2011海淀区八年级第一学期期末练习答案
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
海淀区八年级第一学期期末练习数 学(分数:100分 时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷ (C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5)4x 的取值范围是 (A )x ≠-32 (B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=- (C )2221(1)x x x ++=+ (D )xy x y x x -=-2)( 6.下列三个长度的线段能组成直角三角形的是(A )1 (B )1 (C )2,4,6 (D )5,5,6 7.计算)123(2- ,结果为 (A )6 (B )6- (C )66- (D )66-8.下列各式中,正确的是 (A )212+=+a b a b (B )22++=a b a b (C ) a b a b c c-++=- (D )22)2(422--=-+a a a a9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为 (A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE ,则下列结论中不.正确..的是(A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为 (A )49 (B )25 (C )13 (D )112.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于(A )1- (B )1 (C )0 (D ) 2014二、填空题:(本题共24分,每小题3分)13.若实数x y 、20y +=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °.18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____.19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形,得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2,则四边形EFGH 的面积为 .三、解答题:(本题共14分,第21题5分,第22题9分)21.计算: 101()(2)2π--++122.(1)解方程:xx x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分)23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E . 求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.已知:如图,△ABC ,射线AM 平分BAC ∠.(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG .(2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =.应用上面的结论解答下列问题: (1)方程86x x+=的两个解中较大的一个为 ; (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.27.阅读:如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长.小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ;(2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3数 学 答 案一、 选择题:(本题共36分,每小题3分)13.1; 14.26425b a ; 15.<; 16.3(2)(2)a a a +-; 17. 74︒; 18.4;19.(16,0)-,(4,0); 20.8-三、解答题:(本题共14分,第21题5分,第22题9分)21101()(2)2π--++1解:原式=211------------------4分=分 22.(1)解方程:211x x x-=-. 解:方程两边同时乘以(1)x x -,得2(1)2(1)x x x x --=-. -----------------1分解方程,得2=x . -----------------3分 经检验,2=x 是原方程的解.∴ 原方程的解为2=x . -----------------4分(2)先化简,再求值:2244()242x x x xx x x -+-÷+-+,其中x = 解:原式=2(2)2(2)(2)2x x x x x x x ⎡⎤--÷⎢⎥++-+⎣⎦-----------------2分 =22()22x x x x x x-+-⋅++ =222x x x+⋅+-----------------3分 =2x. -----------------4分当x ==分四、解答题:(本题共9分,第23题4分,第24题5分)23.证明:∵BF CE =,∴BC EF =. -----------------1分 在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF . -----------------3分∴A D ∠=∠. -----------------4分24.解:设小明从家到学校乘地铁的里程为x 千米.4 3.62(3 2.9)5x x --=-. -----------------3分解方程,得 10x =.-----------------4分经检验,10x =为原分式方程的解,且符合题意.∴55x -=.答:小明和小伟从家到学校乘地铁的里程分别是10千米和5千米. ------------5分五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.解:(1)(注:不写结论不扣分)-----------------1分(2) 180BAC BGC ∠+∠=︒ . -----------------2分证明:过点G 作GE AB ⊥于点E ,GF AC ⊥交AC 的延长线于点F .∵点G 在∠BAC 平分线上, ∴GE GF =.∵点G 在BC 的中垂线上,∴GB GC =. 在Rt △GBE 和Rt △GCF 中,,,GE GF GB GC ==⎧⎨⎩ ∴△GBE ≌△GCF . ---------------4分 ∴12∠=∠. ∴BGC EGF ∠=∠.∵360AEG AFG BAC EGF ∠+∠+∠+∠=︒,90AEG AFG ∠=∠=︒,∴180BAC EGF ∠+∠=︒. ∴180BAC BGC ∠+∠=︒.-----------------5分 26. 解:(1)4x =;-----------------1分 (2) 112x =,22x =;-----------------3分(3)∵22322321n n x n x +-+=+-,∴223212221n n x n x +--+=+-. ∵223(1)(3)n n n n +-=-+,(1)(3)22n n n -++=+,12x x <, ∴1211x n -=-,2213x n -=+. ∴12n x =,222nx =+.-----------------5分 ∴212122x x -=.-----------------6分 27.(1)92AE =,6AB =;-----------------2分(2)①作BE AC ⊥交AC 延长线于点E ,在AE 延长线上取点D ,使得DE AE =,连接BD .∴BE 为AD 的中垂线. ∴AB =BD =c .∴A D ∠=∠.-----------------3分 ∵180A D ABD ∠+∠+∠=︒, ∴21180DBC A ∠+∠+∠=︒. ∵321180A ∠+∠=︒, ∴1DBC A ∠=∠+∠.∵31A ∠=∠+∠,∴3DBC ∠=∠. ∴CD =BD =c . -----------------4分 ∴AE =2b c +, 2c bCE -=. 在△BEC 中,90BEC ∠=︒,222BE BC CE =-. 在△BEA 中,90BEA ∠=︒,222BE AB AE =-. ∴2222AB AE BC CE -=-. ∴2222()()22b c c b c a +--=-. ∴22c a b c-=.-------------5分②3a =.-----------------6分 (注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
