【一线名师整理同步练习】人教版九年级数学上册:23.1.2 图形的旋转
- 格式:doc
- 大小:143.50 KB
- 文档页数:5
人教版九年级数学上册第23章旋转23.1.2旋转的作图及应用同步测试题号一二三总分得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.下列各图中,可看作是由下面矩形顺时针方向旋转90°而成的是( )2.1.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2C.3 D.43.有一种平面图形,它绕着中心旋转,不论旋转多少度,所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆4. 右图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为()A.30°B.60°C.120° D.180°5.将下面的直角梯形绕直线L旋转一周,可以得到右边立体图形的是()6.如图,将正方形ABCD 绕点C 按顺时针方向旋转120°后,得到正方形D C B A ''',则∠BC D '等于( ) A .120°B .130°C .140°D .150°7. 如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD ⊥AC;③四边形ACED 是菱形.其中正确的个数是( ) A.0 B.1 C.2 D.38. 如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( ) A.线段AB 与线段CD 互相垂直 B.线段AC 与线段CE 互相垂直 C.点A 与点E 是两个三角形的对应点 D.线段BC 与线段DE 互相垂直9. 如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个10.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2 018次得到正方形OA2 018B2 018C2 018,如果点A的坐标为(1,0),那么点B2 018的坐标为( )A.(1,1) B.(0,2)C.(-2,0)D.(-1,1)第Ⅰ卷(非选择题)二.填空题(共8小题,3*8=24)11.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是_____.12. 在△ABC中,∠C=90°,AB=5cm,BC=3cm,把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(不取近似值)13. 如图,在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A旋转180°,点C落在C’处,则CC’的长为___________.14.如果两个图形可通过旋转而相互得到,则下列说法中:①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.其中正确的有________个15.如图用等腰直角三角板画∠AOB=45º,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22º,则三角板的斜边与射线OA的夹角α为______度.16.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为.17.已知直线y=-2x+4,若该直线绕原点顺时针旋转1800,则旋转后得到的直线解析式是.18.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论中:①∠CDF=α;②A1E=CF;③DF=FC;④AD=CE;⑤A1F=CE.其中正确的有___________________(写出正确结论的序号).三.解答题(共7小题,46分)19.(6分) 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到BA′时所扫过的扇形的面积.20. (6分) 如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).21. (6分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA',求点A'的坐标.22.(6分) 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由)23.(6分) 如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH ⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,求AH的长.24.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;25.(8分) ) 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F,D,G共线.根据______,易证△AFG≌_______,得EF=BE+DF;(2)类比引申如图②,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系__________________时,仍有EF=BE+DF;(3)联想拓展如图③,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,猜想BD,DE,EC应满足的等量关系,并写出推理过程.∠B+∠D=180°参考答案 1-5ACDBB 6-10 DDCDD 11. 点B 12. 4 13. 414. 3 15. 22° 16. (2,4) 17. y=-2x-4 18. ①②⑤ 19. 解:(1)图略(2)点A′(6,0),C′(0,-6),D′(0,0)(3)∵点A 的坐标为(-6,12),点B 的坐标为(-6,0), ∴AB =12,∴线段BA 旋转到BA′时所扫过的扇形的面积=14π×122=36π20. 解:(1)点D→D 1→D 2→D 经过的路径如图所示(3)周长=8π21. 解:如图,过点A 作AB ⊥x 轴于点B,过点A'作A'B'⊥x 轴于点B',由题意知OA=OA',∠AOA'=90°, ∴∠A'OB'+∠AOB=90°, ∵∠AOB+∠OAB=90°, ∴∠OAB=∠A'OB',在△AOB 和△OA'B'中,{∠OAB =∠A 'OB ',∠ABO =∠OB 'A ',OA =A 'O ,∴△AOB≌△OA'B'(AAS),∴OB'=AB=4,A'B'=OB=3,∴点A'的坐标为(-4,3).22. 解:(1)如图所示,△A1B1C1即为所求(2)如图所示,△A2B2C2即为所求(3)三角形的形状为等腰直角三角形,OB=OA1=16+1=17,A1B=25+9=34,即OB2+OA12=A1B2,∴三角形的形状为等腰直角三角形23.解:由旋转的性质可知AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°,∴∠GAE=∠FAE.