《材料成形原理》1.1液态结构
- 格式:ppt
- 大小:6.94 MB
- 文档页数:39
材料成形原理_吴树森_答案(铸造).第⼀部分:液态⾦属凝固学1.1 答:(1)纯⾦属的液态结构是由原⼦集团、游离原⼦、空⽳或裂纹组成。
原⼦集团的空⽳或裂纹内分布着排列⽆规则的游离的原⼦,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合⾦是由各种成分的原⼦集团、游离原⼦、空⽳、裂纹、杂质⽓泡组成的鱼⽬混珠的“混浊”液体,也就是说,实际的液态合⾦除了存在能量起伏外,还存在结构起伏。
1.2答:液态⾦属的表⾯张⼒是界⾯张⼒的⼀个特例。
表⾯张⼒对应于液-⽓的交界⾯,⽽界⾯张⼒对应于固-液、液-⽓、固-固、固-⽓、液-液、⽓-⽓的交界⾯。
表⾯张⼒?和界⾯张⼒ρ的关系如(1)ρ=2?/r,因表⾯张⼒⽽长⽣的曲⾯为球⾯时,r为球⾯的半径;(2)ρ=?(1/r1+1/r2),式中r1、r2分别为曲⾯的曲率半径。
附加压⼒是因为液⾯弯曲后由表⾯张⼒引起的。
1.3答:液态⾦属的流动性和充型能⼒都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能⼒,它是液态⾦属本⾝的流动能⼒,由液态合⾦的成分、温度、杂质含量决定,与外界因素⽆关。
⽽充型能⼒⾸先取决于流动性,同时⼜与铸件结构、浇注条件及铸型等条件有关。
提⾼液态⾦属的充型能⼒的措施:(1)⾦属性质⽅⾯:①改善合⾦成分;②结晶潜热L要⼤;③⽐热、密度、导热系⼤;④粘度、表⾯张⼒⼤。
(2)铸型性质⽅⾯:①蓄热系数⼤;②适当提⾼铸型温度;③提⾼透⽓性。
(3)浇注条件⽅⾯:①提⾼浇注温度;②提⾼浇注压⼒。
(4)铸件结构⽅⾯:①在保证质量的前提下尽可能减⼩铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产⽣机械粘砂的临界压⼒ρ=2?/r显然 r =21×0.1cm =0.05cm则ρ=410*5.05.1*2-=6000Pa不产⽣机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m1.5 解:由Stokes 公式上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态⾦属重度,γ2为杂质重度,η为液态⾦属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s3.1解:(1)对于⽴⽅形晶核△G ⽅=-a 3△Gv+6a 2?①令d △G ⽅/da =0 即-3a 2△Gv+12a ?=0,则临界晶核尺⼨a *=4?/△Gv ,得?=4*a △Gv ,代⼊①△G ⽅*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv均质形核时a *和△G ⽅*关系式为:△G ⽅*=21 a *3△Gv(2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2?临界晶核半径r *=2?/△Gv ,则△G 球*=32πr *3△Gv所以△G 球*/△G ⽅*=32πr *3△Gv/(21 a *3△Gv)将r*=2?/△Gv ,a *=4?/△Gv 代⼊上式,得△G 球*/△G ⽅*=π/6<1,即△G 球*<△G ⽅*所以球形晶核较⽴⽅形晶核更易形成3-7解: r 均*=(2?LC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316π?LC 3*Tm/(L 2*△T 2)=316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答:从理论上来说,如果界⾯与⾦属液是润湿得,则这样的界⾯就可以成为异质形核的基底,否则就不⾏。
材料成型原理第1章液态金属的结构与性质物相由界面包围的具有一定成分和结构的均匀体组织物相的机械混合物润湿性是指存在两种互不相溶液体,液体首先润湿固相表面的能力,即一种液体在一种固体表面铺展的能力或倾向性压力差物体两侧所受压力的差值现代晶体学表明,晶体的原子一定方式周期排列在三维空间的晶格结点上,表现出平移对称性特征,同时原子以某种模式在平衡位置上作热振动,相对于晶体这种原子有序排列,气体的分子原子,不停的做无规律运动。
液体表现出长程无序特征,液体结构表现出局域范围内的近程有序。
偶分布函数的物理意义:距某一参考粒子r处找到另一个粒子的概率。
