。
原因就在于大部分学生没有对隐含条件进行挖掘,这样解题就只考虑了分子是零,而忽视了分母不能为零的条件,从而直接导致了答案的错误。
因此,正确的解答应该是“,得”。
2.挖掘隐含条件是提高解题效率的关键在数学考试中,做题的效率以及准确性是最为关键的,也是最难的,这就需要学生在有效的时间里做对最多的题。
在初中数学的教学过程中,我们会发现,有的学生会因为计算能力影响最终的解题速度,有的学生会因为没有掌握解题技巧而浪费时间。
所以,在初中数学的解题过程中,不仅需要在一定程度上激发学生的创造力,更需要引导学生对隐含条件进行挖掘,从而学会运用不同的方法解决问题。
例如,已知都是实数,而且,那么—通过分析,该数学题具有一定的综合性,且含有较多的隐含条件。
如果学生对隐含条件的挖掘不够透彻,那么很容易影响学生的做题效率。
因此,“绝对值与完全平方数为非负数”的隐含条件必须被挖掘出来,否则会直接影响做题准确性。
该题的结果是:{,即{,那么-4500。
3.挖掘隐含条件是简化解题过程的前提在初中数学的教学过程中,学生的思维能力尤为重要,不仅包括学生的逻辑思维能力,还包括学生的逆向思维能力。
如何在教育中培养学生的数学思维和逻辑推理能力数学思维和逻辑推理能力是现代社会所需的重要素质,它们不仅可以帮助学生在数学学科中取得优异成绩,还能培养其分析问题、解决问题的能力,并为其未来的学习和职业发展打下坚实的基础。
因此,教育应该重视培养学生的数学思维和逻辑推理能力。
首先,在教学中,教师应该通过探究式学习的方法培养学生的数学思维能力。
学生应该被鼓励提出问题、探索数学的本质,并思考如何解决问题。
例如,在教学中教师可以引导学生通过观察、尝试和实验来理解数学概念和原理。
通过这种方式,学生可以主动参与学习,培养自己的问题解决能力和创造性思维。
其次,在教学中,教师应该注重培养学生的逻辑推理能力。
逻辑推理是数学中不可或缺的一部分,它可以帮助学生理清思维,分析问题。
教师可以通过引导学生分析问题的结构,推理出合理的解答。
例如,在解决数学问题时,教师可以引导学生提出明确步骤和推理过程,让学生学会有条理地解决问题。
此外,培养学生的数学思维和逻辑推理能力需要适当的评估方法。
传统的考试评估方式注重学生记忆和计算能力,而忽视了数学思维和逻辑推理能力的培养。
因此,教师可以采用更灵活的评估方式,例如开放性问题、实际应用问题等,让学生展现他们的数学思维和逻辑推理能力。
进一步深入探讨和分析这个话题,我们可以看到数学思维和逻辑推理能力在学生的学习和生活中的重要性。
首先,数学思维和逻辑推理能力有助于学生在数学学科中取得优异成绩。
数学是一门需要逻辑思维和推理的学科,只有具备了这些能力,学生才能够理解数学概念和原理,解决数学问题。
因此,培养学生的数学思维和逻辑推理能力是提高他们在数学学科中的学习成绩的关键。
其次,数学思维和逻辑推理能力对学生的其他学科学习也有着积极的影响。
这些能力可以帮助学生分析和解决问题,在理解和应用其他学科知识时,学生可以更加理智地思考,并提出合理的解决方案。
例如,在科学实验中,学生可以通过逻辑推理和分析数据来得出实验结论。