在△GAE和△FAE中,AG=AF,∠GAE=∠FAE,AE=AE,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x-2,FC=x-3.在Rt△EFC中,由勾股定理得EF2=EC2+FC2,即(x-2)2+(x-3)2=25.解得x=6(x=-1舍),∴AB=6,∴AH=6.24. 解:(1)证明;根据旋转的性质知,∠OCD=60°,CO=CD,∴△COD是等边三角形(2)当α=150°,即∠BOC=150°时,△AOD是直角三角形.理由如下:由旋转的性质可知,△BOC≌△ADC,∴∠ADC=∠BOC=150°.又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,人教版九年级数学上册第23章23.1.2《旋转作图和应用》同步测试(含答案)即△AOD是直角三角形25解:(1)SAS,△AFE(2)∠B+∠D=180°(3)猜想:DE2=BD2+EC2.证明:把△AEC绕点A顺时针旋转90°得到△AE′B,连接DE′,∴△AEC≌△AE′B,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠C=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=∠EAD=45°,又AD=AD,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC211/ 11。
图1 23.1.1图形的旋转知识点在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和_____及_ 决定的.一.选择题1. 下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友 B.正在走动的时针C.骑自行车的人 D.正在转动的风车叶片2.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个3.同学们曾玩过万花筒吗?如图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心()得到的.A、顺时针旋转60°B、顺时针旋转120°C、逆时针旋转60°D、逆时针旋转120°4.图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.900 B.600 C.450 D.3005.如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A、300B、600C、900D、1200二、填空6.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.7.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.图2A B CB'A'7题图8.如图,△ABC 绕着点O 旋转到△DEF 的位置,则旋转中心是______.旋转角是______.AO =______,AB =______,∠ACB =∠______.8题图 9题图9.如图,正三角形ABC 绕其中心O 至少旋转______度,可与其自身重合.10.一个平行四边形ABCD ,如果绕其对角线的交点O 旋转,至少要旋转______度,才可与其自身重合.11.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.12.如图,把△ABC 绕C 顺时针旋转350,得到△A 'B 'C ,若∠BCA '=1000,则∠B /CA=_______。
23.1图形的旋转一、选择题(共 5 小题)1.如图,在Rt△ ABC中,∠ ACB=90°,∠ A=30°, BC=2,将△ ABC绕点 C 顺时针方向旋转60°后得到△ EDC,此时点 D 在斜边 AB上,斜边DE交 AC于点 F.则图中暗影部分的面积为()A.2B.C.D.2.如图,在△ ABC中,∠ CAB=70°.在同一平面内,将△ABC绕点 A 旋转到△ AB′C′的地点,使得CC′∥ AB,则∠ BAB′=()A.30° B .35° C .40° D .50°3.如图,将△ ABC绕点 A 逆时针旋转必定角度,获得△ADE.若∠ CAE=65°,∠ E=70°,且AD⊥ BC,∠ BAC的度数为()A.60° B .75° C .85° D .90°4.以下四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完整重合的是()A.B.C.D.5.把一副三角板如图甲搁置,此中∠ACB=∠DEC=90°,∠ A=45°,∠ D=30°,斜边A B=6, DC=7,把三角板DCE绕点C 顺时针旋转15°获得△ D CE (如图乙),此时11AB与CD 交于点1 O,则线段AD1的长为()A.B.5C.4D.二、填空题(共11 小题)6.如图,△ ABC和△ A′B′C是两个完整重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角极点C顺时针旋转,当点A′落在 AB边上时, CA′旋转所组成的扇形的弧长为______cm.7.如图,在直角△OAB中,∠ AOB=30°,将△OAB绕点 O逆时针旋转100°获得△OA1B1,则∠A1OB=°.8.如图,Rt △ABC的斜边 AB=16,Rt △ ABC绕点 O顺时针旋转后获得 Rt △A′B′C′,则 Rt△A′B′C′的斜边 A′B′上的中线 C′D的长度为 ______.9.如图,在方格纸中,每个小方格都是边长为 1cm 的正方形,△ ABC的三个极点都在格点上,将△ ABC 绕点 O逆时针旋转 90°后获得△ A′B′C′(此中 A、 B、 C 的对应点分别为 A′, B′, C′,则点 B在旋转过程中所经过的路线的长是______cm.(结果保存π)10.如图,是两块完整同样的含30°角的三角板,分别记作△ABC与△ A′B′C′,现将两块三角板重叠在一同,设较长直角边的中点为 M,绕中点 M转动上边的三角板 ABC,使其直角极点 C恰巧落在三角板A′B′C′的斜边 A′B′上,当∠ A=30°, AC=10 时,则此时两直角极点 C、C′间的距离是______.11.如图,正方形ABCD的对角线订交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是______.12.如下图,将△ABC绕 AC的中点 O顺时针旋转180°获得△ CDA,增添一个条件______,使四边形 ABCD为矩形.13.如图,将△ ABC绕此中一个极点顺时针连续旋转 n′1、n′2、n′3所获得的三角形和△ ABC的对称关系是 ______.14.如图,在△ ABC中,AB=2,BC=3.6,∠B=60°,将△ ABC绕点 A 按顺时针旋转必定角度获得△ADE,当点 B 的对应点D恰巧落在BC边上时,则CD的长为______.15.如图,在 Rt △ ABC中,∠ ACB=90°,∠ A=α,将△ ABC绕点 C 按顺时针方向旋转后获得△ EDC,此时点 D 在 AB边上,则旋转角的大小为 ______.16.