晶态固体因原子以特定方式周期排列,其偶分布函数以相应的规律呈分立的若干尖锐峰,液体的g(r)出现若干衰减的钝化峰,直至几个原子间距后趋于直线g(r)等于1。
由于能量起伏,液体中大量不停游动着的局域有序原子团簇,时聚时散,此起彼伏,而存在结构起伏,实际金属的现象,还要复杂的多,除了能量起伏及结构起伏,还同时存在着浓度起伏。
长程有序:液体的原子相对于周期有序的晶体固态是不规则的,液体结构宏观上不具有平移、对称性。
黏度是液体内摩擦阻力大小的标志,黏度的物理意义可以视为:作用于液体表面的应力与垂直于该平面方向上的速度梯度的比例系数。
表面活性元素使液体黏度降低,非表面活性杂质的存在使黏度提高。
黏度的意义:黏度影响金属液的流动性进而影响铸件轮廓的清晰程度。
影响钢铁材料的脱硫,脱磷,扩散脱氧。
熔渣及金属液粘度降低对合金元素的过渡是有利的。
影响铸件内部缩孔或缩松、热裂的形成倾向。
影响精炼效果,夹杂、气孔的形成。
表面张力是表面上平行于表面切线方向且各方向大小相等的张力。
表面张力是由于物体在表面上的质点受力不均所致。
表面是产生新的单位面积表面时系统自由能的增量。
表面与界面的差别在于后者泛指两相之间的交界面,前者指液体或固体与气体之间的交界面。
原子间结合力越大,表面内能越大,因此表面自由能越大,表面张力也就越大。
1实际液态金属的结构实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。
2液态金属表面张力的影响因素1)表面张力与原子间作用力的关系:原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑2)表面张力与原子体积(δ3)成反比,与价电子数Z成正比3)表面张力与温度:随温度升高而下降4)合金元素或微量杂质元素对表面张力的影响。
向系统中加入削弱原子间结合力的组元,会使u0减小,使表面内能和表面张力降低3 . 铸件的凝固组织可分为几类,它们分别描述铸件凝固组织的那些特点?铸件的凝固组织可分为宏观和微观两方面。
宏观组织主要是指铸态晶粒的形状、尺寸、取向和分布情况;微观组织主要描述晶粒内部的结构形态,如树枝晶、胞状晶等亚结构组织等4氢致裂纹的形成机理及特征形成机理:接头中的扩散氢不仅使金属脆化,当金属内部存在显微裂纹等缺陷时,在应力的作用下,裂纹前沿会形成应力集中的三向应力区,诱使接头中的扩散氢向高应力区扩散并聚集为分子态氢,体积膨胀使裂纹内压力增高,裂纹向前扩展,在裂纹尖端形成新的三向应力区,这一过程周而复始持续进行。
当接头中的氢含量超过临界值时,显微裂纹将扩展成为宏观裂纹。
特征:氢致裂纹从潜伏、萌生、扩展直至开裂具有延迟特征;存在氢致延迟裂纹的敏感温度区间(Ms以下200℃至室温范围);常发生在刚性较大的低碳钢、低合金钢的焊接结构中。
5.综合分析熔渣的碱度对脱氧、脱磷、脱硫的影响。
脱氧在熔渣脱氧时,碱度高不利于脱氧,但在用硅沉淀脱氧时,碱度高可以提高硅的脱氧效果。
脱硫:熔渣的还原性和碱度渣中氧化钙的浓度高和氧化亚铁的浓度低都有利于反应的行因此,在还原期中脱硫是有利的。
熔渣碱度高也有利于脱硫。
脱磷脱磷的有利条件是高碱度和强氧化性的、粘度小的熔渣,较大的渣量和较低的温度。
6试述熔渣脱硫的原理及影响因素。
第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
第一章4.如何理解实际液态金属结构及其三种“起伏”特征?答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。
实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。
能量起伏是指:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间 不停地变化,时高时低的现象。
结构起伏是指:液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏” ,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。
浓度起伏是指:在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。
6. 总结温度、原子间距(或体积) 、合金元素或微量元素对液体粘度 η 高低的影响。
答:η 与温度 T 的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度 T 而下降。
粘度随原子间距δ增大而降低,与 δ3成反比。
合金组元或微量元素对合金液粘度的影响比较复杂。
