特殊条件下换热管与管板的一种连接方式
- 格式:pdf
- 大小:199.78 KB
- 文档页数:3
换热器管子与管板的5种连接结构形式管子与管板的连接,在管壳式换热器的设计中,是一个比较重要的结构部分。
它不仅加工工作量大,而且必须使每一个连接处在设备的运行中,保证介质无泄漏及承受介质压力能力。
对于管子与管板的连接结构形式,主要有以下三种,(1)胀接, (2)焊接,(3)胀焊结合。
这几种形式除本身结构所固有的特点外, 在加工中,对生产条件,操作技术都有一定的关系。
Ol胀接用于管壳之间介质渗漏不会引起不良后果的情况下,胀接结构简单,管子修补容易。
由于胀接管端处在胀接时产生塑性变形,存在着残余应力,随着温度的上升,残余应力逐渐消失,这样使管端处降低密封和结合力的作用。
所以此胀接结构,受到压力和温度的一定限制。
一般适用压力P0≤4MPa,管端处残余应力消失的极限温度,随材料不同而异,对碳钢、低合金钢当操作压力不高时,其操作温度可用到300°Co为了提高胀管质量,管板材料的硬度要求高于管子端的硬度, 这样才能保证胀接强度和紧密性。
对于结合面的粗糙度,管孔与管子间的孔隙大小,对胀管质量也有一定的影响,如结合面粗糙,可以产生较大的摩擦力,胀接后不易拉脱,若太光滑则易拉脱,但不易产生泄漏,一般粗糙度要求为Ral2.5o为了保证结合面不产生泄漏现象,在结合面上不允许存在纵向的槽痕。
期炸既接管孔有光孔和带环形槽孔两种,管孔的形式和胀接强度有关,在胀口所受拉脱力较小时,可采用光孔,在拉脱力较大时可采用带环形槽的结构。
光孔结构用于物料性质较好的换热器,胀管深度为管板厚度减3mm,当管板厚度大于50m∏b胀接深度e一般取50 mm,管端伸出长度2~3 mmo 当胀接时,将管端胀成圆锥形,由于翻边的作用,可使管子与管板结合得更为牢固,抗拉脱力的能力更高。
当管束承受压应力时,则不采用翻边的结构形式。
管孔开槽的目的,与管口翻边相似,主要是提高抗拉脱力及增强密封性。
其结构形式是在管孔中开一环形小槽,槽深一般为0.4~0∙5 mm,当胀管时,管子材料被挤入槽内,所以介质不易外泄。
胀管通用工艺规程一、胀接说明1 胀接胀接是换热管与管板的主要联接形式之一,它是利用胀管器伸入换热管管头内,挤压管子端部,使管端直径扩大产生塑性变形,同时保持管板处在弹性变形范围内。
当取出胀管器后,管板孔弹性变形,管板对管子产生一定的挤紧压力,使管子与管板孔周边紧紧地贴合在一起,达到密封和固定连接的目的。
由于管板与管子的胀接消除了弹性板与塑性管头之间的间隙,可有效地防止壳程介质的进入而造成的缝隙腐蚀。
当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性难以保证。
因此,在这种工况下,或预计拉脱力较大时,可采用管板孔开槽的强度胀接。
胀接又分为贴胀和强度胀。
2 胀管率胀管率是换热管胀接后,管子直径扩大比率。
贴胀与强度胀的主要区别在于对管子胀管率 (管子直径扩大比率) 的控制不同,对冷换设备换热管来说,强度胀要求的胀管率H为1~2.1%,而贴胀要求的胀管率H为0.3~0.7%。
3 贴胀贴胀是轻度胀接的俗称,贴胀是为消除换热管与管板孔之间的缝隙,以防止壳程介质进入缝隙而造成的间隙腐蚀。
由于贴胀时胀管器给管子的胀紧力较小,管子径向变形量也就比较小。
因此换热管与管板孔之间的相对运动的摩擦力就比较小,所以它不能承受较大的拉脱力,且不能保证连接的可靠性,仅起密封作用。
贴胀时,管孔不需要开槽。
4 强度胀强度胀是指管板与换热管连接处的密封性和抗拉脱强度均由胀接接头来保证的连接方式。
强度胀接的管板孔要求开胀管槽,一般开两道胀管槽。
以使管子材料在胀接时嵌入胀管槽内,由此来增加其拉脱力。
特别是当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性下降,甚至发生管子与管板松脱,这时采用强度胀接,其抗拉脱力就比贴胀要大得多。