如图,△ AOB中,∠ AOB=90°, AO=3, BO=6,△ AOB绕极点 O逆时针旋转到△ A′OB′处,此时线段 A′B′与 BO的交点 E 为 BO的中点,则线段 B′E的长度为 ______.三、解答题(共 6 小题)17.如下图,正方形ABCD中, E 是 CD上一点, F 在 CB的延伸线上,且DE=BF.(1)求证:△ ADE≌△ ABF;(2)问:将△ ADE顺时针旋转多少度后与△ ABF重合,旋转中心是什么?18.四边形ABCD是正方形, E、F 分别是 DC和 CB的延伸线上的点,且DE=BF,连结 AE、 AF、 EF.(1)求证:△ ADE≌△ ABF;(2)填空:△ ABF能够由△ ADE绕旋转中心 ______ 点,按顺时针方向旋转 ______ 度获得;(3)若 BC=8, DE=6,求△ AEF的面积.19.如图 1 所示,将一个边长为 2 的正方形ABCD和一个长为2、宽为 1 的长方形CEFD拼在一同,组成一个大的长方形ABEF.现将小长方形CEFD绕点 C顺时针旋转至CE′F′D′,旋转角为a.(1)当点 D′恰巧落在 EF 边上时,求旋转角 a 的值;(2)如图 2,G为 BC中点,且 0°< a<90°,求证: GD′=E′D;(3)小长方形 CEFD绕点 C 顺时针旋转一周的过程中,△ DCD′与△ CBD′可否全等?若能,直接写出旋转角 a 的值;若不可以说明原因.20.将△ ABC绕点 B 逆时针旋转α 获得△ DBE,DE的延伸线与AC订交于点F,连结 DA、 BF.(1)如图 1,若∠ ABC=α=60°, BF=AF.①求证: DA∥BC;②猜想线段DF、 AF 的数目关系,并证明你的猜想;( 2)如图 2,若∠ ABC<α, BF=mAF( m为常数),求的值(用含m、α 的式子表示).21.某校九年级学习小组在研究学习过程中,用两块完整同样的且含60°角的直角三角板ABC与 AFE按如图( 1)所示地点搁置搁置,现将Rt △ AEF绕 A 点按逆时针方向旋转角α(0°<α<90°),如图(2), AE 与BC交于点M,AC与EF 交于点N, BC与EF交于点P.(1)求证: AM=AN;(2)当旋转角α=30°时,四边形 ABPF是什么样的特别四边形?并说明原因.22.如图 1,在△ ABC中,∠ A=36°, AB=AC,∠ ABC的均分线BE 交 AC于 E.(1)求证: AE=BC;(2)如图( 2),过点 E 作 EF∥ BC交 AB 于 F,将△ AEF绕点 A 逆时针旋转角α( 0°<α< 144°)获得△ AE′F′,连结 CE′, BF′,求证: CE′=BF′;( 3)在( 2)的旋转过程中能否存在CE′∥ AB?若存在,求出相应的旋转角α;若不存在,请说明原因.23.1图形的旋转参照答案一、选择题(共 5 小题)1.C; 2. C;3. C; 4. A; 5. B;二、填空题(共 11 小题)6.;7.70;8.8;9.π; 10. 5;11. 15°或 165°; 12.∠ B=90°; 13.对于旋转点成中心对称; 14. 1.6 ;15. 2a ; 16.;三、解答题(共 6 小题)17.18.A; 90;19.20.21.22.。
23.1图形的旋转第2课时旋转作图关键问答①确定图形经旋转后得到的对应图形的方法是什么?②怎样确定已知点旋转后的对应点?1.①将图23-1-17绕中心按顺时针方向旋转60°后可得到的图形是()图23-1-17图23-1-182.观察下列图案,将图23-1-19顺时针旋转90°得到的是()图23-1-19图23-1-203.②如图23-1-21,扎西坐在旋转的秋千上,请在图中分别画出点A,B,C的对应点A′,B′,C′.图23-1-21命题点1利用旋转性质作图[热度:90%]4.③将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()图23-1-22 方法点拨③旋转180°前后的两个图形,旋转中心和一组对应点在一条直线上.5.④图23-1-24中将图23-1-23在平面上旋转可以得到的是________.(填序号)图23-1-23图23-1-24解题突破④可根据图上方的顶点旋转后的位置来判断下方两分支的位置.6.⑤如图23-1-25,画出等边三角形ABC绕点B顺时针旋转90°后的图形(△A′BC′),并连接AC′,CA′.直接写出∠ABC′,∠CAC′,∠A′CB,∠CA′B的度数.图23-1-25方法点拨⑤将作旋转图形转化成先作图形上的关键点旋转后的对应点再顺次连接对应点.命题点2在网格中利用旋转性质作图[热度:86%]7.⑥如图23-1-26,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()图23-1-26图23-1-27方法点拨⑥掌握在网格中作互相垂直且相等的两条线段的方法,是在网格中利用旋转性质作图的基础.8.⑦在如图23-1-28所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O顺时针旋转90°后的△A′B′C′.图23-1-28易错警示⑦旋转作图时,一定要避免出现旋转方向的错误.9.⑧2017·宁夏如图23-1-29,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.图23-1-29方法点拨⑧利用图形变换作图时,将图形的变换转化成图形的顶点的变换.点进行旋转变换时,要先把点与旋转中心连接,把长度记作a,再按要求的方向作旋转角,并在旋转角的另一边上找到与旋转中心的距离等于a的点,即对应点.命题点3旋转作图的综合应用[热度:90%]10.⑨2017·宁波如图23-1-30,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图23-1-30①中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图②中的△ABC绕点C按顺时针方向旋转90°,画出经旋转后的三角形.图23-1-30方法点拨⑨作已知图形的轴对称图形的对应点的方法是先过点作对称轴的垂线段,再在垂线段的延长线上截取等于垂线段长度的线段.11.○10⑪在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°.(1)按要求画图:以点B为旋转中心,将△AOB绕点B按顺时针方向旋转60°,得到△A′O′B(点A,O的对应点分别为点A′,O′).(2)求:①∠A′BC的度数;②OA+OB+OC的值.图23-1-31解题突破○10通过旋转,把OA+OB+OC转化成求A′,C两点间的距离.模型建立⑪实际上,若点O为Rt△ABC内任一点,则点O到三个顶点的距离和的最小值是斜边与长直角边平方和的算术平方根.12.⑫在俄罗斯方块游戏中,所有出现的方格体会自动下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图23-1-32所示,现又出现一个小方格体,必须对其进行以下哪项操作,才能拼成一个完整图案,图23-1-33使其全部自动消失()A.顺时针旋转90°,向下平移至边界B.逆时针旋转90°,向下平移至边界C.顺时针旋转90°,向右平移至边界D.逆时针旋转90°,向右平移至边界易错警示⑫注意题目条件:所有出现的方格体会自动下落,因此不要误选向下平移.13.⑬你知道风靡全球的魔方吗?