中考数学 第8讲 分式方程及其应用1
- 格式:ppt
- 大小:7.34 MB
- 文档页数:16
第8节 分式方程及应用一、选择题1.(2016·海南)解分式方程1x -1+1=0,正确的结果是( A ) A .x =0 B .x =1C .x =2D .无解2.(2015·齐齐哈尔)关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是( D ) A .a =5或a =0 B .a ≠0C .a ≠5D .a ≠5且a ≠03.若关于x 的分式方程1x -1=2m x 2-1有增根,则m 的值为( C ) A .0 B .1C .1或0D .1或-14.(2017·攀枝花预测)某加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( A )A.210030x =120020(26-x )B.2100x =120026-xC.210020x =120030(26-x )D.2100x ×30=120026-x×20 5.(导学号 14952287)(2016·贺州)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠46.(导学号 14952288)(2015·河北)如图是石家庄某小区高层住户2014年的取暖费统计表,小宇家住1201(12楼)室,小鹏家住3301(33楼)室,小宇家和小鹏家的面积是一样的,该小区对28楼以上的住户的取暖费有优惠政策,在实施该政策以后,小宇发现小鹏家平均每平方米的取暖费比他家的少4.4元,则小宇家每平方米的取暖费为( B )A.21元 B .22元C .23元D .24元二、填空题 7.(2016·无锡)分式方程4x =3x -1的解是__x =4__. 8.(2016·盐城)当x =__1__时,分式x -13x +2的值为0. 9.(导学号 14952289)若关于x 的分式方程x -a x -1-3x=1无解,则a =__1或-2__. 10.(导学号 14952290)(2017·雅安预测)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是__60x +8=45x__. 三、解答题11.解方程:(1)(2016·连云港)2x -11+x=0; 解:x =-2(2)(2016·乐山)1x -2-3=x -12-x. 解:x =312.(导学号 14952291)(2016·邯郸)定义新运算:对于任意实数a ,b(其中a≠0),都有a b =1a-a -b a,等式右边是通常的加法、减法及除法运算,比如:21=12-2-12=0. (1)求54的值; (2)若x 2=1(其中x≠0),求x 的值是多少?解:(1)根据题意得:54=15-5-45=0 (2)∵x 2=1,∴1x -x -2x=1,在方程两边同乘x 得:1-(x -2)=x ,解得:x =32,检验:当x =32时,x ≠0,∴分式方程的解为:x =3213.(2016·威海)某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.解:设乙班的达标率是x ,则甲班的达标率为(x +6%),依题意得:48x +6%=45x, 解得x =0.9,经检验,x =0.9是所列方程的根,且符合题意.答:乙班的达标率为90%14.(导学号 14952292)(2017·巴中预测)已知关于x 的方程m -1x -1-x x -1=0无解,方程x 2+kx +6=0的一个根是m.(1)求m 和k 的值;(2)求方程x 2+kx +6=0的另一个根.解:(1)∵关于x 的方程m -1x -1-x x -1=0无解,∴x -1=0,解得x =1,方程去分母得:m -1-x =0,把x =1代入m -1-x =0得:m =2.把m =2代入方程x 2+kx +6=0得:4+2k +6=0,解得:k =-5 (2)∵方程x 2-5x +6=0,(x -2)(x -3)=0,∴x 1=2,x 2=3,∴方程的另一个根为315.(导学号 14952293)(2017·遂宁预测)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x)=1,解得:x =30,经检验x =30是原分式方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y×130≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程。
分式方程的经典应用题中考一、分式方程应用题在中考中的重要性同学们,分式方程的应用题在中考里那可是相当重要的一块啊。
你们想啊,就好比是一场冒险游戏里的关键关卡。
分式方程应用题把数学知识和实际生活的场景结合起来,就像把数学知识变成了一个个有血有肉的故事。
比如说工程问题,这就像咱们盖房子。
假如有一个工程队要盖一栋楼,已知一些工人干活的效率是用分式来表示的,然后告诉我们工程总量,让我们求干活的时间或者人数啥的。
这就像是在生活里安排工作一样,你得知道每个人能干多少,总共要干多少,才能算出需要多少人或者多久能完成。
还有行程问题,就像大家出门旅行。
一辆车的速度可能是分式形式的,路程也给你了,然后要你求时间。
这就和我们实际坐车出去玩,想知道多久能到目的地是一个道理。
1. 工程问题的分式方程应用题咱们先来看个简单的例子。
一个工程,甲单独做需要x天完成,乙单独做需要y天完成,现在甲先做了a天,然后甲乙一起做b天完成了工程。
那我们可以设工程总量为1。
甲的工作效率就是1/x,乙的工作效率就是1/y。
甲先做a天的工作量就是a/x,甲乙一起做b天的工作量就是b(1/x + 1/y),那么方程就是a/x + b(1/x+1/y)=1。
这种题的关键就是要找对工作效率、工作时间和工作总量之间的关系。
就像我们生活里,你要是安排打扫房间,你得知道每个人打扫的速度,打扫的时间,才能算出能不能把房间打扫干净。
2. 行程问题的分式方程应用题再比如说,一辆汽车从A地到B地,去的时候速度是v1千米/小时,回来的时候速度是v2千米/小时,已知A地到B地的距离是s千米,往返一共用了t小时。
那根据时间 = 路程÷速度,去的时间就是s/v1,回的时间就是s/v2,方程就是s/v1 + s/v2 = t。
这就好比我们从学校回家,再从家回学校,不同的速度下,我们可以算出总的时间。
