智能楼宇自控系统资料讲解
- 格式:doc
- 大小:6.97 MB
- 文档页数:19
楼宇自动化系统知识介绍1. 楼宇自动化系统的定义楼宇自动化系统是指一套集智能控制、监测、管理于一体的综合系统,通过计算机和网络技术实现对楼宇的自动化管理和控制。
它可以实现对楼宇内的照明、空调、安防、门禁、电梯等设备的自动化控制,并通过远程监控和管理实现对楼宇各种设备的集中监控和管理。
2. 楼宇自动化系统的组成楼宇自动化系统一般由以下几个组成部分组成:2.1 传感器与执行器传感器是指用于采集楼宇内各种参数(如温度、湿度、光照强度等)的装置,执行器是指用于控制各种设备(如电灯、风扇、空调等)的装置。
传感器与执行器是楼宇自动化系统的基础,通过它们的联动,可以实现对楼宇内各种设备的智能控制。
2.2 控制器与计算机控制器负责对传感器采集到的数据进行处理和分析,并根据预先设定的规则和策略,控制执行器对楼宇设备进行控制。
计算机则负责对控制器的管理和监控,并提供用户界面,便于楼宇管理人员对楼宇设备的状态进行实时监控和管理。
2.3 网络与通信设备网络与通信设备是楼宇自动化系统的重要组成部分,它负责将传感器采集到的数据传输给控制器和计算机,并将控制指令传递给执行器。
同时,它也为用户提供远程访问和控制的能力,实现对楼宇设备的远程监控和管理。
3. 楼宇自动化系统的应用楼宇自动化系统广泛应用于各类商业大楼、办公楼、酒店、医院、学校等场所。
它可以通过智能控制和管理,提高楼宇内设备的能效,降低能耗,提升使用者的舒适度和体验。
3.1 能效管理楼宇自动化系统可以实时监测楼宇内各种设备的能耗情况,并根据使用需求和时间段的不同,自动调整设备的运行参数,实现最佳的能耗控制和管理。
此外,系统还可以对设备进行故障预警和维护管理,提高设备的可靠性和使用寿命。
3.2 舒适度提升楼宇自动化系统可以通过精确的温湿度控制、空气质量监测等手段,实现对室内环境的精细化管理。
它可以根据不同的季节和时间段,自动调整楼宇内的温度、湿度、光照等参数,提供舒适的使用环境,提升使用者的满意度和体验。
楼宇智能化详解目录1. 楼宇智能化概述 (2)1.1 楼宇智能化的定义 (3)1.2 楼宇智能化的意义 (4)1.3 楼宇智能化的发展历程 (5)2. 楼宇智能化系统架构 (7)2.1 硬件层 (8)2.1.1 传感器 (10)2.1.2 控制器 (11)2.1.3 执行器 (13)2.2 软件层 (14)2.2.1 数据采集与处理 (16)2.2.2 数据存储与分析 (17)2.2.3 控制策略与优化 (18)2.3 通信层 (20)2.3.1 有线通信 (21)2.3.2 无线通信 (24)2.4 应用层 (25)2.4.1 安防系统 (26)2.4.2 能源管理系统 (28)2.4.3 智能办公系统 (29)3. 楼宇智能化关键技术 (31)3.1 物联网技术 (32)3.2 大数据技术 (33)3.3 人工智能技术 (35)3.4 云计算技术 (36)3.5 边缘计算技术 (38)4. 楼宇智能化实施与应用案例 (39)4.1 智慧园区建设 (41)4.2 智能建筑应用 (42)4.3 智能家居案例 (44)4.4 智能交通管理实践 (45)5. 楼宇智能化发展趋势与挑战 (46)1. 楼宇智能化概述楼宇智能化是指通过现代信息技术手段,对建筑物内的各类资源进行优化配置和高效管理,提供安全、舒适、便捷、节能和环保的居住、办公和商业环境。
楼宇智能化系统主要包括楼宇自控系统(BAS)、楼宇智能安防系统、楼宇智能环境控制系统、楼宇智能能源管理系统等。