海淀区八年级第一学期期末练习数 学(分数:100分 时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷ (C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5)4x 的取值范围是 (A )x ≠-32 (B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=- (C )2221(1)x x x ++=+ (D )xy x y x x -=-2)( 6.下列三个长度的线段能组成直角三角形的是(A )1 (B )1 (C )2,4,6 (D )5,5,6 7.计算)123(2- ,结果为 (A )6 (B )6- (C )66- (D )66-8.下列各式中,正确的是 (A )212+=+a b a b (B )22++=a b a b (C ) a b a b c c-++=- (D )22)2(422--=-+a a a a9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为 (A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE ,则下列结论中不.正确..的是(A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为 (A )49 (B )25 (C )13 (D )112.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于(A )1- (B )1 (C )0 (D ) 2014二、填空题:(本题共24分,每小题3分)13.若实数x y 、20y +=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °.18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____.19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形,得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2,则四边形EFGH 的面积为 .三、解答题:(本题共14分,第21题5分,第22题9分)21.计算: 101()(2)2π--++122.(1)解方程:xx x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分)23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E . 求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.已知:如图,△ABC ,射线AM 平分BAC ∠.(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG .(2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =.应用上面的结论解答下列问题: (1)方程86x x+=的两个解中较大的一个为 ; (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.27.阅读:如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长.小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ;(2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3数 学 答 案一、 选择题:(本题共36分,每小题3分)13.1; 14.26425b a ; 15.<; 16.3(2)(2)a a a +-; 17. 74︒; 18.4;19.(16,0)-,(4,0); 20.8-三、解答题:(本题共14分,第21题5分,第22题9分)21101()(2)2π--++1解:原式=211------------------4分=分 22.(1)解方程:211x x x-=-. 解:方程两边同时乘以(1)x x -,得2(1)2(1)x x x x --=-. -----------------1分解方程,得2=x . -----------------3分 经检验,2=x 是原方程的解.∴ 原方程的解为2=x . -----------------4分(2)先化简,再求值:2244()242x x x xx x x -+-÷+-+,其中x = 解:原式=2(2)2(2)(2)2x x x x x x x ⎡⎤--÷⎢⎥++-+⎣⎦-----------------2分 =22()22x x x x x x-+-⋅++ =222x x x+⋅+-----------------3分 =2x. -----------------4分当x ==分四、解答题:(本题共9分,第23题4分,第24题5分)23.证明:∵BF CE =,∴BC EF =. -----------------1分 在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF . -----------------3分∴A D ∠=∠. -----------------4分24.解:设小明从家到学校乘地铁的里程为x 千米.4 3.62(3 2.9)5x x --=-. -----------------3分解方程,得 10x =.-----------------4分经检验,10x =为原分式方程的解,且符合题意.∴55x -=.答:小明和小伟从家到学校乘地铁的里程分别是10千米和5千米. ------------5分五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.解:(1)(注:不写结论不扣分)-----------------1分(2) 180BAC BGC ∠+∠=︒ . -----------------2分证明:过点G 作GE AB ⊥于点E ,GF AC ⊥交AC 的延长线于点F .∵点G 在∠BAC 平分线上, ∴GE GF =.∵点G 在BC 的中垂线上,∴GB GC =. 在Rt △GBE 和Rt △GCF 中,,,GE GF GB GC ==⎧⎨⎩ ∴△GBE ≌△GCF . ---------------4分 ∴12∠=∠. ∴BGC EGF ∠=∠.∵360AEG AFG BAC EGF ∠+∠+∠+∠=︒,90AEG AFG ∠=∠=︒,∴180BAC EGF ∠+∠=︒. ∴180BAC BGC ∠+∠=︒.-----------------5分 26. 