这里的关键就是要分清楚去程和回程的速度、路程和时间的关系。
二、解分式方程应用题的步骤同学们,解分式方程应用题啊,可不是瞎蒙的。
2013年中考数学专题复习第八讲:一元二次方程及应用【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有 个未知数,并且未知数最 方程2、一元二次方程的一般形式: 其中二次项是 一次项是 , 是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a ≠o 这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果aX 2 =b 则X 2 = X 1= X 2=2、配方法:解法步骤:1、化二次项系数为 即方程两边都 二次项系数 2、移项:把 项移到方程的 边3、配方:方程两边都加上 把左边配成完全平方的形式4、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程aX 2 +bx +c =0(a ±0) 满足b 2-4ac ≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式式,如果左边分解因式,即产生A .B =0的形式,则可将原方程化为两个 方程,即 从而方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是 法和 法】三、一元二次方程根的判别式关于X 的一元二次方程aX 2 +bx +c =0(a ±0)根的情况由 决定,我们把它叫做一元二次方程根的判别式,一般用符号 表示 ①当 时,方程有两个不等的实数根 ②当 时,方程看两个相等的实数根 ③当 时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数 】方程有两个实数跟,则一、 一元二次方程根与系数的关系:关于X 的一元二次方程aX 2 +bx +c =0(a ±0)有两个根分别为X 1X 2则X 1+X 2 = X 2 =二、 一元二次方程的应用:解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行 常见题型1、 增长率问题:连续两率增长或降低的百分数Xa (1+X )2=b2、 利润问题:总利润= X 或利润 —3、 几个图形的面积、体积问题:按面积的计算公式列方程【名师提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】【重点考点例析】考点一:一元二次方程的有关概念(意义、一般形式、根的概念等) 例1 (2012•兰州)下列方程中是关于x 的一元二次方程的是( ) A .x 2+21x=0 B .ax 2+bx +c =0 C .(x -1)(x +2)=1 D .3x 2-2xy -5y 2=0 思路分析:一元二次方程必须满足四个条件: (1)未知数的最高次数是2; (2)二次项系数不为0; (3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案. 解:A 、原方程为分式方程;故本选项错误;B 、当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C 、由原方程,得x 2+x -3=0,符合一元二次方程的要求;故本选项正确;D 、方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误. 故选C .点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.对应训练1.(2012•惠山区)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= .解:∵一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,∴a+1≠0且a2-1=0,∴a=1.故答案为1.点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.考点二:一元二次方程的解法例2 (2012•安徽)解方程:x2-2x=2x+1.思路分析:先移项,把2x移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.解:∵x2-2x=2x+1,∴x2-4x=1,∴x2-4x+4=1+4,(x-2)2=5,∴x-2=±5,∴x1=2+5,x2=2-5.点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.例3 (2012•黔西南州)三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定思路分析:将已知的方程x2-10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.解:x2-10x+21=0,因式分解得:(x-3)(x-7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2-10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A点评:此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.对应训练2.(2012•台湾)若一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,则2a-b之值为何?()A.-57 B.63 C.179 D.181解:x2-2x-3599=0,移项得:x2-2x=3599,x2-2x+1=3599+1,即(x-1)2=3600,x-1=60,x-1=-60,解得:x=61,x=-59,∵一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,∴a=61,b=-59,∴2a-b=2×61-(-59)=181,故选D.3.(2012•南充)方程x(x-2)+x-2=0的解是()A.2 B.-2,1 C.-1 D.2,-1答案:D考点三:根的判别式的运用例3 (2012•襄阳)如果关于x的一元二次方程kx2-21k x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<12B.k<12且k≠0 C.