这些系统通过集成化、网络化、信息化的手段,实现对建筑物的全面感知、实时控制和智能管理,提高建筑物的使用效率和舒适度,降低运营成本,促进可持续发展。
楼宇智能化的发展经历了从简单的自动化系统到复杂的智能化的过程,随着科技的进步和人们对生活品质要求的提高,楼宇智能化已经成为现代建筑的重要组成部分。
楼宇智能化不仅提升了建筑物的功能价值,还为人们带来了更加便捷、舒适和安全的居住、办公和商业环境。
智能楼宇自控系统设计与实施技术手册第一章概述 (2)1.1 楼宇自控系统简介 (2)1.2 智能楼宇自控系统发展现状 (3)1.3 智能楼宇自控系统设计原则 (3)第二章系统架构设计 (4)2.1 系统总体架构 (4)2.2 网络架构设计 (4)2.3 控制层与监控层设计 (4)第三章系统硬件设计 (5)3.1 控制器硬件设计 (5)3.2 传感器与执行器硬件设计 (5)3.3 通信硬件设计 (5)第四章系统软件设计 (6)4.1 系统软件架构 (6)4.2 控制算法设计 (6)4.3 用户界面与数据管理 (7)4.3.1 用户界面设计 (7)4.3.2 数据管理 (7)第五章能源管理 (7)5.1 能源监测与优化 (7)5.1.1 能源监测系统概述 (7)5.1.2 能源监测系统组成 (8)5.1.3 能源优化策略 (8)5.2 节能策略设计 (8)5.2.1 节能策略概述 (8)5.2.2 节能策略设计原则 (8)5.2.3 节能策略设计内容 (8)5.3 能源数据统计分析 (9)5.3.1 能源数据统计分析概述 (9)5.3.2 能源数据统计分析方法 (9)5.3.3 能源数据统计分析应用 (9)第六章环境监测与控制 (9)6.1 温湿度监测与控制 (9)6.1.1 温湿度监测 (9)6.1.2 温湿度控制 (10)6.2 空气质量监测与控制 (10)6.2.1 空气质量监测 (10)6.2.2 空气质量控制 (10)6.3 照明控制 (11)6.3.1 照明监测 (11)6.3.2 照明控制 (11)第七章安全防范 (11)7.1 视频监控系统设计 (11)7.2 门禁系统设计 (12)7.3 火灾自动报警系统设计 (12)第八章智能家居 (12)8.1 家居自动化系统设计 (12)8.2 智能家居应用场景 (13)8.3 家居安全与健康管理 (13)第九章系统集成与兼容性 (14)9.1 系统集成策略 (14)9.2 与第三方系统对接 (14)9.3 系统兼容性设计 (15)第十章系统实施与调试 (15)10.1 系统安装与调试 (15)10.1.1 系统安装 (15)10.1.2 系统调试 (16)10.2 系统调试方法 (16)10.2.1 功能调试 (16)10.2.2 功能调试 (16)10.2.3 兼容性调试 (16)10.3 系统验收与维护 (17)10.3.1 系统验收 (17)10.3.2 系统维护 (17)第十一章项目管理与评估 (17)11.1 项目管理流程 (17)11.2 项目风险评估与控制 (17)11.3 项目效果评估 (18)第十二章发展趋势与展望 (18)12.1 智能楼宇自控系统发展趋势 (18)12.2 行业政策与市场前景 (19)12.3 创新技术与应用展望 (19)第一章概述1.1 楼宇自控系统简介楼宇自控系统,又称楼宇自动化系统,是指利用计算机技术、通信技术、自动控制技术等,对建筑内的设备进行集中监控、管理和控制的系统。
智能楼宇使用手册智能楼宇是集建筑、电子、信息等多学科技术于一体的现代建筑,它以提高建筑物的舒适性、安全性和节能环保为出发点,运用先进的智能化技术对建筑物进行智能化管理与控制。
