受拉构件正截面承载力计算.
- 格式:ppt
- 大小:796.50 KB
- 文档页数:15
7.2 正截面受弯承载力计算第7.2.1条矩形截面或翼缘位于受拉边的倒T形截面受弯构件,其正截面受弯承载力应符合下列规定(图7.2.1):M≤α1fcbx(h-x/2)+f'yA's(h-α's)-(σ'p0-f'py)A'p(h-α'p) (7.2.1-1)混凝土受压区高度应按下列公式确定:α1fcbx=fyAs-f'yA's+fpyAp+(σ'p0-f'py)A'p(7.2.1-2)混凝土受压区高度尚应符合下列条件:x≤ζb h(7.2.1-3)x≥2α'(7.2.1-4)图7.2.1:矩形截面受弯构件正截面受弯承载力计算式中M--弯矩设计值;α1--系数,按本规范第7.1.3条的规定计算;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A s 、A's--受拉区、受压区纵向普通钢筋的截面面积;A p 、A'p--受拉区、受压区纵向预应力钢筋的截面面积;σ'p0--受压区纵向预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力;b--矩形截面的宽度或倒T形截面的腹板宽度;h--截面有效高度;α's 、α'p--受压区纵向普通钢筋合力点、预应力钢筋合力点至截面受压边缘的距离;α'--受压区全部纵向钢筋合力点至截面受压边缘的距离,当受压区未配置纵向预应力钢筋或变压区纵向预应力钢筋应力(α'p0-f'py)为拉应力时,公式(7.2.1-4)中的α'用α's代替。
第7.2.2条翼缘位于受压区的T形、I形截面受弯构件(图7.2.2),其正截面受弯承载力应分别符合下列规定:1当满足下列条件时f y As+fpyAp≤α1fcb'fh'f+f'yA's-(σ'p0-f'py)A'p(7.2.2-1)应按宽度为b'f的矩形截面计算;2当不满足公式(7.2.2-1)的条件时M≤α1fcbx(h-x/2)+α1fc(b'f-b)h'f(h-h'f/2)+f'yA's(h-α'sp0-f'py)A'p(h-α'p(7.2.2-2)混凝土受压区高度应按下列公式确定:α1fc[bx+(b'f-b)h'f]=fyAs-f'yA's+fpyAp+(α'p0-f'py)A'p(7.2.2-3)式中h'f--T形、I形截面受压区翼缘高度;b'f--T形、I形截面受压区的翼缘计算宽度,按本规范第7.2.3条的规定确定。
最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。
对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。
2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。
在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。
承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。
表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。
否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。
③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。
否则为少筋梁,应A s=ρmin bh 。