它是匈牙利建筑学教授鲁比克为帮助学生增强空间思维能力而发明的教学工具,魔方的任何一面都可水平转动而不影响其他方块.如图23-1-33是一个三阶魔方,如果将任何一面顺时针或逆时针旋转90°视作一次操作,那么由甲图到乙图至少需要进行这样的操作()图23-1-33.1次B.2次C.3次D.4次解题突破⑬可以进行具体操作来达到解题目的.典题讲评与答案详析1.B 2.A3.解:如图所示.4.D[解析] 将△AOB绕点O旋转180°得到△DOE后,点A,O,D在一条直线上,点B,O,E在一条直线上.5.③[解析] 已知题图上方的顶点旋转到左侧时,下方的两个分支中,粗分支在上,细分支在下,故③符合题意.6.[导学号:04402152] 解:△A ′BC ′如图所示. ∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠ABC ′=∠ABC +∠CBC ′=60°+90°=150°. 在△ABC ′中,AB =BC ′,∴∠BAC ′=12×(180°-150°)=15°,∴∠CAC ′=∠BAC -∠BAC ′=60°-15°=45°.在△A ′BC 中,BC =BA ′,∠A ′BC =∠CBC ′-∠C ′BA ′=90°-60°=30°,∴∠A ′CB =∠CA ′B =12×(180°-30°)=75°.7.C8.解:△A ′B ′C ′如图所示.9.解:(1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求.10.解:(1)(答案不唯一)如图所示.(2)如图,△A′B′C即为所求.11.解:(1)如图所示.(2)连接AA′,OO′如图所示.∵△A′O′B是由△AOB按顺时针方向旋转60°得到的,∴△OBO′,△ABA′是等边三角形,O′A′=OA,∴∠BOO′=∠BO′O=60°,OB=OO′,∠ABA′=60°.∵∠BOC=∠AOB=∠A′O′B=120°,∴∠BOC+∠BOO′=180°,∠BO′O+∠A′O′B=180°,∴C,O,O′,A′四点共线,∴OA+OB+OC=OC+OO′+O′A′=CA′.在Rt△ABC中,∵∠ABC=30°,AC=1,∴AB=BA′=2,BC=3,∴∠A′BC=∠ABC+∠ABA′=90°,∴CA′=BC2+A′B2=7,∴OA+OB+OC=7.12.[导学号:04402154]C[解析] 观察图形可知,出现的小方格体需顺时针旋转90°,向右平移至边界.13.[导学号:04402155]C【关键问答】①找图形上几个关键点(通常是顶点),作关键点旋转后的对应点,顺次连接对应点可以得到图形旋转后对应的图形.②连接点与旋转中心,然后以旋转中心为顶点,顺时针(或逆时针)作旋转角,在旋转角的另一条边上,截取与已知点到旋转中心的距离等长的线段,便可以得到已知点的对应点.。
人教版九年级数学上册第23章旋转23.1.2旋转的作图及应用同步测试题号一二三总分得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1. 如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( ) A.(1,1) B.(1,2) C.(1,3) D.(1,4)2.观察下列图形,其中可以看成是由“基本图案”通过旋转形成的有( ) A.1个B.2个C.3个D.4个3.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )4.如图,由一个矩形沿顺时针方向旋转90°后所形成的图形是( )A.①④B.②③C.①②D.②④5. 如图所示,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC 先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是( ) A.(2,2) B.(1,2) C.(-1,2) D.(2,-1)6. 如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是( )A.72°B.108°C.144°D.216°7. 将等腰直角三角形AOB按如图所示位置放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B 的横坐标为2,则点A′的坐标为( )A.(1,1) B.(2,2)C.(-1,1) D.(-2,2)8. 如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为( )A.(0,4) B.(1,1) C.(1,2) D.(2,1)9. 如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为( ) A.(0,1) B.(1,-1)C.(0,-1) D.(1,0)10.如图,在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将边CD以点D为旋转中心逆时针旋转90°至ED,连接AE,则△ADE的面积是( )A.1 B.2C.3 D.不能确定第Ⅰ卷(非选择题)二.填空题(共8小题,3*8=24)11. 如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是_______.12. 如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为_______.13.如图,正方形OEFG的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD与正方形OEFG的边长都为2 cm,则图中阴影部分的面积为___cm2.14. 在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为_____________.15.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P在AB上,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长为____.16. 如图,在四边形ABCD中,AD∥BC,AB⊥BC,AD=4,将腰CD以D为中心逆时针旋转90°到DE,连接AE,CE,△ADE的面积为12,则BC的长为____.17.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是__________.18. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去.若点A(1.5,0),B(0,2),则点B2 018的坐标为___________三.解答题(共7小题,46分)19.(6分) 如图所示,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°,画出旋转后的△AB′C′.20. (6分) 在一次黑板报的评选中,九(1)班获得了第一名,其中小颖同学的图案得到了大家的一致好评.