解:(1)4x =;-----------------1分 (2) 112x =,22x =;-----------------3分(3)∵22322321n n x n x +-+=+-,∴223212221n n x n x +--+=+-. ∵223(1)(3)n n n n +-=-+,(1)(3)22n n n -++=+,12x x <, ∴1211x n -=-,2213x n -=+. ∴12n x =,222nx =+.-----------------5分 ∴212122x x -=.-----------------6分 27.(1)92AE =,6AB =;-----------------2分(2)①作BE AC ⊥交AC 延长线于点E ,在AE 延长线上取点D ,使得DE AE =,连接BD .∴BE 为AD 的中垂线. ∴AB =BD =c .∴A D ∠=∠.-----------------3分 ∵180A D ABD ∠+∠+∠=︒, ∴21180DBC A ∠+∠+∠=︒. ∵321180A ∠+∠=︒, ∴1DBC A ∠=∠+∠.∵31A ∠=∠+∠,∴3DBC ∠=∠. ∴CD =BD =c . -----------------4分 ∴AE =2b c +, 2c bCE -=. 在△BEC 中,90BEC ∠=︒,222BE BC CE =-. 在△BEA 中,90BEA ∠=︒,222BE AB AE =-. ∴2222AB AE BC CE -=-. ∴2222()()22b c c b c a +--=-. ∴22c a b c-=.-------------5分②3a =.-----------------6分 (注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
2011年初二第一学期数学海淀区期末考试复习参考题人大分校 张华云1. 下列各图表示的函数y 是x 的函数的是 ( )2. 下列运算结果正确的是( )(A )842a a a =⋅ (B )4223)3(b b = (C )824)(a a = (D )326a a a =÷3. 根据分式的基本性质,分式xx --432可变形为( ) (A )432---x x (B )x x ---432 (C )x x --423 (D )423---x x4. 点A (–5,y 1)和B (3,y 2)都在直线y =3x +2上,则y 1与y 2的关系是( ) A 、y 1≤y 2 B 、y 1>y 2 C 、y 1<y 2 D 、y 1=y 25. 已知对于整式)1)(3(--=x x A ,)5)(1(-+=x x B ,如果其中x 取值相同时,整式A 与B 的关系为( )(A )B A = (B )B A > (C )B A < (D )不确定 6. 如图,△A BC ≌△DEF ,DF 和AC ,FE 和CB 是对应边.若∠A=100度,∠F=47度,则∠DEF 等于( )(A )100度 (B )53度 (C )47度 (D )33度 7. 已知1=-b a ,则b b a 222--的值为( )(A )0 (B )1 (C )2 (D )48. (2011山东烟台)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个 B. 2 个C.3 个D. 4个ABDF EDCBA9.4的平方根为_____;25的算术平方根为______;27的立方根为______;3的平方为_____ 10.下列分解因式中,(1) 12)1(122-+=-+x x x x ;(2))2)(2(43-+=-m m m m m ;(3)222)(y x y x -=-;(4))3(32b a a a ab a -=+-;正确的有_______个11.函数221-=x y 的自变量x 的取值范围为____________12.等腰三角形中,两条边的长分别为5和9,则它的周长是 .13.如果实数a 、b 满足04432=+++-b b a ,那么ab 的值为_____________14.直线12+-=x y 向上平移3个单位后得到的函数解析式是_________,若直线12+-=x y 向下平移后经过点()2,3-,则平移后得到的函数解析是___________ 15.若整数m 满足129+<<m m ,则m 的值为__________16.如图,△ABC 中,AB=AC ,∠A=120度,AB 的垂直平分线MN 分别交BC 、AB于点M 、N ,且BM=3,则CM=_____________17. 如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值为______________ 18. 给出下列程序:OO6题图30频率且已知当输入的x 值为1时,输出值为1;输入的x 值为-1时.输出值为3,x 值为21时,输出值为 ; 19. 在2273.1415926 ,2,3.030030003……(每相邻两个3之间0的个数逐渐多1)中,无理数的个数是___________ 20. 若分式1263+-x x 的值为0,则x ________;21.若2425x kx ++是完全平方式,则k = _____ 22.若一次函数2(3)9y m x m =-+-是正比例函数,则m 的值为 ;MNCBA23.如果一次函数y =(m -1)x +(n -2) 的图象不经过第一象限, 则m _______,n _________24.已知一次函数y =kx+4的图像与两坐标轴围成的三角形面积为6,则k 的值___________。
海 淀 区 八 年 级 第 一 学 期 期 末 练 习数学一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.2 1A B CD2.下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a = D .623a a a ÷=3.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为A .40.510-⨯ B .4510-⨯C .5510-⨯D .35010-⨯4.若分式1a a+的值等于0,则a 的值为 A .1- B .1C .2-D .25.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是 A .AC =CD B .BE =CD C .∠ADE =∠AED D .∠BAE =∠CAD 6.等腰三角形的一个角是70°,它的底角的大小为A .70°B .40°C .70°或40°D .70°或55°7.已知28x x a -+可以写成一个完全平方式,则a 可为A .4B .8C .16D .16-8.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点.分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点.若点P 的坐标为(a ,b ),则 A .2a b = B .2a b = C .a b = D .a b =-9.若3a b +=,则226a b b -+的值为 A .3 B .6 C .9 D .1210.某小区有一块边长为a 的正方形场地,规划修建两条宽为b 的绿化带.方案一如图甲所示,绿化带(阴影区域)面积为S 甲;方案二如图乙所示,绿化带(阴影区域)面积为S 乙.设()0k S a b S =>>甲乙,下列选项中正确的是甲乙 A .012k <<B .112k << C .312k <<D .232k <<二、填空题(本大题共24分,每小题3分) 11.如图,在四边形ABCD 中,∠A =90°,∠D =40°,则∠B +∠C 为.12.点M ()31-,关于y 轴的对称点的坐标为.13.已知分式满足条件“只含有字母x ,且当x =1时无意义”,请写出一个这样的分式:. 14.