胀管前应用砂轮磨掉表面污物和锈皮,直至呈现金属光泽,清理锈蚀长度应不小于管板厚度的2倍。
管板硬度应比管子硬度高HB20~30,以免胀接时管板孔产生塑性变形,影响胀接的紧密性。
换热器管子与管板焊接方法:1、管板管孔加工:。
孔径、孔距符合图纸要求,孔内坡口1x45o,所有管孔内表面粗糙度6.32、管子装配:管头、管孔除油和清洁,管端伸出管板4mm(管外径19.05),加工到等高并用TIG焊进行管子固定。
3、自动GTAW焊接:(1).第一道自熔不加丝封底.(2).然后两道自动GTAW加焊丝,连续两道以确认焊加强高2mm(管外径19.05),自动GTAW 操作使用24V,150~90A,矩形脉冲直流电流。
(3).最后一道不加丝焊收口,保证焊缝外观光滑,自动GTAW外观上要有足够的加强高度2~2.5mm,对伸出管端头没有任何切口或破坏。
(4).所有管子和管板焊缝最终要进行100%PT,(根部和层间PT不推荐使用,由于可能引入染料的外部污染影响焊接质量)。
(5).在所有焊接和PT结束后,对每根管子进行贴胀。
(6).所有管子和管板连接自动GTAW焊缝在水压试验之前,应进行1%NH3,0.7MPA的气体渗透试验(壳侧),所有焊缝应保持干燥状态并且如果发现缺陷可以进行修理。
(7).如果自动管子管板连接的GTAW焊缝发现泄漏或缺陷,禁止使用手工补焊,正确返修方法如下:(a).首先用转动工具切掉缺陷焊缝(b).用此工具加工孔内部1x45o坡口(c).依据自动GTAW程序重新焊接。
关于换热器管板与换热管联接质量问题的探讨本讨论话题很好,也是我们工作中所遇到的一个重要而普遍实际具体问题,从中受益匪浅,在此感谢大家!单位里实际生产中,不太重视这个问题,相关工艺欠缺或不完善不详细,很盲目不科学一味凭经验操作,事先不做相关焊接工艺评定,不做胀管试验,随便胀焊,特别是在胀接时没有什么顺序,质量很难以保证的。
请教大家以下问题:1、胀管率怎么确定?顺序怎么为好?2、MOCK—UP模拟产品怎么做?胀焊前是否不同型每台产品都要做?3、是否有完善的胀管工艺提供可学习参考一下?。
换热管与管板内焊接头形式
换热管与管板内的焊接头形式通常取决于具体的工程要求和设
计标准。
一般来说,换热管与管板内的焊接头形式可以采用以下几
种方式:
1. 对接焊接,这是最常见的一种方式,换热管与管板内部的焊
接头可以采用对接焊接,即将两个部件的端部对齐后进行焊接。
这
种方式适用于一些一般要求的换热设备。
2. 焊角焊接,有时候由于换热管与管板的结构特点,需要采用
焊角焊接的方式,即在两个部件的交接处进行角焊接,以保证焊接
的牢固性和密封性。
3. 焊缝形式,焊接头的形式还可以根据具体的工程要求选择不
同的焊缝形式,比如可以选择单面焊、双面焊或者多道焊等形式,
以确保焊接的质量和性能。
4. 焊接材料,在换热管与管板内的焊接过程中,还需要选择合
适的焊接材料,比如焊条或焊丝,以保证焊接的牢固性和耐腐蚀性。
总的来说,换热管与管板内的焊接头形式需要根据具体的工程要求和设计标准来确定,以确保焊接的质量和性能。
在选择焊接头形式时,需要考虑到材料的特性、工作环境、压力温度等因素,以确保焊接的可靠性和安全性。
换热管与管板焊缝分类引言换热管与管板焊缝是工业生产中常见的连接方式,用于将换热管与管板牢固地连接起来。
它在化工、石油、能源等领域起着重要的作用。
本文将对换热管与管板焊缝进行分类,以便更好地理解和应用这一连接方式。
1. 换热管与管板焊缝的定义换热管与管板焊缝是指将换热管与管板通过焊接方式连接在一起的接头。
它能够提供良好的密封性能和强度,确保换热管与管板的稳定连接。
2. 换热管与管板焊缝的分类标准换热管与管板焊缝可以根据多个标准进行分类,如下所示:2.1 根据连接方式•焊接换热管与管板焊缝:将焊接材料加热至熔化状态,通过焊接操作将换热管与管板牢固地连接在一起。