她设计的图案是由如图所示的三角形图案绕上面的点C按同一个方向依次旋转90°,180°,270°得到的图形组成的,请你画出这个图案.21. (6分)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位长度,再向下平移6个单位长度,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.22. (6分)如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E,试确定B,C,D的对应点的位置以及旋转后的四边形.23.(6分) 如图,在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.24.(8分) 如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.25.(8分) 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.参考答案1-5 BDDBA6-10 BCCBA11. 点B12. 90°13. 114. (-4,3)15. 616. 1017. 2+618. (6 054,2).19. 解:如图所示,△AB′C′即为所求三角形20.解:如图所示:21.解:(1)如图,四边形A1B1C1D1即为所求(2)四边形A1B2C2D2即为所求,C2(1,-2)22.解:如图.B,C,D的对应点分别是F,G,H,四边形EFGH是四边形ABCD旋转后得到的四23.解:(1)将线段AC先向右平移6个单位长度,再向下平移8个单位长度(或将线段AC先向下平移8个单位长度,再向右平移6个单位长度)(2)F(-1,-1)(3)画出如图所示的图形24. 解:(1)60°(2)由旋转的性质知△ABC≌△A1BC1,∴∠ABC=∠A1BC1=120°,AB=A1B,∠C=∠C1,∵∠A1BA+∠A1BC1=180°,∴∠A1BA=60°,∴△A1BA为等边三角形,∴∠A1AB=60°,∵∠A1AB+∠ABC=180°,∴AA1∥BC,∴∠C=∠A1AC,∴∠A1AC=∠C125.解:(1)由旅转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD, ∴∠AEB=∠ABE.又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF.又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G 在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,.GH⊥BC,∴四边形ABEHIM 是矩形,∴GM垂直平分AD,∴GD=GA=DA, ∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角a=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角a=360°-60°=300°时,GC=GB。
人教版九年级数学上册23.1 图形的旋转同步训练一、选择题(本大题共8道小题)1. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)2. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°3. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点BC.点C D.点D4. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有()A.1个B.2个C.3个D.4个5. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)6. 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为()A.10 B.2 2C.3 D.2 57. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是()A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)8. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)二、填空题(本大题共8道小题)9. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C 逆时针旋转90°,那么点B的对应点B′的坐标是________.10. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.11. 把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为_______.12. 在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的度数是________.13. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.14. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.15. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.16. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.18. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,求点A所经过的路径长(结果保留π).19. (1)如图(a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.20. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD. 求证:BD2=AB2+BC2.人教版九年级数学上册23.1 图形的旋转同步训练-答案一、选择题(本大题共8道小题)1. 【答案】A[解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.2. 【答案】C3. 【答案】B[解析] 旋转中心到对应点的距离相等.4. 【答案】D5. 【答案】D6. 【答案】A[解析] ∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5. ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1.在Rt△BED中,BD=BE2+DE2=10.故选A.7. 【答案】A8. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.二、填空题(本大题共8道小题)9. 【答案】(1,0)10. 【答案】20[解析] ∵AB=AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.11. 【答案】y=-x2-2x-3[解析] 旋转前二次项的系数a=1,抛物线的顶点坐标是(1,2),旋转后二次项的系数a=-1,抛物线的顶点坐标是(-1,-2),∴新抛物线的解析式为y=-(x+1)2-2,即y=-x2-2x-3.12. 