已知△ABC 中,AB =2,∠C =40°,请你添加一个适当的条件,使△ABC 的形状和大小都是确定的.你添加的条件是.15.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O 处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是.16.如图,在平面直角坐标系xOy 中,△DEF 可以看作是△ABC 经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC 得到△DEF 的过程:.17.如图,在△ABC 中,AB =4,AC =6,∠ABC 和∠ACB 的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则△AMN 的周长为.18.已知一张三角形纸片ABC (如图甲),其中AB =AC .将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD (如图乙).再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,∠ABC 的大小为°.甲乙丙三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19.计算:(1)()02420183----;(2)22(1510)5x y xy xy -÷.20.如图,A ,B ,C ,D 是同一条直线上的点,AC =DB ,AE ∥DF ,∠1=∠2.求证:BE =CF .21.解方程:312(2)x x x x -=--.四、解答题(本大题共15分,每小题5分)22.先化简,再求值:2442()m m m m m+++÷,其中3m =.23.如图,A ,B 分别为CD ,CE 的中点,AE ⊥CD 于点A ,BD ⊥CE 于点B .求∠AEC 的度数.24.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.五、解答题(本大题共14分,第25、26题各7分)25.阅读材料小明遇到这样一个问题:求计算(2)(23)(34)x x x +++所得多项式的一次项系数.小明想通过计算(2)(23)(34)x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(2)(23)x x ++所得多项式中的一次项系数.通过观察发现:也就是说,只需用2x +中的一次项系数1乘以2中的常数项2乘以23x +中的一次项系数2,两个积相加1322⨯+⨯=延续上面的方法,求计算(2)(23)(34)x x x +++所得多项式的一次项系数.可以先用2x +的一次项系数1,23x +的常数项3,34x +的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34x +的常数项4,相乘得到16;然后用34x +的一次项系数3,2x +的常数项2,23x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(21)(32)x x ++所得多项式的一次项系数为. (2)计算(1)(32)(43)x x x ++-所得多项式的一次项系数为.(3)若计算22(1)(3)(21)x x x x a x ++-+-所得多项式中不含一次项,则a =_________.(4)若231x x -+是422x ax bx +++的一个因式,则2a b +的值为.26.如图,CN 是等边△ABC 的外角ACM ∠内部的一条射线,点A 关于CN 的对称点为D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CN 于点E ,P . (1)依题意补全图形;(2)若ACN α∠=,求BDC ∠的大小(用含α的式子表示); (3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)对于0,1以及真分数p ,q ,r ,若p <q <r ,我们称q 为p 和r 的中间分数.为了帮助我们找中间(6+分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数13、12、23,有112323<<,所以12为13和23的一个中间分数,在表中还可以找到13和23的中间分数25,37,47,35.把这个表一直写下去,可以找到13和23更多的中间分数.(1)按上表的排列规律,完成下面的填空: ①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的35和23的中间分数是; (2)写出分数a b 和c d (a 、b 、c 、d 均为正整数,a cb d<,c d <)的一个..中间分数(用含a 、b 、c 、d 的式子表示),并证明; (3)若s m 与t n (m 、n 、s 、t 均为正整数)都是917和815的中间分数,则mn 的最小值为.海 淀 区 八 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案11.230° 12.(31)--, 13.11x - 14.答案不唯一,如:∠A =60° (注意:如果给一边长,需小于或等于2)15.“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”16.答案不唯一,如:将△ABC 关于y 轴对称,再将三角形向上平移3个单位长度 17.1018.72三、解答题(本大题共17分,第19题8分, 第20题4分,第21题5分)19.(1)解:原式=14319-+- -------------------------------------------------------------------3分=19. ----------------------------------------------------------------------------- 4分(2)解:原式=()22151105x y xyxy-⋅ -------------------------------------------------------1分 =5(12)5xy x y xy-⋅--------------------------------------------------------2分 =32x y -. ---------------------------------------------------------------------- 4分 20.证明:∵AC =AB +BC ,BD =BC +CD ,AC =BD ,∴AB =DC . ---------------------------------------------1分 ∵AE ∥DF ,∴∠A =∠D . -------------------------------------------2分 在△ABE 和△DCF 中,,,1=2,A D AB DC ∠=∠=∠∠⎧⎪⎨⎪⎩∴△ABE ≌△DCF . ---------------------------------------------------------------------3分 ∴BE =CF . ------------------------------------------------------------------------------4分21.解:方程两边乘()2x x -,得()223xx x --=. -------------------------------------------------------------------------2分解得 32x =. ------------------------------------------------------------------------4分检验:当32x =时,()20x x -≠.