这种连接方式可以采用多种焊接方法,如电弧焊、气焊、激光焊等。
•非焊接换热管与管板连接:换热管与管板可以通过螺纹、法兰、夹紧等方式连接在一起,无需进行焊接。
2.2 根据焊缝形式•直焊焊缝:焊缝直接连接换热管与管板的两个接口,呈直线形状。
直焊焊缝通常比较简单,适用于一些简单的工艺要求。
•环焊焊缝:焊缝呈环形,将换热管完全围绕在焊缝中,形成一个环形连接。
环焊焊缝通常用于需要较高密封性能的场合。
•T型焊缝:焊缝呈T形状,将换热管与管板连接在一起。
T型焊缝通常用于连接直径较大的换热管和管板。
2.3 根据焊接材料•焊接同材料换热管与管板焊缝:焊接材料与换热管和管板相同,具有相似的化学成分和性能。
这种焊缝可以提供更好的兼容性和稳定性。
•焊接异材料换热管与管板焊缝:焊接材料与换热管和管板不同,具有不同的化学成分和性能。
这种焊缝需要考虑材料之间的兼容性和界面效应。
3. 换热管与管板焊缝的应用换热管与管板焊缝广泛应用于各个领域,下面列举了几个常见的应用场合:•石化工业:在炼油、化工生产过程中,焊接换热管与管板焊缝可用于加热、冷却、蒸发等工序中的热交换设备。
•能源行业:在发电、核电、热力站等能源设备中,焊接换热管与管板焊缝可用于热交换器、锅炉等设备中,提高能源利用效率。
胀接工艺守则1总则管板和换热管是换热器的主要受压元件,二者之间的连接处是换热器的关键部位。
而胀接是实现换热管与管板连接的方法之一,胀接质量的好坏对换热器的正常运作起着关键作用。
2胀接型式和方法胀接型式按胀接进度可分为贴胀和强度胀2.1贴胀是为消除换热管与管板直径缝隙的轻度胀接,其目的是为了小处缝隙腐蚀和提高焊缝的抗疲劳性能,贴胀后胀接接头的抗拉脱力应达到IMPa 以上;2.2强度胀是包装换热管与管板连接的密封性能及抗拉脱轻度的胀接。
强度胀接后胀接接头的抗拉脱力应达到4MPa以上;2.3胀接方法按胀接工艺的不同可分为机械胀和柔性胀接(橡胶胀、液压胀、液袋式液胀等)。
3胀管器的选用胀管器主要根据换热管的直径、管板厚度、胀接长度及胀接特点来确定,通常有胀接器生产厂家按胀接条件选定。
4换热管与管板硬度测定4.1胀接的远离是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性形变,胀接后塑性变形管子收到弹性变形额管板孔壁的挤压而使管子和管板紧密地结合在一起,因此在试胀前应首先测定管子与管板的硬度值是否相匹配;4.2换热管与管板的材料应有适当的硬度差,管板硬度应大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧,如果二者硬度差相差很小时,应对管子端部进行退火处理,管子端部退火处理长度一般为管板厚度加IOOmmO5试胀5.1正式胀接之前应进行试胀。
试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的密封性能,测试胀接接头的抗拉脱力,孕照合适的胀管率,以便制定合理的产品胀接工艺;5.2试胀应在试胀工艺试板上进行,试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式应与产品管孔排列形式一致,试胀所用管子的材料、规格应与产品用换热器一致,但长度可以不一致,一般为管板厚度加50mm;5.3试胀前应根据胀管率计算公式推送出换热管胀接后的内件尺寸,胀管率计算公式可按我国锅炉规程中给出的公式计算:H=(dι-d2-δ)∕d3×100%δ一一胀前管孔直径与管子外径之差5.4胀管率应在0.9%~2.2%之间选取,胀管率小于0.9%为欠胀,管子胀后为产生足够的塑性变形,不能保证资金质量;胀管率大于2.2%为过胀,管子胀后产生过大的塑性变形,加工硬化现象严重,容易导致管子处理裂纹等缺陷,管板也可能产生塑性变形而使胀后的管板不能有效的回弹,从而影响胀接接头的性能。