【答案】90°[解析] 找到一组对应点A,A′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°.13. 【答案】①②③14. 【答案】18[解析] 如图.∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°.又∵AB=AD,∴将△ABC绕点A逆时针旋转90°后点B与点D重合,点C的对应点E落在CD的延长线上,∴AE=AC=6,∠CAE=90°,∴S四边形ABCD=S△ACE=12AC·AE =12×6×6=18.15. 【答案】(10-26) [解析] 如图,过点A 作AG ⊥DE 于点G .由旋转知,AD=AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°, ∴∠AFD =∠AED +∠CAE =60°.在Rt △ADG 中,AG =DG =AD2=3 2(cm).在Rt △AFG 中,GF =AG3=6(cm),AF =2FG =2 6(cm), ∴CF =AC -AF =(10-2 6)cm.16. 【答案】13 [解析] ∵α+β=∠B ,∴∠EAF =∠BAC +∠B =90°,∴△AEF是直角三角形,且AE =AB =3,AF =AC =2,∴EF =AE 2+AF 2=13.三、解答题(本大题共4道小题)17. 【答案】解:(1)证明:由题意可知,CD =CE ,∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠DCB =∠DCE -∠DCB , 即∠ACD =∠BCE.在△ACD 与△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS).(2)∵∠ACB =90°,AC =BC ,∴∠A =45°. ∵△ACD ≌△BCE ,∴AD =BE ,∠CBE =∠A =45°. ∵AD =BF ,∴BE =BF , ∴∠BEF =12×(180°-45°)=67.5°.18. 【答案】解:(1)如图.(2)如图.(3)如图,∵AO =A 2O =42+12=17,∠AOA 2=90°,∴点A 所经过的路径长=14×2π17=172π.19. 【答案】解:(1)①证明:如图(a),将△DBE 绕点D 旋转180°得到△DCG ,连接FG ,则△DCG ≌△DBE. ∴DG =DE ,CG =BE. 又∵DE ⊥DF ,∴DF 垂直平分线段EG ,∴FG =EF. ∵在△CFG 中,CG +CF >FG , ∴BE +CF >EF. ②BE 2+CF 2=EF 2.证明:∵∠A =90°,∴∠B +∠ACD =90°.由①得,∠FCG =∠FCD +∠DCG =∠FCD +∠B =90°,∴在Rt △CFG 中,由勾股定理,得CG 2+CF 2=FG 2,∴BE 2+CF 2=EF 2.(2)EF =BE +CF.证明:如图(b).∵CD =BD ,∠BDC =120°, ∴将△CDF 绕点D 逆时针旋转120°得到△BDM , ∴△BDM ≌△CDF ,∴DM =DF ,BM =CF ,∠BDM =∠CDF ,∠DBM =∠C. ∵∠ABD +∠C =180°, ∴∠ABD +∠DBM =180°, ∴点A ,B ,M 共线,∴∠EDM =∠EDB +∠BDM =∠EDB +∠CDF =∠BDC -∠EDF =120°-60°=60°=∠EDF.在△DEM 和△DEF 中,⎩⎨⎧DE =DE ,∠EDM =∠EDF ,DM =DF ,∴△DEM ≌△DEF ,∴EF =EM =BE +BM =BE +CF.20. 【答案】证明:如图,将△ADB 绕点D 顺时针旋转60°,得到△CDE ,连接BE ,则∠ADB =∠CDE ,∠A =∠DCE ,AB =CE ,BD =DE. 又∵∠ADC =60°,∴∠BDE =60°, ∴△DBE 是等边三角形, ∴BD =BE.又∵∠ECB =360°-∠BCD -∠DCE =360°-∠BCD -∠A =360°-(360°-∠ADC -∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.。
23.1.2 图形的旋转知识点1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离;(3)对应点与旋转中心所连线段的夹角等于2.简单的旋转作图---旋转作图的步骤(1)确定旋转;(2)找出图形的关键点;(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题1.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50°B.210°C.50°或210°D.130°二、填空题6.图形的平移、旋转、轴对称中,其相同的性质是_________.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD 绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.11.如图,在直角坐标系中,已知点)0,3(A、)4,0(B,对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形。
前言:该中考真题同步练习由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的中考真题同步练习助力考生查漏补缺,在原有基础上更进一步。
(最新精品中考真题同步练习)23.1图形的旋转一.选择题(共20小题)1.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°2.(2018•香坊区模拟)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°3.(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α4.(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)5.(2018•乌鲁木齐)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2) C.(﹣1,﹣2)D.(1,﹣2)6.(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.(2018•青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3) D.(5,﹣1)8.(2018•济宁)如图,在平面直角坐标系中,点A,C在x轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2) D.(2,﹣1)9.(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.410.(2018•宜昌)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°。