∴原分式方程的解为32x =. ------------------------------------------------------------5分四、解答题(本大题共15分,每小题5分)22.解:原式=22442m m m mm +++÷----------------------------------------------------------------1分=22442m m m mm +++⋅=()2222m m mm ++⋅--------------------------------------------------------------------2分 =22m m +. --------------------------------------------------------------------------3分当3m =时,原式=15. ------------------------------------------------------------------5分注:直接代入求值正确给2分.23.解:连接DE . ----------------------------------------------1分∵A ,B 分别为CD ,CE 的中点,AE ⊥CD 于点A ,BD ⊥CE 于点B ,∴CD =CE =DE ,∴△CDE 为等边三角形. ----------------------------3分∴∠C =60°.∴∠AEC =90°12-∠C =30°. ----------------------5分24.解:设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为()60x +元. --------------------------------------------------------------------------------------------1分由题意,得48003600260xx =+. -----------------------------------------------------------3分解得 120x =. -----------------------------------------------------------------4分 经检验,120x =是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为120元. --------------------------------------------5分五、解答题(本大题共14分,第25、26题各7分)25.(1)7. --------------------------------------------------------------------------------------------1分(2)7-. ----------------------------------------------------------------------------------------3分 (3)3-. ----------------------------------------------------------------------------------------5分 (4)15-. --------------------------------------------------------------------------------------7分 26.(1)-------------------------------------------------1分(2)解:∵点A 与点D 关于CN 对称, ∴CN 是AD 的垂直平分线, ∴CA =CD . ∵ACN α∠=,∴∠ACD =22ACN α∠=. -------------------------------------------------------2分 ∵等边△ABC ,∴CA =CB =CD ,∠ACB =60°. ------------------------------------------------3分 ∴∠BCD =∠ACB +∠ACD =60°+2α.∴∠BDC =∠DBC =12(180°-∠BCD )=60°-α. -------------------4分(3)结论:PB =PC +2PE . ------------------------------------------------------------------5分 本题证法不唯一,如:证明:在PB 上截取PF 使PF =PC ,连接CF . ∵CA =CD ,∠ACD =2α∴∠CDA =∠CAD =90°-α. ∵∠BDC =60°-α,∴∠PDE =∠CDA -∠BDC =30°. ------------------------------------------6分 ∴PD =2PE .∵∠CPF =∠DPE =90°-∠PDE =60°. ∴△CPF 是等边三角形. ∴∠CPF =∠CFP =60°. ∴∠BFC =∠DPC =120°. ∴在△BFC 和△DPC 中,,=,,CFB CPD CBF CDP CB CD ∠=∠∠∠=⎧⎪⎨⎪⎩∴△BFC ≌△DPC . ∴BF =PD =2PE .∴PB = PF +BF =PC +2PE . ----------------------------------------------------7分附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)(1)①27; ------------------------------------------------------------------------------------1分 ②58. ------------------------------------------------------------------------------------3分(2)本题结论不唯一,证法不唯一,如:结论:a cb d++. --------------------------------------------------------------------------5分 证明:∵a 、b 、c 、d 均为正整数,a cb d<,c d <,∴()()()201c a b a c a b d a c a bc ad d bb b d b b b d b bd d-+-++--===>++++,()()()201a c d a c c b d a c c ad bc b dd b d d d b d bd d b-+-++--===<++++. ∴a a c cb b d d+<<+. -----------------------------------------------------------8分 (3)1504. ------------------------------------------------------------------------------------10分。