换热管与管板的对接焊缝换热管与管板的对接焊缝是在换热设备中常见的连接方式之一。
本文将从焊接原理、焊接工艺和焊缝质量等方面对换热管与管板的对接焊缝进行详细介绍。
一、焊接原理在换热设备中,换热管与管板之间的连接通常采用焊接方式。
焊接是通过提供热能使两个或多个工件加热至熔化状态,然后冷却固化而形成的连接方式。
对于换热管与管板的对接焊缝,常用的焊接方法有手工电弧焊、气体保护焊和自动焊接等。
二、焊接工艺对于换热管与管板的对接焊缝,焊接工艺的选择对焊缝的质量至关重要。
一般来说,焊接工艺应根据具体的材料、厚度和使用条件等因素来确定。
在焊接前,需要进行焊前准备工作,包括清理焊缝表面、校验焊缝尺寸和预热等。
焊接时,应控制好电流、电压、焊接速度和焊接角度等参数,确保焊缝的均匀性和牢固性。
焊接完成后,还需要进行焊后处理,包括除渣、修整焊缝和进行无损检测等。
三、焊缝质量焊缝质量是换热管与管板的对接焊缝的重要指标之一。
优质的焊缝应具备以下特点:焊缝形状规整,焊缝宽度和高度均匀一致;焊缝与母材的结合紧密,无气孔、夹杂物和裂纹等缺陷;焊缝金属的组织和性能与母材相近,无明显的互不相容性;焊缝的力学性能和耐腐蚀性能满足工程要求。
为了保证焊缝质量,需要严格控制焊接过程中的各项参数。
首先,选择合适的焊接方法和工艺,确保焊接热输入适中。
其次,应选择合适的焊接材料和焊接电极,保证焊缝与母材的相容性。
同时,焊接过程中应保持焊接区域的干燥和洁净,防止气孔和夹杂物的形成。
最后,在焊接完成后,应进行焊后热处理和无损检测,确保焊缝的完整性和质量。
总结起来,换热管与管板的对接焊缝是换热设备中常见的连接方式。
通过合理的焊接原理、焊接工艺和焊缝质量控制,可以确保换热设备的安全稳定运行。
在实际工程中,需要根据具体的要求和条件来选择合适的焊接方法和工艺,以及合适的焊接材料和电极,从而得到优质的焊缝。
对于焊接过程中的焊前准备、焊接参数控制和焊后处理等环节也需要严格遵守,确保焊缝质量符合工程要求。
换热器管板与管子的连
接方法与原理
WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】
管板与换热管的连接方式主要胀接、焊接、胀焊结合。
胀接分强度胀和贴胀两种,胀接的方法主要有机械滚胀法、液压胀管、爆破胀管,胀接是利用电动或风动等动力使心轴旋转并挤入管内迫使管子扩张产生塑性变形而与管板贴合,为了提高胀管的质量,管端材料的硬度应比管板低。
若单一使用胀接,一般使用条件为压力不超过
4MPa,温度不超过350℃。
带槽孔的结构用于抗拉脱能力与密封性要求高的场合,管板中开的环形小槽深为~,管子材料被胀挤进槽内,可防止介质外泄,管板厚度小于30mm时,槽数为1,厚度大于30mm时,槽数为2。
液压胀、爆破胀具有劳动强度低、密封性能好,一般推荐在高温高压的工况下采用液压胀和爆破胀。
焊接分强度焊和密封焊两种,焊接加工简单、连接强度好,在高温高压时能保证连接处的紧密性与抗拉脱能力,管子与薄管板的固定更应采用焊接方法。
当连接处焊接之后,管板与管子中存在的残余热应力与应力集中,在运行时可能引起应力腐蚀与疲劳破坏,此外,管子与管板孔之间的间隙中存在的不流动的液体与间隙外的液体有着浓度上的差别,还容易产生间隙腐蚀,目前在工况要求较高的场合推荐采用内孔焊。
采用胀焊结合的方法,不仅能提高连接处的抗疲劳性能,还可消除应力腐蚀和间隙腐蚀,提高使用寿命。
采用强度胀+密封焊的结合方式,胀接承受拉脱力,焊接保证紧密性,采用强度焊+贴胀的结合方式,焊接承受拉脱力,胀接消除管子与管板间的间隙。
换热管与管板连接通用工艺规程1主题内容与适应范围1.本1规程规定了钢制管壳式换热器换热管与管板连接的方法和要求。
1.本2规程适用于本公司制造的碳素钢、低合金钢、不锈钢等材料制管壳式换热器的换热管与管板的连接。