本手册旨在帮助用户了解智能楼宇的概念、系统组成、功能与特点,以及运营与维护等方面的内容,从而更好地享受智能楼宇带来的便捷与舒适。
一、智能楼宇概述智能楼宇是将现代信息技术与建筑相结合的一种新型建筑,通过对建筑物的自动化控制、信息化管理、节能环保等方面的技术应用,实现对建筑物的智能化管理与控制。
智能楼宇不仅能提高建筑物的使用价值,还能为用户提供更加舒适、安全、便捷的生活环境。
二、智能楼宇系统组成智能楼宇系统主要包括以下几个部分:1.楼宇自控系统:通过对建筑内部的空调、照明、电梯等设备的自动化控制,实现对建筑内部环境的智能调节。
2.保安监控系统:利用摄像头、门禁等设备,对楼宇内外进行实时监控,确保楼宇的安全运行。
3.消防报警系统:在发生火警等紧急情况时,及时发出警报并启动相关设备,保障楼宇内人员生命财产安全。
4.通信网络系统:为楼宇内提供高速、稳定的网络服务,满足用户信息传输需求。
5.能源管理系统:通过对楼宇能源消耗的实时监测和分析,实现节能减排和能源高效利用。
三、智能楼宇功能与特点1.自动化控制:通过楼宇自控系统,实现对建筑内部环境的自动调节,提高舒适度。
2.信息化管理:利用通信网络系统,实现楼宇内信息的实时传输与处理,提高管理水平。
3.节能环保:通过能源管理系统的应用,实现节能减排,降低能源消耗。
4.安全性高:保安监控系统和消防报警系统的应用,确保楼宇安全运行,保障住户生命财产安全。
四、智能楼宇的运营与维护1.运维团队建设:组建专业化的运维团队,负责楼宇智能化系统的日常巡检、保养和维护。
2.设备巡检与保养:定期对楼宇内设备进行检查和保养,确保设备正常运行。
3.故障排查与处理:在设备出现故障时,及时进行排查和处理,减少故障对楼宇运行的影响。
智能建筑智能化系统楼宇自控技术分析摘要:由于社会经济和科学技术的发展,自动化控制技术也得到了极大的提高,这也推动了智能建筑行业的进步。
要保证智能建筑的整体质量,就要做好智能建筑自动化技术的分析,充分展现机电设备自动化技术的效果。
基于此,本文主要探讨了智能建筑智能系统的建筑自动化施工技术。
关键词:电气工程;智能化系统;自控技术智能建筑是在传统建筑的基础上,综合运用各种智能信息技术,为人们提供安全舒适的居住环境的新型建筑。
自上世纪90年代末中国引入智能建筑以来,智能建筑在中国稳步发展;近年来,随着我国信息化建设的不断增加,智能建筑也进入了快速发展期。
目前,随着新技术和新产品的不断涌现,以及新规范和标准的制定,这为智能建筑的发展奠定了基础。
作为现代智能建筑不可或缺的一部分,楼宇自控系统建设的重要性也日益凸显。
1、智能建筑楼宇自控系统概述1.1楼宇自控系统的起源1984年,在美国康涅狄格州哈特福德,联合技术集团UTBS公司智能地重建了一座旧金融大楼,并将其命名为City Place building,从而创造了世界上第一座“智能建筑”。
随后,智能建筑在欧洲、美国、日本等世界各地迅速发展,其中美国和日本发展最快。
北京发展大厦在建筑中采用了设备自动化系统、通信网络系统、办公自动化系统等,成为内地最早的智能建筑,堪称我国建筑自动化行业的“元年”。
1.2楼宇自控系统的定义根据《智能建筑设计标准》(GB/T50314-2015)中对楼宇自控系统的定义,楼宇自控系统实现了建筑(组)内各种机电设备的自动控制,包括供暖、通风和空调、给排水、供配电、照明、电梯、,通过信息网络形成分散控制、集中监控和管理的集成系统,实时监控和显示设备运行参数;监控设备运行状态;根据外部条件、环境因素和负载变化自动调整各种设备,使其始终处于最佳状态;自动实现电力、供热、供水等能源的调控和管理;提供安全、舒适、高效、节能的工作环境。