海淀区八年级第一学期期末练习数 学(分数:100分 时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷ (C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5)4x 的取值范围是 (A )x ≠-32 (B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=- (C )2221(1)x x x ++=+ (D )xy x y x x -=-2)( 6.下列三个长度的线段能组成直角三角形的是(A )1 (B )1(C )2,4,6 (D )5,5,6 7.计算)123(2- ,结果为 (A )6 (B )6-(C )66- (D )66-8.下列各式中,正确的是 (A )212+=+a b a b (B )22++=a b a b(C ) a b a b c c-++=- (D )22)2(422--=-+a a a a 9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为 (A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE ,则下列结论中不正确...的是(A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为 (A )49 (B )25 (C )13 (D )1 12.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于(A )1- (B )1 (C )0 (D ) 2014二、填空题:(本题共24分,每小题3分)13.若实数x y 、20y +=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °.18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____.19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形,得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2,则四边形EFGH 的面积为 .三、解答题:(本题共14分,第21题5分,第22题9分)21.计算:101()(2)2π--++1.22.(1)解方程:xx x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分)23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E . 求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.已知:如图,△ABC ,射线AM 平分BAC ∠.(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG .(2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =.应用上面的结论解答下列问题: (1)方程86x x+=的两个解中较大的一个为 ; (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.27.阅读:如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长. 小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ; (2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3数 学 答 案一、 选择题:(本题共36分,每小题3分)二、填空题:(本题共24分,每小题3分)13.1; 14.26425b a ; 15.<; 16.3(2)(2)a a a +-; 17. 74︒; 18.4; 19.(16,0)-,(4,0); 20.8-三、解答题:(本题共14分,第21题5分,第22题9分)21101()(2)2π--++1.解:原式=211------------------4分=分 22.(1)解方程:211x x x-=-. 解:方程两边同时乘以(1)x x -,得2(1)2(1)x x x x --=-. -----------------1分解方程,得2=x . -----------------3分 经检验,2=x 是原方程的解.∴ 原方程的解为2=x . -----------------4分(2)先化简,再求值:2244()242x x x xx x x -+-÷+-+,其中x = 解:原式=2(2)2(2)(2)2x x xx x x x ⎡⎤--÷⎢⎥++-+⎣⎦-----------------2分 =22()22x x x x x x-+-⋅++ =222x x x+⋅+-----------------3分 =2x. -----------------4分当x ==分四、解答题:(本题共9分,第23题4分,第24题5分)23.证明:∵BF CE =,∴BC EF =. -----------------1分 在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF . -----------------3分 ∴A D ∠=∠. -----------------4分 24.解:设小明从家到学校乘地铁的里程为x 千米.4 3.62(3 2.9)5x x --=-. -----------------3分 解方程,得 10x =.-----------------4分经检验,10x =为原分式方程的解,且符合题意.∴55x -=.答:小明和小伟从家到学校乘地铁的里程分别是10千米和5千米. ------------5分五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.解:(1)(注:不写结论不扣分)-----------------1分(2) 180BAC BGC ∠+∠=︒ . -----------------2分证明:过点G 作GE AB ⊥于点E ,GF AC ⊥交AC 的延长线于点F .∵点G 在∠BAC 平分线上, ∴GE GF =.∵点G 在BC 的中垂线上,∴GB GC =. 在Rt △GBE 和Rt △GCF 中,,,GE GF GB GC ==⎧⎨⎩∴△GBE ≌△GCF . ---------------4分 ∴12∠=∠. ∴BGC EGF ∠=∠.∵360AEG AFG BAC EGF ∠+∠+∠+∠=︒,90AEG AFG ∠=∠=︒,∴180BAC EGF ∠+∠=︒. ∴180BAC BGC ∠+∠=︒.-----------------5分 26. 解:(1)4x =;-----------------1分 (2) 112x =,22x =;-----------------3分 (3)∵22322321n n x n x +-+=+-,∴223212221n n x n x +--+=+-. ∵223(1)(3)n n n n +-=-+,(1)(3)22n n n -++=+,12x x <, ∴1211x n -=-,2213x n -=+. ∴12n x =,222nx =+.-----------------5分 ∴212122x x -=.-----------------6分 27.(1)92AE =,6AB =;-----------------2分(2)①作BE AC ⊥交AC 延长线于点E ,在AE 延长线上取点D ,使得DE AE =,连接BD .∴BE 为AD 的中垂线. ∴AB =BD =c .∴A D ∠=∠.-----------------3分 ∵180A D ABD ∠+∠+∠=︒, ∴21180DBC A ∠+∠+∠=︒. ∵321180A ∠+∠=︒, ∴1DBC A ∠=∠+∠.∵31A ∠=∠+∠,∴3DBC ∠=∠. ∴CD =BD =c . -----------------4分 ∴AE =2b c +, 2c bCE -=. 在△BEC 中,90BEC ∠=︒,222BE BC CE =-. 在△BEA 中,90BEA ∠=︒,222BE AB AE =-. ∴2222AB AE BC CE -=-. ∴2222()()22b c c b c a +--=-.∴22c abc-=.-------------5分②a=.-----------------6分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