23.1图形的旋转内容提要1.在平面内,将一个图形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动称为旋转.定点叫旋转中心,转动的角度叫做旋转角.2.旋转的三要素:旋转中心、旋转方向、旋转角.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.4.旋转作图步骤:(1)首先确定旋转中心和图形中的关键点(如线段的端点、角的顶点等);(2)将这些关键点沿指定的方向旋转指定的角度;(3)然后连接对应部分,形成相应的图形.23.1.1旋转的特征基础训练1.将如图的图案按逆时针方向旋转90︒后得到的是()2.下列说法不正确的是()A.旋转后的图形与原来图形面积相等B.旋转后的图形改变了图形的大小C.旋转不改变图形的大小D.旋转不改变图形的形状3.如图,将ABC∆绕点A旋转后得到ADE∆,则旋转方式是()A.顺时针旋转90︒B.逆时针旋转90︒C.顺时针旋转45︒D.逆时针旋转45︒4.如图,ABC∆,图中旋转中心是,旋∆按顺时针方向转动一个角度后成为''A B C转了度.5.如图,Rt ABC ∆的斜边16AB =,Rt ABC ∆绕点O 顺时针旋转后得到'''Rt A B C ∆,则'''Rt A B C ∆的斜边''A B 上的中线'C D 的长度为.6.如图,将OAB ∆绕着点O 逆时针旋转两次得到OA B ''''∆,每次旋转的角度都是50︒,若120B OA ''∠=︒,则AOB ∠=.7.如图,在正方形ABCD 中,点E 在AB 边上,点F 在BC 边的延长线上,且AE CF =. (1)求证AED CFD ∆∆≌;(2)将AED ∆按逆时针方向至少旋转多少度才能与CFD ∆重合,旋转中心是什么?8.如图,ABC ∆中,1AB AC ==,45BAC ∠=︒,AEF ∆是由ABC ∆绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证BE CF =;(2)当四边形ACDE 为菱形时,求BD 的长.9.在ABC ∆中,AB BC =,120ABC ∠=︒,将ABC ∆绕点B 顺时针旋转角()090αα︒<<︒得11A BC ∆,1A B 交AC 于点E ,11A C 分别交AC ,BC 于D ,F 两点.(1)如图(1),观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论.(2)如图(2),当30α=︒时,试判断四边形1BC DA 的形状,并说明理由.10.如图,在直角坐标系中,Rt AOB ∆的两条直角边OA ,OB 分别在x 轴的负半轴,y 轴的负半轴上,且2OA =,1OB =.将Rt AOB ∆绕点O 按顺时针方向旋转90︒,再把所得的图象沿x 轴正方向平移1个单位,得CDO ∆.(1)写出点A ,C 的坐标; (2)求点A 和点C 之间的距离.23.1.2 简单的旋转作图及图案设计基础训练1.将如图所示的图案以圆心为中心,旋转180︒后得到的图案是( )2.……依次观察左边这三个图形,并判断照此规律从左到右第四个图形是( )3.如图,在44⨯的正方形网格中,MNP ∆绕某点旋转一定的角度,得到111M N P ∆,则其旋转中心一定是.4.如图,将图①绕某点经过几次旋转后得到图②,则每次旋转的最小角度是.5.如图,把五角星图案绕着它的中心点O至少旋转(角度)时,它与自身重合;把等边三角形绕着它的中心O至少旋转(角度)时,它与自身重合.6.如图所示的图案由三个叶片组成,绕点O旋转120︒后可以和自身重合,若每个叶片的面积为24cm,AOBcm.∠为120︒,则图中阴影部分的面积之和为27.在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90︒的图案.8.如图,在等腰直角ABC ∆中,90C ∠=︒,2BC cm =,如果以AC 的中点O 为旋转中心,将这个三角形旋转180︒,点B 落在点'B 处,求'BB 的长度.9.如图所示,画出ABC ∆绕点A 顺时针旋转90︒后的图形.10.如图,在平面直角坐标系中,有一Rt ABC ∆,且()1,3A -,()3,1B --,()3,3C -.已知11A AC ∆是由ABC ∆旋转得到的, (1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出11A AC ∆顺时针旋转90︒,180︒的三角形.能力提高1.如图,在方格纸中,ABC∆经过变换得到DEF∆,正确的变换是()A.把ABC∆绕点C逆时针方向旋转90︒,再向下平移2格B.把ABC∆绕点C顺时针方向旋转90︒,再向下平移5格C.把ABC∆向下平移4格,再绕点C逆时针方向旋转180︒D.把ABC∆向下平移5格,再绕点C逆时针方向旋转180︒2.图ABC∆,且'C在BC上,则∆中,67AB C∆绕点A顺时针旋转后,得到''C∠=︒,将ABC∠的度数为()''B C BA.56︒B.50︒C.46︒D.40︒3.下列图形中,旋转60︒后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形4.如图,已知直线443y x =-+与x 轴、y 轴分别交于A ,B 两点,把AOB ∆绕点A 按顺时针方向旋转90︒后得到''AO B ∆,则点'B 的坐标是.5.如图,在等边ABC ∆中,6AB =,D 是BC 的中点,将ABD ∆绕点A 旋转后得到ACE ∆,那么线段DE 的长度为.6.如图,把ABC ∆绕着点C 顺时针旋转35︒,得到''A B C ∆,''A B AC ⊥于点D ,则A ∠的度数是.7.如图所示,在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,1AC =,60ACD ∠=︒,求四边形ABCD 的面积.8.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别是()3,2A -,()1,4B -,()0,2C . (1)将ABC ∆以点C 为旋转中心旋转180︒,画出旋转后对应的11A B C ∆; (2)平移ABC ∆,若点A 的对应点2A 的坐标为()5,2--,画出平移后的222A B C ∆; (3)若将222A B C ∆绕某一点旋转可以得到11A B C ∆,请直接写出旋转中心的坐标.9.如图①,正方形ABCD是一个66⨯网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).拓展探究1.如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,90∆绕点A旋转,AF,AG与边BC的∆固定不动,AFGBAC AGF∠=∠=︒,若ABC交点分别为D ,E (点D 不与点B 重合,点E 不与点C 重合),在旋转过程中,等量关系222BD CE DE +=是否成立?若成立,请证明;若不成立,请说明理由.2.在ABC ∆中,90BAC ∠=︒,AB AC =,P 是ABC ∆内一点,2PA =,1PB =,3PC =,求APB ∠的度数.3.在ABC ∆中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60︒得到线段BD .