许多研究者曾尝试描述二元合金液的粘度规律,其中M-H (Moelwyn-Hughes )模型为:⎪⎪⎭⎫ ⎝⎛-+=RT H X X m 21)(2211ηηη 式中η1、η2、X 1、X 2 分别为纯溶剂和溶质的粘度及各自在溶液中的mole 分数,R 为气体常数,H m为两组元的混合热按 M-H 模型,如果混合热Hm 为负值,合金元素的增加会使合金液的粘度上升。
根据热力学原理,Hm 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。
1.实际金属的液态结构:实际金属和合金的液体由大量时聚时散,此起彼伏游动着的原子团簇及空穴所组成。
能量起伏、结构起伏、浓度起伏。
原子集团内的有序排列——近程有序;液态金属原子无规律排列——远程无序2.粘度系数简称粘度,是用来表征液体粘滞性大小的系数,τ=ττττττ,液体内摩擦阻力大小的表征。
影响因素:原子间结合能U(↑)、原子间距δ(↓)、温度T(↓)、合金组元或微量元素—高熔点合金(高)共晶合金(低)3.表面张力(σ或ϒ):物质表面上平行于表面切线方向且各方向大小相等的宏观张力。
物体倾向于减小其表面积而产生表面张力(单位N/m,1dyn/cm=10−3N/m)。
影响因素:界面(表面)张力与原子间的结合力(↑,润湿角cosτ=τGS−τLSτGL)、温度(↓)、元素价电子数目、合金杂质元素附加压力——当液体表面弯曲时,在表面张力作用下,液面内和液面外存在一个压力差∆p4.液态金属的充型能力:在充型过程中,液态金属充满铸型型腔,获得形状完整、尺寸精确,轮廓清晰的铸件的能力影响因素:金属性质(流动性)、铸型性质(蓄热系数b2)、浇注条件(浇注温度、充型压力、浇注系统)、铸件结构。
5.金属的加热膨胀:温度升高,振动能量增加,振动频率和振幅加大;原子间距,原子能量升高6.熔化潜热:金属在熔点,由固态变为同温度的液态时,要吸收大量的热量,称为熔化潜热7.毛细现象——润湿管壁的液体在细管里升高,而不润湿管壁的液体在细管里降低。
液体的表面张力导致的附加压力8.折算厚度(平方根)法(铸件凝固时间):τ模=K√τ凝或√τ凝=τ模τ,K−凝固系数9.铸件凝固方式:(1)逐层凝固:断面温度梯度很大,或窄结晶温度范围的合金,纯金属、共晶成分合金(2)体积凝固:断面温度场较平坦,或宽结晶范围的合金(3)中间凝固:断面温度梯度较大,或较窄结晶范围的合金影响因素:(1)合金结晶温度范围(2)铸件断面上的温度梯度10.凝固动态曲线:11.过冷类型:(1)动力学过冷ΔT k(2)曲率过冷ΔT r(3)压力过冷ΔT p(4)热过冷ΔT T(5)成分过冷ΔT c凝固界面及其前沿的过冷度ΔT=ΔT k +ΔT r +ΔT p +ΔT T +ΔT c12. 凝固形核:(1) 均质形核——形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程。
润湿角是衡量界面张力的标志。
1.1纯金属和实际合金的液态结构有何不同?举例说明纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子 这样的结构处于瞬息万变的状态 液体内部存在着能量起伏。
2 实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体 也就是说 实际的液态合金除了存在能量起伏外 还存在结构起伏。
充型能力中浇注条件方面的影响因素:1、浇注温度 2、充型压头 3、浇注系统的结构2.1液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
系统吉布斯自由能G=H-TS H为焓、T为热力学温度、S为熵。
结构越混乱G越高。
G L 液相G s固相当T<Tm G L液相<G s固相金属结晶。
过冷度为金属结晶的驱动力。
成分起伏、相结构起伏、能量起伏。
对于外来固相的平面基地而言,凹>平>凸,凸界面,促进异质形核的能力随曲率增大而减小,凹界面,随增大而增大。
晶体宏观长大方式:平面方式长大,树枝晶方式生长。
3.1为什么过冷度是液态金属凝固的驱动力?由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即?G =GS-GL<0;只有当温度低于理论结晶温度Tm 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
3.2何谓热力学能碍和动力学能碍?凝固过程是如何克服这两个能碍的?热过冷:金属凝固时所需的过冷度,若完全由热扩散控制,这样的过冷称热过冷。