1.3楼宇自控系统的作用楼宇自控系统从其自身的能力和发展来看,应具有以下技术应用价值:(1)能够满足建筑物内人员的舒适性、功能性和安全性要求;(2)能够准确监测和反映建筑物和设备的运行参数和状态;(3)它可以优化设备的控制性能;(4)有足够但不奢侈的监测手段;(5)能源管理方案可用于减少建筑能耗;(6)可以降低设备的运行成本;(7)它可以自动诊断和调整系统本身。
SAIA智能楼宇自控系统01|系统简介SAIA楼宇自控系统是惠朋星公司基于瑞士SAIA-BURGESS公司PCD产品开发的智能楼宇控制系统。
本系统由中央管理站、DDC控制器、远程I/O站及各类传感器、执行机构组成,是能够完成多种控制、管理功能及提供中央空调动态模糊节能控制的网络系统。
应用于综合办公大楼、工厂、医院、商场、机场等,是国际上最先进的楼宇自控系统之一。
SAIA智能楼宇系统采用最新的网络通讯和控制技术,针对建筑自动化监控系统的特点,为用户量身打造基于WEB的人机交互界面和开放式的系统平台。
SAIA智能楼宇系统由管理级网络和楼宇级网络组成,包括组态软件(PG5或Step7),现场控制器DDC(PCD2.PLC)和现场数据采集I/O模块(PCD2.W310、PCD2.W610)等,管理级网络包括工程师站,操作员站和客户端;楼宇级网络包括现场控制器DDC、通讯网关、远程模块。
02|系统监控范围系统监控设备:●空调机组设备监控;新风机组设备监控;送排风系统设备监控;●给排水设备监控;●发电机组;电梯系统;热水供水系统;通过系统接口集成监控的系统:●变配电监控系统;冷冻站系统;03|系统特点SAIA智能楼宇系统满足业主的“简单、实用、节能环保、适度超前”的总体设计,满足技术先进、成熟、功能实用性强的原则。
采用基于瑞士SAIA的PCD分布式控制系统,整个系统在网络结构上采用扁平化设计,分为管理级网络和区域控制现场总线,易于部署和管理。
本系统采用分散控制、集中管理模式,最大限度的保证了系统的可靠和高效。
中央控制主机采用多用户/多任务的工业标准软件,支持可定制的多个安全级别,并提供完全汉化的图形操作界面。
现场控制器均采用以32位微处理器为基础构成的直接数字控制器(DDC),容量符合业主给定的规范以及控制点清单的要求。
SAIA智能楼宇系统集散系统设计、模块化结构、组态方便,能为今后系统的扩展有充分的余地,为升级提供便利。
采用工业标准的过程控制设备(PCD)为核心,系统中的各个组成部分发展成标准化、专业化产品,从而使系统的设计安装及扩展更加方便、灵活,系统的运行更加可靠,系统的投资大大降低。
SAIA智能楼宇系统软硬件均采用模块化结构,具有很强的适应性,能够灵活应用于综合办公大楼、工厂、医院、商场、机场的能源管理,是国际上最先进的系统之一。
本系统可划分为不同等级的独立系统,每级都具有非常清楚的功能和权限,使之既可用于单独的楼宇管理,也可用于一个区域的、分散的楼宇集中管理。
具有强大的网络功能,可以通过WEB-SERVER无缝连接Internet发送E-MAIL及手机短信。
04|系统优势SAIA智能楼宇系统经济、节能,能显著节省能源,减少维护,管理人员,优化设备运行,运行管理方便还独有效用成本管理模块(UCM),基于开放/实时数据库的支持,UCM的效用成本分析功能可帮助客户实时的在整个系统或建筑内合理的分配能源成本,而不是在费用发生后再根据账单核对成本,这使得SAIA智能楼宇系统能为业主提供有效的节省费用和开支的手段。