(1)如图①,直接写出ABD ∠的大小(用含α的式子表示);(2)如图②,150BCE ∠=︒,60ABE ∠=︒,判断ABE ∆的形状并加以证明; (3)在(2)的条件下,连接DE ,若45DEC ∠=︒,求α的值.23.1 参考答案:23.1.1 旋转的特征基础训练1.D 2.B 3.B 4.点C 40 5.8 6.20︒7.(1)证明:在正方形ABCD 中,90A BCD ∠=∠=︒,AD CD =,90FCD ∴∠=︒.90A FCD ∴∠=∠=︒.又AE CF =,(SAS)AED CFD ∴∆∆≌.(2)90ADC ∠=︒,∴将AED ∆按逆时针方向至少旋转90度才能与CFD ∆重合,旋转中心是点D .8.(1)证明:由旋转可知EAF BAC ∠=∠,AF AC =,AE AB =.EAF BAF BAC BAF ∴∠=∠=∠+∠,即BAE CAF ∠=∠.又AB AC =,AE AF ∴=.ABE ACF ∴∆∆≌.BE CF ∴=.(2)四边形ACDE 是菱形,1AB AC ==,AC DE ∴∥,1DE AE AB ===. 又45BAC ∠=︒,45AEB ABE BAC ∴∠=∠=∠=︒.180AEB BAE ABE ∠+∠+∠=︒,90BAE ∴=︒.2222112BE AB AE ∴=++=21BD BE DE ∴=-=.9.(1)AB BC =,A C ∴∠=∠.由旋转可知,1AB BC =,1A C ∠=∠,1ABE C BF ∠=∠,1ABE C BF ∴∆∆≌.BE BF ∴=.(2)四边形1BC DA 是菱形.证明:1130A ABA ∠=∠=︒,11AC AB ∴∥,同理1AC BC ∥.∴四边形1BC DA 是平行四边形.又1AB BC =,∴四边形1BC DA 是菱形.10.(1)点A 的坐标是(2,0)-,点C 的坐标是(1,2);(2)连接AC ,在Rt ACD ∆中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,13AC ∴=.23.1.2 简单的旋转作图及图案设计基础训练1.D 2.D 3.B 4.60︒ 5.72︒ 120︒ 6.4 7.如图 8.25 9.如图10.(1)(0,0) 90 (2)画出图形如图能力提高1.B 2.C 3.A 4.(7,3) 5.33 6.55︒ 7.3 8.(1)图略 (2)图略 (3)旋转中心的坐标为(1,0)-9.(1)如图;(2)因为12364ππ⨯⨯=,所以点P 经过的路径总长为6π.拓展探究1.如图,将ACE ∆绕点A 顺时针旋转90︒至ABH ∆的位置,则CE HB =,AE AH =,45ABH C ∠=∠=︒,旋转角90GAH ∠=︒. 连接HD ,在EAD ∆和HAD ∆中,AE AH =,45HAD EAH FAG EAD ∠=∠-∠=︒=∠,AD AD =,EAD HAD ∴∆∆≌. DH DE ∴=.又90HBD ABH ABC ∠=∠+∠=︒,222BD HB DH ∴+=,即222BD CE DE +=.2.135︒3.(1)1302α︒-. (2)ABE ∆为等边三角形.证明:连接AD ,CD ,ED . 线段BC 绕点B 逆时针旋转60︒得到线段BD ,BC BD ∴=,60DBC ∠=︒.60ABE ∠=︒,160302ABD DBE EBC α∴∠=︒-∠=∠=︒-. 又BD BC =,60DBC ∠=︒,BCD ∴∆为等边三角形,BD CD ∴=. 又AB AC =,AD AD =,(SSS)ABD ACD ∴∆∆≌.1122BAD CAD BAC α∆∠=∠=∠=. 150BCE ∠=︒,11180(30)15022BEC αα∴∠=︒-︒--︒=.BAD BEC ∴∠=∠. 在ABD ∆与EBC ∆中,,,,BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABD EBC ∴∆∆≌.AB BE ∴=. 又60ABE ∠=︒,ABE ∴∆为等边三角形.(3)60BCD ∠=︒,150BCE ∠=︒,1506090DCE ∴∠=︒-︒=︒. 45DEC ∠=︒,DCE ∴∆为等腰直角三角形.CD CE BC ∴==. 150BCE ∠=︒,(180150)152EBC ︒-︒∴∠==︒. 又130152EBC α∠=︒-=︒,30α∴=︒.。
23.1.2 图形的旋转
知识点
1.图形旋转的性质是:(1)旋转前后的图形 ;(2)对应点到旋转中心的距离 ;
(3)对应点与旋转中心所连线段的夹角等于
2.简单的旋转作图---旋转作图的步骤
(1)确定旋转 ;
(2)找出图形的关键点;
(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;
(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题
1.在图形旋转中,下列说法错误的是( )
A .在图形上的每一点到旋转中心的距离相等
B .图形上每一点移动的角度相同
C .图形上可能存在不动的点
D .图形上任意两点的连线与其对应两点的连线长度相等
2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )
3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是( )。
A.60°
B.90°
C.72°
D.120°
4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )
A .左上角的梅花只需沿对角线平移即可
B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°
C .右下角的梅花需先沿对角线平移后,再顺时针旋转180
D .左下角的梅花需先沿对角线平移后,再顺时针旋转90°
5 △ABC 绕着A 点旋转后得到△AB ′C ′,若∠BAC ′=130°,∠BAC=80°,•则旋转角等于( )
A .50°
B .210°
C .50°或210°
D .130°
二、填空题
6.图形的平移、旋转、轴对称中,其相同的性质是_________.
7.如图,△ABC 和△ADE 均是顶角为42°的等腰三角形,BC 、DE 分别是底边,图中的△
ABD
绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.
8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.
9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________.
10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.
11.如图,在直角坐标系中,已知点)0,3
A、)4,0(B,对△OAB连续作旋转变换,依次得
(
到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.
三、综合提高题
12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?
13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的。