通信与电子信息工程专业英语聂敏著第10单元TEXT_A&B
- 格式:ppt
- 大小:975.50 KB
- 文档页数:64
基础电子学电子学衍生于对电力的研究和应用,是工程学和应用物理学的领域。
电力涉及力的产生,传输与使用金属导体。
电子学利用电子不同的运动方式及通过供气材料,如硅与锗等半导体,其他设备如太阳能电池,LED,微波激射器,激光及微波管等实现。
电子学应用于包括广播、雷达、电视、卫星系统传输,导航辅助设备系统,控制系统,空间探测设备,微型设备如电子表,许多电气设备和电脑等方面。
1.电子学的开端电子学的历史始于20世纪,包括三个关键元素:真空管,晶体管和集成电路。
19世纪早期是理论和发明取得重大发展的时代。
发现了红外线和紫外线。
道尔顿在1808年提出了原子理论。
在1840年之前就发现了热电效应、电解效应和光电效应。
20年之间相继产生了工作在低压下的放电管,辉光放电,新型电池及早期的扩音器。
因此,在1800—1875年之间,发现了基本的物理现象,电话,留声机,麦克风及扬声器等在实际应用中达到了极致。
至于19世纪末期,无线电报,磁记录,阴极射线示波器等都被发明了。
20世纪早期也见证了现代电子技术的开端。
1880年爱迪生发明了白炽灯成为现代电子领域的历史先驱者。
他发现有微弱的电流从加热的灯丝流向真空管内附着的金属板。
这就是众所周知的“爱迪生效应”。
如果使用了一个非电器的热源,注意到电池仅是必要的用来加热灯丝使电子移动。
1904年,约翰利用爱迪生效应发明了二极管,李.德.佛列思特紧接着在1906年发明了三极管。
这些真空管设备使电子能源控制的放大及传输成为可能。
20世纪初真空管的引入使现代电子学快速成长。
采用真空管让信号的控制成为可能,这是早期的电报电话电路不可能实现的,也是早期用高压电火花产生无线电波的发射机所不能实现的。
电子管首先应用于无线通信。
Guglielmo Marconi于1896年开辟了无线电报的发展,于1901年实现了远距离广播交流。
早期的收音机包括了无线电报(摩尔斯电码信号传输)或收音机电话(语音留言)。
第一课现代数字设计及数字信号处理课文 A: 数字信号处理简介1.什么是数字信号处理?数字信号处理,或DSP,如其名称所示,是采用数字方式对信号进行处理。
在这种情况下一个信号可以代表各种不同的东西。
从历史的角度来讲,信号处理起源于电子工程,信号在这里意味着在电缆或电话线或者也有可能是在无线电波中传输的电子信号。
然而,更通用地说,一个信号是一个可代表任何东西--从股票价格到来自于远程传感卫星的数据的信息流。
术语“digital”来源于“digit”,意思是数字(代可以用你的手指计数),因此“digital”的字面意思是“数字的,用数字表示的”,其法语是“numerique”。
一个数字信号由一串数字流组成,通常(但并非一定)是二进制形式。
对数字信号的处理通过数字运算来完成。
数字信号处理是一个非常有用的技术,将会形成21世纪的新的科学技术。
数字信号处理已在通信、医学图像、雷达和声纳、高保真音乐产生、石油开采等很广泛的领域内引起了革命性的变革。
这些领域中的每一个都使得DSP技术得到深入发展,有该领域自己的算法、数学基础,以及特殊的技术。
DSP发展的广度和深度的结合使得任何个人都不可能掌握已发展出的所有的DSP技术。
DSP教育包括两个任务:学习应用数字信号处理的通用原则及学习你所感兴趣的特定领域的数字信号处理技术。
2.模拟和数字信号在很多情况下,所感兴趣的信号的初始形式是模拟电压或电流,例如由麦克风或其它转换器产生的信号。
在有些情况下,例如从一个CD播放机的可读系统中输出的信号,信号本身就是数字的。
在应用DSP技术之前,一个模拟信号必须转换成数字信号。
例如,一个模拟电压信号,可被一个称为模数转换器或ADC的电路变换成数字信号。
该转换器产生一系列二进制数字作为数字输出,其值代表每个采样时刻的输入模数转换设备的电压值。
3.信号处理通常信号需要以各种方式处理。