----完整版学习资料分享----2011年初二第一学期数学海淀区期末考试复习参考题人大分校 张华云1. 下列各图表示的函数y 是x 的函数的是 ( )2. 下列运算结果正确的是( )(A )842a a a =⋅ (B )4223)3(b b = (C )824)(a a = (D )326a a a =÷3. 根据分式的基本性质,分式xx --432可变形为( ) (A )432---x x (B )x x ---432 (C )x x --423 (D )423---x x4. 点A (–5,y 1)和B (3,y 2)都在直线y =3x +2上,则y 1与y 2的关系是( ) A 、y 1≤y 2 B 、y 1>y 2 C 、y 1<y 2 D 、y 1=y 25. 已知对于整式)1)(3(--=x x A ,)5)(1(-+=x x B ,如果其中x 取值相同时,整式A 与B 的关系为( )(A )B A = (B )B A > (C )B A < (D )不确定 6. 如图,△ABC ≌△∠A=100度,∠F=47度,则∠DEF 等于( )(A )100度 (B )53度 (C )47度 (D )33度 7. 已知1=-b a ,则b b a 222--的值为( )(A )0 (B )1 (C )2 (D )48. (2011山东烟台)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④( )A. 1 个B. 2 个C.3 个D. 4个9.4的平方根为_____;25的算术平方根为______;27的立方根为______;3的平方为_____10.下列分解因式中,(1) 12)1(122-+=-+x x x x ; (2))2)(2(43-+=-m m m m m ;(3)222)(y x y x -=-;(4))3(32b a a a ab a -=+-;正确的有_______个 11.函数221-=x y 的自变量x 的取值范围为____________12.等腰三角形中,两条边的长分别为5和9,则它的周长是 . 13.如果实数a 、b 满足04432=+++-b b a ,那么a b 的值为_____________ABDFEDCBA----完整版学习资料分享---- 14.直线12+-=x y 向上平移3个单位后得到的函数解析式是_________,若直线12+-=x y 向下平移后经过点()2,3-,则平移后得到的函数解析是___________ 15.若整数m 满足129+<<m m ,则m 的值为__________16.如图,△ABC 中,AB=AC ,∠A=120度,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N ,且BM=3,则CM=_____________17. 如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值为______________ 18. 给出下列程序:OO6题图30频率且已知当输入的x 值为1时,输出值为1;输入的x值为-1时.输出值为3,x 值为21时,输出值为 ; 19. 在2273.1415926 ,2,3.030030003……(每相邻两个3之间0的个数逐渐多1)中,无理数的个数是___________ 20. 若分式1263+-x x 的值为0,则x ________;21.若2425x kx ++是完全平方式,则k = _____ 22.若一次函数2(3)9y m x m =-+-是正比例函数,则m 的值为 ; 23.如果一次函数y =(m -1)x +(n -2) 的图象不经过第一象限, 则m _______,n _________24.已知一次函数y =kx+4的图像与两坐标轴围成的三角形面积为6,则k 的值___________。
海淀区八年级第一学期期末练习参考答案及评分标准语文一、选择(共10分。
每小题2分)题号 1 2 3 4 5答案 B C D B C二、语文积累(共13分)6.峋嚣荼寐评分标准:共2分。
共4空,每空0.5分。
7.答案:(1)化作春泥更护花(2)会当凌绝顶(3)霜重鼓寒声不起(4)不畏浮云遮望眼(5)谁家新燕啄春泥(6)庭下如积水空明水中藻荇交横盖竹柏影也评分标准:共8分。
共8空,每空1分,该空有错不得分。
8.答案:①奥斯特洛夫斯基②不畏艰难困苦的大无畏的革命英雄主义;不畏艰难困苦的;大无畏的革命;顽强的;坚忍的。
③烈士墓前;墓前;墓地;公墓。
评分标准:共3分。
共3空,每空1分,②、③填出答案中任意一点即可得分。
三、综合性学习(共9分)9.答案示例:太空授课的意义:(1)精彩实验激发学生学习科学的兴趣(激发青少年学习科学知识的兴趣)。
(2)激励中小学生学习航天员精神(敬佩、学习航天员精神)。
(3)营造崇尚科学、尊重创新的氛围。
(4)播撒创新意识的种子(为民族未来发展播撒创新的种子)。
答案要点:①激发对科学的兴趣②学习(崇尚)航天员精神③营造崇尚科学的氛围 = 4 \* GB3 \* MERGEFORMAT ④播撒创新意识的种子。
评分标准:共4分。
共4点,语言通顺,字数符合要求,每点1分。
10.答案示例:答:此次中国太空授课的国际影响具体体现在 肯定太空授课对年轻人科学兴趣的激发, 促进思考教育投资与国家发展的关系, 更客观地认识与评价中国, = 4 \* GB3 \* MERGEFORMAT ④促进保持中外友好国际关系 = 5 \* GB3 \* MERGEFORMAT ⑤激发进一步认识中国的兴趣。
= 6 \* GB3 \* MERGEFORMAT ⑥肯定中国人具有创造力六个方面。
答案要点:= 1 \* GB3 \* MERGEFORMAT ①肯定能激发年轻人兴趣。
= 2 \* GB3 \* MER GEFORMAT ②思考向教育投资。
海淀区八年级第一学期期末练习语文考试说明:本试卷共8页,满分为100分。
答题时间为120分。
2011.1第Ⅰ卷(共60分)一、按要求完成下列各题。
(共17分)1.下列词语中加点字的读音完全正确的一项是()(2分)A 谛.听(dì)池沼.(zhǎo)悖.论(bēi)情不自禁.(jīn)B风靡.(mǐ)深谙.(ān)贮.运(zhù)毛骨悚.然(sù)C山岚.(lán)翘.首(qiáo)摇曳.(yì)梦寐.以求(mâi)D龟.裂(jūn)愚氓.(mãng)丘壑.(hâ)肆无忌惮.(dàn)2.下列词语书写完全正确的一项是()(2分)A玲珑斟酌花卉壁磊森严B启迪贿赂妩媚别具匠心C铠甲嶙洵枯燥如火如荼D华裔喧嚣故嶂良师益友3.下列句子中加点词语运用有误的一项是()(2分)A让教育不发达地区的孩子也能享受优质的教育资源,教育工作者责无旁贷....。
B牛顿从苹果落地这种人们司空见惯....的现象受到启发,最终发现了万有引力定律。
C参观上海世博会,开阔了我的视野,增长了我的知识,使我受益匪浅....。
D由于接到请柬较晚,赶到小李家时,大家已经等了我好久,我成了不速之客....。
4.对下列病句修改不正确的一项是()(2分)A这次的读书会活动主要是为了构成普通市民与作家、学者交流的平台。
修改:把“构成”改为“打通”。
B成为文明古国标志的万里长城是我国几千年古代劳动人们智慧的结晶。
修改:删去“几千年”。
C有关部门对大家提出的建议积极采纳,认真研究,进一步完善了相关政策。
修改:把“积极采纳”和“认真研究”调换位置。
D通过参观中国航空博物馆,使我了解了许多航空知识,增强了国防意识。
修改:删去“通过”或者“使”。
5.结合语境,填入横线处最恰当的一项是()(2分)在世界文字之林,中国的汉字有着独特的魅力。
汉字的特点及其功能,具有其它文字难以比拟的优越性。
海淀区八年级第一学期期末练习英语2011-01语言知识运用(共27分)四、单项填空。
(共12分,每小题1分)从下面各题所给的A、B、C、D四个选项中,选择可以填入空白处的最佳选项。