-12≤k<12D.-12≤k<12且k≠0思路分析:根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.解:由题意知:2k+1≥0,k≠0,△=2k+1-4k>0,∴-12≤k<12且k≠0.故选D.点评:此题考查了一元二次方程根的判别式,一元二次方程根的判别式△=b2-4ac.一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.例4 (2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.思路分析:(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:10;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;再根据三角形的周长公式进行计算.解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m无论取何值,(m-2)2+4≥4,即△≥4,∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根;(2)根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2,则方程的另一根为:3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:10;该直角三角形的周长为1+3+10=4+10;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的周长为1+3+210=4+210.点评:本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.对应训练3.(2012•桂林)关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k<-1 D.k>-1答案:A.4.(2012•珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.解:(1)∵当m=3时,△=b2-4ac=22-4×3=-8<0,∴原方程无实数根;(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0,∴x1=1,x2=-3.考点四:一元二次方程的应用例5 (2012•南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)思路分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2,即可得出答案;(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27-0.1×2=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去,答:需要售出6部汽车.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.对应训练5.(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.5.解(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.【聚焦山东中考】一、选择题1.(2012•日照)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>43且k≠2B.k≥43且k≠2C.k>34且k≠2D.k≥34且k≠2解:∵方程为一元二次方程,∴k-2≠0,即k≠2,∵方程有两个不相等的实数根,∴△>0,∴(2k+1)2-4(k-2)2>0,∴(2k+1-2k+4)(2k+1+2k-4)>0,∴5(4k-3)>0,k>34,故k>34且k≠2.故选C.3.(2012•潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=-24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.5.(2012•日照)已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>且k≠2B.k≥且k≠2C.k>且k≠2D.k≥且k≠2考点:根的判别式;一元二次方程的定义。
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程:根据等量关系与未知数列出分式方程。
④解方程——按照解分式方程的步骤解方程。
④答——检验方程的解是否满足实际情况,然后作答。
练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。
分式、分式方程及其应用一、选择题1. ( 安徽,5,4分)方程3112=-+x x 的解是( ) A.-54 B.54C.-4D.4 【答案】D.【逐步提示】先把方程两边同乘以x-1,化分式方程为整式方程,然后解这个整式,检验整式方程的解后直接选择.【详细解答】解:方程两边同乘以x-1,得2x+1=3(x-1),解得x=4,经检验m=4是原方程的解,故选择D.【解后反思】解分式方程的一般方法是把分式方程化成整式方程来解,并且一定要检验方程的根,把增根舍去.本题也可以把各选项的值代入方程找出正确的选项. 【关键词】 分式方程、分式方程的解法2. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,8,3分)某工厂现在平均每天比原计划每天多生产50台机 器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .90060050x x =+ B .90060050x x =- C .90060050x x =+ D .90060050x x =-【答案】A【逐步提示】本题考查了分式方程的应用,解题的关键是将题中的相等关系用含有未知数的 代数式表示,用含有x 的代数式表示现在平均每天生产的机器数量,再根据题中关于时间 的相等关系列方程即可.