例如,来自于传感器的信号可能被一些没用的电子“噪声”污染。
X. Third Generation Wireless Networks第三代无线网络移动通信简介电信工业面临着向用户稀少而安装固定电话网络成本很高的乡间地区提供电话服务的问题。
降低有线电话高昂基础设施费用的一个方法是使用固定无线电网络。
这一方面存在的问题是,对于乡间和城市需要由大的蜂窝单元以达到足够的覆盖。
而且由于多径传播的长时间延迟又遇到额外的问题。
目前在澳大利亚全球移动通信系统(GSM)技术正被用于农村地区的固定无线电话系统。
然而GSM使用时分复用(TDMA),这种技术的符号速率很高,会导致多径引起码间干扰的问题。
人们正在考虑用于下一代数字电话系统的好几种技术,目的是改进蜂窝单元的容量、抗多径干扰以及灵活性。
这些技术包括CDMA和COFDM,这两者都能用于向农村提供固定无线系统。
不过每一种技术有不同的性质,分别适用于特定的应用。
COFDM目前正用于一些新的无线广播系统包括高清晰度电视(HDTV)提案和数字音频广播(DAB),而对COFDM作为一种移动通信系统的传输方法却研究甚少。
在CDMA中所有用户在同一频带中传输,他们用特殊的码实现信道化。
基站和移动站都知道用于调制发送数据的码。
OFDM/COFDM通过将可用带宽分成许多窄带载波使许多用户能在给定的频带内发送信号。
每个用户分配到若干载波在其中发送数据。
传输以这样的方法进行:载波之间相互正交因而它们可以被安排得比标准得频分复用(FDM)拥挤得多,这就使OFDM/COFDM有很高的频谱使用效率。
第三代无线网络数字网络使用的扩展已经导致了设计大容量通信网络的需要。
在欧洲,蜂窝型系统到2000年的需求预计将达到1500至2000万户,而美国(1995年)已经超过了3000万户。
无线通信服务正以每年50%的速度增长,目前的第二代欧洲数字系统(GSM)预期在21世纪初达到饱和。
随着广泛的业务需求如视频会议、互联网服务、数据网络、多媒体等的发展,电信工业也在变化之中。
电子信息工程专业英语Unit 1 Electronic DevicesLesson 1 VLSI Technology •Backgrounds•Text tour•Language in use–Vocabulary–Structure–Reading/writing techniques Backgrounds•Terminology–Transistor vs. vacuum tube–Conductivity & semiconductor–Miniaturization , IC, LSI, VLSI•Timeline of Electronic Technology Evolution•Company Information–Bell Laboratories–Texas Instruments–Intel CorporationTerminologyTransistor vs. vacuum tubeThe vacuum tube is an electron tube from which all or most of the gas has been removed, permitting electrons to move with no or low interaction with any remaining gas molecules.真空管是一种内部气体全部或部分抽空的电子管,从而使电子在不受或少受气体分子的干扰下运动。
• A transistor is a device that conducts a variable amount of electricity through it, depending on how much electricity is input to it. In other words, it is a digital switch.However, unlike the vacuum tube , it is solid state .•晶体管是一种依据输入电量大小而传导可变电量的器件。