SAIA智能楼宇系统还由于其软硬件特点,集成了基于中央空调动态能效分析的模糊节能控制策略,在提高控制精度方面,可以节省20~30%左右的冷量,这对于减少运行费用与节约能源均有重要意义。
SAIA智能楼宇节能系统后,用电量可比未采用楼宇节能系统时的用电量减少30%以上,若每年用电100万度,则每年可直接节约电量30万度,经济价值20万左右。
此项即可在4—5年内收回楼宇节能系统的投资。
05|产品介绍PCD1/PCD2系列紧凑型模块化控制器最大255/1023个本地输入/输出:所有I/O插槽可以选择插入数字量、模拟量、计数、频率测量、称重和运动控制模块。
特点:•使用PCD2.M480和PCD3.LIO最大可以扩展到1023个I/Os(使用PCD2.C100最大可扩展到255个I/Os)•最大1Mbyte用户存储器用于存储程序、文本和数据块,可选的1Mbyte flash 存储器可以作为后备存储器。
•最多9个串行通信口,可以选择RS232、RS422、RS485、Belimo MP-Bus 或TTY current loop/20 mA现场总线连接,如Profibus FMS/DP、LONWORKS或Ethernet-TCP/IP、 modems.Profi-S-Net/MPI和USB(PCD2.M480) •实现Web server不需要额外费用并且可以不需要TCP/IP通信模块。
Web server已经内置于PCD基本单元中。
•CPU单元最多有4个标准的输入,用于中断和快速计数输入。
操作系统及高效的编程工具•高效的编程工具PG5提供多种编程语言:IL、FUPLA、GRAFTEC语言,以及其调试诊断和其他附件工具,大量的组件和基于IEC1131-3的结构化编程方式,使编程工作变的简单、轻松。
•可移植的用户程序源于协调的系统资源和集成的Saia S-Bus,用户程序可以在PCD系列所有控制器和PCS1中相互传递并能运行。
•响应时间短,CPU直接访问I/O信号,而不是通过工程数据映射(image) •灵活的网络集成能力,采用通信和编程方式,通过Ethernet-TCP/IP连接到现场总线站点(Profibus DP/FMS或LONWORKS)06|楼宇自控界面(友好人机界面)1.中央空调节能控制系统:依据冷热负荷实时调整供冷量,完成建筑物空调节能控制增湿量,满足工艺净化环境温湿度要求3.冷冻站群控: 依据冷热负荷实时调整整体供冷量,完成冷冻站节能控制节能改造1.中央空调变频节能2.冷冻水机组变频节能3.空压机变频节能4.冷却塔变频节能5.灯光照明节能。
07|解决方案■空调子系统空调子系统实现楼宇自控系统中空调机组及相关水泵、阀门等设备的各种控制、管理、监测以及报警等功能,实现设备的离线数据采集、脱机运行和现场控制等。
空调子系统的监控内容包括:•新风量/回风量•温度•湿度针对新风系统点数相对固定的特点,采用PCD2系列控制器,系统连接图如下。
M1CC电动风门执行器TVFT11风量开关新风送风回水冷冻水进水PT11PT11TE一次回风HH蒸汽M1风机状态故障监测开关控制输入/T7413A1009ML系列流量计8550ML系列V A1010V A1010PCD2.PLCS-BUS RS485PCD2.HMI序号DI DO AI AO 其它1 5 5 62 RS485■新风子系统新风子系统与空调子系统类似,实现楼宇自控系统中新风机组及相关水泵、阀门等设备的各种控制、管理、监测以及报警等功能,实现设备的离线数据采集、脱机运行和现场控制等。
新风系统与空调系统的区别在于新风系统控制的全部是自然风,没有回风风道。
因此新风系统更能够保证送风的空气质量,但同时它消耗的能量也是最大的。