其它材料制造的换热器的换热管与管板的连接亦可参照执行。
2总则2.换1热管与管板连接接头的制造除符合本规程的规定外,还应遵守国家颁布的有关法令、法规、标准、本公司其它相应规程和图样及专用工艺文件的要求。
3.换2热管与管板连接的连接方式有胀接、焊接、胀焊并用等型式。
具体连接方式在图样或公司技术部门在制造专用工艺中规定。
3一般要求4.当1换热管与管板采用胀接连接时,换热管材料的硬度值一般须低于管板材料的硬度值〜除换热管材料为不锈钢或有应力腐蚀场合外,可采用管端局部退火的方式来降低换热管材料的硬度。
5.管2孔表面粗糙度当换热管与管板焊接连接时,管孔表面粗糙度值不大于M m且符合图样要求;当换热管与管板胀接连接时,管孔表面粗糙度值不大于M5且符合图样要求,同时管孔表面不得有影响胀接紧密性的缺陷,如贯通的纵向或螺旋状刻痕等。
3.连3接前,连接部位的换热管与管板表面应采用机械或化学方法清理干净,不应留有影响胀接或焊接连接质量的毛刺、铁屑、锈斑、油污等。
穿管前,应对换热管进行机加工平头,平管公差L+mrn。
穿管前,应采用钢丝刷、钢丝轮、砂纸将换热管管头(包括管口端部)毛刺、铁屑、锈斑、油污去除干净,至呈金属光泽。
用于焊接时,换热管刷管范围不小于换热管外径尺寸,且不小于2mm;用于胀接时,换热管应呈现金属光泽,其长度应不小于二倍的管板厚度。
刷管后,换热管应放置在干燥通风处,已经刷管处理的换热管必须在7天内与管板进行胀接或焊接连接,否则应重新进行刷管处理。
c)换热管的外伸长度,按产品焊接工艺规程执行。
对需打磨的管头要求打磨平整,不得有卷边现象,并用机械或化学方法清除管板、管端表面残留的砂轮灰等杂物。
d)当换热管与管板定位后实施焊接或胀接前(不超过4小时),应采用钢丝刷将连接部位的换热管与管板表面的锈斑、油污清理干净。
管壳式换热器中换热管与管板连接的工艺换热器作为将物料之间热流体的部分热量传递给冷流体的传热设备,在人们日常生活及石油、化工、动力、医药、原子能和核工业等行业中有着广泛的应用。
它可作为独立的设备,如加热器、凝汽器、冷却器等;也可作为某些工艺设备的组成部分,如一些化工设备中的热交换器等。
尤其在耗能用量较大的化工行业中,换热器在化工生产的热量交换和传递过程中是不可缺少的设备,在整个化工生产设备中也占有相当的比例。
换热器从其功能上来看,一方面是保证工业过程对介质所要求的特定温度,另一方面也是提高能源利用率的主要设备。
按其结构形式主要有板式换热器、浮头式换热器、固定管板式换热器和U形管式换热器等等。
其中除板式换热器外,其余几种属于管壳式换热器。
由于管壳式换热器具有单位体积上较大的换热面积,而且换热效果好,同时具有结构坚固、适应性强、制造工艺成熟等优点,已成为最为普遍使用的一种典型的换热器。
管壳式换热器中换热管与管板的连接在管壳式换热器中换热管和管板是换热器管程和壳程之间的惟一屏障,换热管与管板之间的连接结构和连接质量决定了换热器的质量优劣和使用寿命,是换热器制造过程中至关重要的一个环节。
大多数换热器的破坏及失效都发生在换热管与管板的连接部位,其连接接头的质量也直接影响着化工设备及装置的安全可靠性,因此对于管壳式换热器中换热管与管板的连接工艺就成为了换热器制造质量保证体系中最关键的控制环节。
目前在换热器制造过程中,换热管与管板的连接主要有:焊接、胀接、胀接加焊接以及胶接加胀接等方法。
1.焊接换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用最为广泛的一种连接方法。
在采用焊接连接时,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。
对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。