( ) 21. Jack is making fruit salad. Would you like to help ______?A. heB. himC. hisD. himself( ) 22. -- When was his daughter born?--______May 2nd, 2006.A. AtB. InC. OnD. For( ) 23.There ______ a lot of people in the park last Sunday.A. isB. areC. wasD. were( ) 24. _______ milk do you need to make the milk shake?A. How longB. How oftenC. How manyD. How much( ) 25. It was time for dinner, ______ her mother didn’t come back.A. andB. butC. soD. or( ) 26. I like listening to Jazz 107.9 FM best because it has _____ music of all the radio stations.A. popularB. more popularC. most popularD. the most popular ( ) 27. The talent show was so interesting that I wanted___________ it again.A. to watchB. watchedC. watchingD. watch( ) 28. He went to a shop and ______ some clothes yesterday.A. buysB. is going to buyC. boughtD. is buying( ) 29. Don't ______ out late at night. That will make your parents worry about you.A. stayB. stayedC. stayingD. to stay( ) 30. He________ some friends to his party next Sunday.A. invitesB. invitedC. is going to inviteD. inviting( ) 31. -- Could you please ______ the dishes?-- Yes, sure.A. doB. doingC. to doD. did( ) 32. He had fun ______ in the outdoor pool last weekend.A. playB. playingC. to playD. played五、完形填空。
海淀区八年级第一学期期末练习
语文
参考答案及评分标准
2011.1
一、本题共17分
1.D(2分)
2.B(2分)
3.D(2分)
4.A(2分)
5.C(2分)
6.A(2分)
7.(1)会当凌绝顶(2)谁家新燕啄春泥(3)铁马冰河入梦来(4)身世浮沉雨打萍(5)黑云压城城欲摧甲光向日金鳞开
(共5分。
共5道小题。
第(1)(2)(3)(4)小题每空1分,有错则该句不得分;第(5)小题每空0.5分)
二、本题共3分
8.(1)钢铁是怎样炼成的(1分)(2)答案要点:珍惜年华、努力奋斗自我献身的精神追求理想的信念(2分。
“精神品质”写出2点即可。
意思对即可)
三、本题共8分
9.①展现北京历史名园风貌,弘扬北京历史文化。
②体现北京作为世界城市的独特魅力及影响力。
③为京城百姓和广大中外游客提供更丰富多彩的城市文化生活。
(共3分。
共3点,每点1分)
10.答案示例:(1)神似西湖清丽婉约。
或:有西湖(江南)清丽婉约的特点。
(只答“神似西湖”也可以,不扣分);(2)气宇轩昂,金碧辉煌,体现了皇家建筑的特点。
(3)富有自然美(或:富有山林野趣)。
(共3分。
共3小题,每小题1分)
11.答案示例一:我觉得在皇家园林里举办庙会挺好。
在遍布古典建筑的皇家园林里,人们逛庙会,既可以赏表演,玩游艺,品美食,感受民俗文化;又可以观赏古建筑,了解皇家园林文化,可谓一举两得。
当然也要注意卫生防火。
答案示例二:我也不赞成在皇家园林里举办这样的活动。
因其商业色彩过浓,各种表演中传统、民俗文化的内容不多;小吃街油污、垃圾满地;游人过于拥挤,这既没有达到展示传统、民俗文化的目的,也不利于古建筑及植物的保护。
(共2分。
此题为开放性试题,学生看法可以是多元的,言之成理即可,不要求学生写出“示例”中的所有角度)
四、本题共10分。
12.BE (共2分。
每项1分)
13.答案示例:(1)溪身像北斗星一样曲折,溪流像蛇爬行一样弯弯曲曲,一段看得见,一段看不见。
或:(溪身)像北斗星那样曲折,(水流)像长蛇爬行那样弯曲,有的地方露出来,有的地方被掩没了,隐隐约约可以看得出。
(2)(我们便)一起在院子里散步。
(共3分。
第(1)题2分;第(2)题1分)
14.凄怆(写“悄怆”不扣分)闲人(共2分。
前2个空,每空0.5分;第3个空1分)
15.(1)答案示例:潭水清冽,全石为底,竹树环合。
或:水清、石奇、树茂。
(2)答案示例:清澈透明或:皎洁清澈、冰清玉洁、澄澈透明、月光如水、冷月清光、空明均可。
(共3分。
第(1)题2分。
写出1点给0.5分;写出2点给1分;写出3点给2分。
第(2)题1分。
两题用自己的话或原文回答均可,多答不扣分)
五、本题共22分
(一)
16.①欢喜或“快乐”②戴着钻戒的青年让人代替自己放风筝(共4分。
共2空,每空2分。
第②空没写“让人代替自己”扣0.5分)
17.答案示例一:画线句采用了排比的修辞手法,描写了“我”不顾一切拼命追赶风筝的情景,四个“越过”领起的这一组句子,描述了“我”在路上所遇障碍的特征与人物的神态,细致入微地表现了“我”追赶风筝时的不易和执着不舍的心态,突出了“我”对风筝无比珍爱的情感。
答案示例二:画线句中“越过”这一动词表现了“我”在追赶风筝时奔跑的动作,四个“越过”连用,让人仿佛看到了“我”拼命追赶的脚步,形象地表现出“我”把所遇到的各种障碍都甩到身后的情形,表现力“我”追赶风筝时执着的心态,突出了“我”对风筝无比珍爱的情感。
(共3分。
如果从修辞方法使用的角度赏析,对修辞方法的判断正确1分,赏析2分;如果从词语使用的角度赏析,词语选择1分,赏析2分)
18.答案示例:与上文中戴钻戒青年的行为形成了鲜明的对比,也为下文“我”不顾一切追赶风筝作了铺垫。
丰富了文章的内容。
(共2分。
与上文形成对比1分;为下文内容作铺垫1分)
19.答案示例一:这句话是“我”的感悟,作者借此告诉我们只有靠自己努力,靠自己辛勤付出换来的快乐,才是真正的快乐。
文中的“我”亲手放风筝,又执着地追风筝,使其失而复得,在这个过程中,“我”得到了快乐,也因此产生了这样的感悟。
“我”得到了快乐,也因此产生了这样的感悟。
答案示例二:文中戴钻戒的青年与“我”对待风筝的不同态度,特别是“我”追赶风筝使其失而复得的经过,引发了“我”的思考,这句话是“我”思考后的感悟,它的含义是只有自己实实在在地付出了,才能得到真正的快乐。
(共4分。
能结合文章大意或文章中的具体内容2分;语句含义理解正确2分。
字数不少于70字即不扣分)
(二)
20.反光性极佳,车道标识更加鲜明。
或:可视性很强;图案有凸凹,还有声响和振动(共2分。
共2点,每点1分)
21.使用寿命长自洁作用强适应性广或:用途广、产品可按需定制。
(共3分。
共3点,每点1分。
意思对即可)
(三)
22.答案示例:准确具体地说明了新中国成立后的几十年里,永定河对北京的生产及生活一直起着不可或缺的重要作用。
(2分。
意思对即可)
23.答案示例:增加了生态功能和休闲、健身、观光教育功能、(共2分。
共4个要点----见加粗的词语,每个要点0.5分。
“生态功能“如照抄原文回答不扣分)
六、作文
略。