【详细解答】解:设原计划平均每天生产x 台机器,则现在平均每天生产(x +50)台机器, 现在生产800台机器所需时间可表示为90050x +,原计划生产600台机器所需时间可表示为 600x ,根据这两者时间相等,得方程90060050x x=+,故选择A . 【解后反思】列分式方程与列整式方程一样,先分析题意,准确找出应用题中包含的等量关 系,恰当地设出未知数,列出方程. 【关键词】分式方程的应用;3. ( 甘肃省天水市,7,4分)已知分式2(1)(2)1x x x -+-的值为0.那么x 的值是( )A .-1B .-2C .1D .1或-2【答案】B 【逐步提示】本题考查了分式的值为0的条件,求解关键是根据这个条件列出方程和不等式.本题涉及到的知识:分式有意义的条件是分母不为0;分式的值为0的条件是分子为0,且分母不为0.【详细解答】解:根据题意,得()()212010x x x ⎧-+=⎪⎨-≠⎪⎩,解之得x =-2,故选择B .【解后反思】实际求解中,学生易忽视分母不等于0的条件而错误地选择D .【关键词】分式;一元二次方程的解法——因式分解法;一元二次方程的解法——直接开平方法. 4. (广东省广州市,14,3分)方程x 21=32-x 的解是 . 【答案】x =-1【逐步提示】利用解分式方程的一般步骤直接解分式方程即得其解.【详细解答】解:去分母,得x -3=4x .移项合并同类项,得-3x =3.∴x =-1.检验:当x =-1时,2x (x -3)=8≠0.∴x =-1是原分式方程的解.故答案为x =-1. 【解后反思】(1)解分式方程的基本思想是转化思想,即通过去分母把分式方程转化成整式方程来解.(2)解分式方程去分母时,首先要找准最简公分母,注意最简公分母要包含各分式所有分母的因式,分母是多项式的,应先分解因式,再从系数、相同字母、不同字母三个方面考虑,其中系数取最小公倍数,相同字母或因式取最高次幂,互为相反数的因式,注意通过符号变化取其中一个作为最简公分母的因式即可;其次,依据等式的基本性质,分式方程的每一项都要乘以最简公分母,特别不要漏乘没有分母的项,还要注意不要去掉括号以及避免符号变形错误.(3)解分式方程必须验根,一般方法为把所解得的未知数的值代入最简公分母,若为零则为増根,不为零则为原分式方程的解. 【关键词】解分式方程5. (贵州省毕节市,13,3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A.30300400-=x x B.x x 30030400=- C.x x 30030400=+ D.30300400+=x x 【答案】A【逐步提示】本题考查分式方程的应用,解题的关键是找出题中的等量关系.①题中的等量关系是:现在植树400棵所需时间与原计划植树300棵所需时间相同;②现在植树400棵所需时间为:400现在每天植树棵数;原计划植树300棵所需时间为:300原计划每天植树棵数;③现在平均每天植树x 棵,原计划每天植树(x -30)棵.【详细解答】解:由题意,得方程组30300400-=x x ,故选择A. 【解后反思】本题的易错点是容易误认为x 是原计划每天植树棵数,从而误选C .通常我们假设未知数时,一般设较小的一个量为x ,用和或倍数表示另一个量,但这并非原则和规定,设较大的量为x 也可以. 【关键词】 分式方程的应用;6.( 河北省,4,3分)下列运算结果为x -1的是( )A .11x -B .211x x x x -⋅+C .111x x x +÷- D .2211x x x +++ 【答案】B【逐步提示】分别计算(或化简)每个式子,看其结果是否为x-1.【详细解答】解:1111x x x x x x--=-=,()()2111111x x x xx x x x x x +--⋅=⋅=-++,2+11+11111x x x x x x x x --÷=⋅=-,()22+1+2+11+1+1x x x x x x ==+,故运算结果为x -1的是选项B .【解后反思】分式的运算法则如下:运算法则数学表达式加减法同分母相加减:分母不变,分子相加减. a c ±b c =a b c±. 异分母相加减:先通分,同乘以各分母的最小公倍数,再按同分母相加减法则运算.a cb d ±=ad bcbd+. 乘法 两分式相乘:分子与分子相乘,分母与分母相乘.a c acb d bd⨯=. 除法分式A÷B 则A·1B,然后用分式乘法进行运算.a c a d adb d bc bc÷=⋅=.【关键词】 分式的乘除;分式的加减;分式的约分7. ( 河北省,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+【答案】C【逐步提示】本题考查了倒数的表示及列分式方程,找到题目中的等量关系是解题的关键. 【详细解答】解:3x 、8x 的倒数分别为13x ,18x ,根据“她求得的值比正确答案小5” 可知“18x 比13x小5”,故可列方程为18x =13x-5,答案为选项C. 【解后反思】1.a (a ≠0)的倒数的1a,注意不要将其与相反数,绝对值等相混淆;2.列方程的关键是找对等量关系,如本题要弄清两个倒数的大小关系. 【关键词】 倒数;列分式方程8. ( 湖北省十堰市,7,3分)用换元法解方程31241222=---x x x x 时,设y xx =-122,则原方程可化为( ) A. 031=--y y B.y-y 4-3=0 C.y-031=+y D.y-y4+3=0. 【答案】B【逐步提示】本题主要考查分式方程的换元方法,解题的关键是理解x x 122-和122-x x是一对互为倒数的关系;解题的思路:设y x x =-122,那么yx x 141242⨯=-. 【详细解答】解:因为y x x =-122 ,所以y x x 141242⨯=-,原方程可以变形为y-y4-3=0故选择B .【解后反思】分式方程求解的方法主要有两个,一是直接在方程的两边同乘以最简公分母,把分式方程转化为整式方程来解;另一个是换元后,再转化为整式方程求解.思维拓展:换元法不仅可以解部分分式方程,也可以解部分一元高次方程或无理方程,有时因式分解也需要用到换元法. 【关键词】分式方程和无理方程; 分式方程的解法9.(湖南省衡阳市,2,3分)如果分式13-x 有意义,则x 的取值范围是( ) A. 全体实数 B. 1≠x C. 1=x D. 1>x【答案】B【逐步提示】本题考查了分式有意义的条件,解题的关键是理解分式有意义的条件.第一步:根据分式有意义的条件是分母的值不等于0,列出不等式;第二步:解不等式,即可求得答案。