空间向量的数乘运算p
- 格式:ppt
- 大小:2.04 MB
- 文档页数:17
8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。
高二数学选修2-1 空间向量的运算及空间向量的基本定理 北师大版(理) 【本讲教育信息】 一、教学内容:选修2-1 空间向量的运算及空间向量的基本定理二、教学目标:1. 理解并掌握空间两个向量的夹角、直线的方向向量、平面的法向量、共面向量等基本概念。
2. 熟练地掌握空间向量的加减运算、数乘运算、空间向量坐标运算的运算法则、运算律及空间向量的数量积的几何意义及性质。
3. 熟练地掌握共线向量定理、空间向量的基本定理,并能利用它们讨论证明空间的线面关系。
4. 体会用类比的数学思想、方程的数学思想、等价转化的数学思想解决问题。
三、知识要点分析:(一)平面向量与空间向量的相同点:1. 向量夹角:过空间一点O 作AOB ,OB b ,OA a ∠==则是向量a 与向量b 的夹角。
X 围:[0,]π2. 加减运算:加减运算法则:向量的平行四边形法则(三角形法则) 运算律:结合律:)()(c b a c b a ++=++,交换律:a b b a +=+3. 数乘运算法则:向量a 与实数λ的乘积是一个向量,记作:a λ,满足(i )||||λλ=a ||a ,(ii )当0>λ时,a λ与a 方向相同,反之,相反。
0a 0=λ=λ时,。
运算律:(i )).(,R a a ∈=λλλ(ii ))R ,(,a a a )(,b a )b a (∈μλμ+λ=μ+λλ+λ=+λ.(iii )),(),()(R a a ∈=μλμλλμ4. 空间向量的数量积:θ⋅=⋅cos |b ||a |b a 。
θ>=<b a ,。
运算律:交换律:a b b a ⋅=⋅分配律:c a b a )c b (a ⋅+⋅=+⋅,(λ)b a ⋅=b )a (⋅λ)b (a λ⋅=性质:(1)a a |a |⋅,(2)0b a b a =⋅⇔⊥,(3)|b ||a ||b a |⋅≤⋅注:向量的数量积运算不满足乘法的结合律。