基础电子学电子学衍生于对电力的研究和应用,是工程学和应用物理学的领域。
电力涉及力的产生,传输与使用金属导体。
电子学利用电子不同的运动方式及通过供气材料,如硅与锗等半导体,其他设备如太阳能电池,LED,微波激射器,激光及微波管等实现。
电子学应用于包括广播、雷达、电视、卫星系统传输,导航辅助设备系统,控制系统,空间探测设备,微型设备如电子表,许多电气设备和电脑等方面。
1.电子学的开端电子学的历史始于20世纪,包括三个关键元素:真空管,晶体管和集成电路。
19世纪早期是理论和发明取得重大发展的时代。
发现了红外线和紫外线。
道尔顿在1808年提出了原子理论。
在1840年之前就发现了热电效应、电解效应和光电效应。
20年之间相继产生了工作在低压下的放电管,辉光放电,新型电池及早期的扩音器。
因此,在1800—1875年之间,发现了基本的物理现象,电话,留声机,麦克风及扬声器等在实际应用中达到了极致。
至于19世纪末期,无线电报,磁记录,阴极射线示波器等都被发明了。
20世纪早期也见证了现代电子技术的开端。
1880年爱迪生发明了白炽灯成为现代电子领域的历史先驱者。
他发现有微弱的电流从加热的灯丝流向真空管内附着的金属板。
这就是众所周知的“爱迪生效应”。
如果使用了一个非电器的热源,注意到电池仅是必要的用来加热灯丝使电子移动。
1904年,约翰利用爱迪生效应发明了二极管,李.德.佛列思特紧接着在1906年发明了三极管。
这些真空管设备使电子能源控制的放大及传输成为可能。
20世纪初真空管的引入使现代电子学快速成长。
采用真空管让信号的控制成为可能,这是早期的电报电话电路不可能实现的,也是早期用高压电火花产生无线电波的发射机所不能实现的。
电子管首先应用于无线通信。
Guglielmo Marconi于1896年开辟了无线电报的发展,于1901年实现了远距离广播交流。
早期的收音机包括了无线电报(摩尔斯电码信号传输)或收音机电话(语音留言)。
电路系统与设计2.1电路和系统1.基础概念电荷和导电性在Bohr的原子理论中(以Niels Bohr命名,1885-1962),电子围绕着质子和种子运动。
在相反极性电子和质子的电荷之间的吸引力使得原子连在一起。
具有同种电荷的粒子将会相互排斥。
电荷的测量值是库伦。
一个单独的电子或质子的电荷远小于一库伦,一个电子是—1.6×1(-19)库伦,一个质子是1.6×10(-19)库伦。
自然表明,只有一个质子的电荷和电子是反极性的。
这里没有固有的负极电子,只是很容易被称为正极的和质子负极的。
原子不同形态的电子有不同程度的自由度。
一些材料的形态,例如金属,最外层的电子受到很弱的约束使得它们能够在室温热能量的影响下载原子空间中自由运动。
因为这些事实上不受约束的电子式可以在自身的原子中自由运动的,也可以漂浮在临近的原子周围的空间中,它们常被称为自由电子。
在其他一些形态的材料中如玻璃,它的原子的电子几乎不能自由移动。
当外部的力量如物理摩擦时,能够强迫一些电子离开它们自身的原子,移动到其他物质的原子中,它们在材料的原子中不能很容易的移动。
这些在材料中电子的移动性的关系被认为是电子的导电性。
导电性决定于材料中原子的形态(每个原子核的栀子数,决定他的化学特性。
)和原子是怎样与另一个原子连接在一起的。
有高度灵活电子的材料(许多自由电子)被称为导体,而有很少灵活电子的材料(几乎或是没有自由电子)的材料被称为绝缘体。
必须知道,一些物质的化学特性将在不同环境下改变。
例如,玻璃在室温下是一个非常好的绝缘体,但当把它加热到相当高的温度时它就变成一个导体。
气体如空气,常态下是绝缘体,但如果加热到很高的温度也会变成导体。
大部分金属被加热时导电性能会下降,而被冷制的时候导电性能会更好。
许多导体材料在极低温的情况下会成为完美的导体(这被称为超导)。
通常导体里的自由电子是随机运动的,没有确定的方向或速度,但是电子受力后可能沿相同的方向通过导体。