新风子系统的监控内容包括:•温度•湿度针对新风系统点数相对固定的特点,系统连接图如下:温度传感器T7411A温度传感器T7411A温度传感器T7411AS-BUSPCD2.PLC 压差报警DSP2×TE 风及状态故障监测开关控制输入/触水阀 V A1010 TETE风及状态故障监测开关控制输入/触S-BUSPCD2.PLCPCD2.HMI温度传感器T7411A HETE 压差报警DSP2××TE风及状态故障监测开关控制输入/触点及变频控制水阀 V A1010温度传感器T7411AHETE压差报警DSP2×TE风及状态故障监测开关控制输入/触水阀 V A1010温度传感器T7411A 温度传感器T7411A两台新风处理机组联网控制解决方案 序号 DI DO AI AO 其它 1 5 2 3 2 RS485 25232RS485■冷热源子系统冷热源设备子系统的监控内容包括:•计算冷热负荷,决定开启冷冻机组和锅炉的数量•机组状态检测与启停控制•冷却水温度控制•冷冻水温度控制•冷冻水压差控制冷热源系统的监控点较为集中,监控点数量较大,适合采用现场控制器加上扩展I/O模块的方式,实现大规模的数据采集与控制,系统连接图如下:热交换器 热交换器 温度调节阀 温度传感器 压差平衡调节阀 热水循环泵热水循环泵 温度调节阀 TE TE 分水箱 集水箱 PT TE PT TE 温度传感器 PCD2.PLC PCD2.HMI S-BUS■变配电子系统变配电子系统的监控内容包括:•三相电流/三相电压•有功功率/无功功率/功率因素•频率•电量计量•低压配电开关状态•变压器超温报警由于国内BA变配电系统要求只监不控,所以只有输入点AI。
监测方式:电流,电压变送器和通信网关两种方式。
■照明子系统照明系统的监控内容包括:•照明回路启停控制•照明回路开关状态•调光控制•场景控制•室外泛光照明•定时/光照/移动感应控制泛光照明监控方式:通过网关PLC来和照明系统通讯,由于照明系统的I/O类型都是数字量的开关控制与状态监测,因此可以通过saia-burgess的PCD2.E110/A410模块进行监控,如果点数较多,可以通过PCD2.E160/A460进行配置,降低系统成本■给排水子系统给排水子系统的监控内容包括:•生活水箱的高、低液位监测•生活水池的高液位检测•生活水泵状态检测与启停控制•消防水泵,喷淋水泵,生活水泵,排水泵,高区水泵,低区水泵,喷泉水泵,消毒水泵的状态检测与启停控制•污水池的高液位报警监控方式:通过现场控制器PCD2.PLC系列控制器和saia-burgess的I/O模块PCD2.E××/A××进行控制。
由于给排水系统的I/O类型都是数字量的开关控制与状态监测,因此可以通过saia-burgess的PCD2.E110/A410模块进行监控,如果点数较多,可以通过PCD2.E160/A460进行配置,降低系统成本。
■电梯子系统电梯子系统的监控内容包括:•运行状态•故障状态•楼层显示监控方式:通过现场控制器PCD2.PLC系列控制器和saia-burgess的I/O模块PCD2.E××/A××进行控制。
由于电梯系统的I/O类型都是数字量的状态监测,因此可以通过saia-burgess的PCD2.E110/A410模块进行监控,如果点数较多,可以通过PCD2.E160/A460进行配置,降低系统成本。
系统连接图如下。
■房间区域系统房间控制涵盖了以下控制系统:散热器,电暖气,采暖/制冷天花板,电动窗帘,门禁,盘管风机,以及公共区域风扇等等多种控制。
基于LonWorks网络或S-Net的房间控制器应用于房间的多种控制。