---串联调整型稳压电源设计原理
- 格式:doc
- 大小:154.00 KB
- 文档页数:10
串联调整型稳压电源电路原理调整型稳压电源电路是一种用于稳定输出电压的电子设备。
为了满足各种电子设备对电压稳定性的需求,人们提出了串联调整型稳压电源电路。
这种电路结构简单,可靠性高,因此被广泛应用于各种电子设备中。
串联调整型稳压电源电路的原理是通过串联的方式将稳压管、滤波电容和负载电阻连接在一起,实现对输出电压的稳定调整。
其中,稳压管起到了关键作用,它能够根据输入电压的变化自动调整输出电压,使其保持在设定值附近。
在串联调整型稳压电源电路中,稳压管的工作原理是利用电流的流动来实现对电压的稳定调整。
当输入电压发生变化时,稳压管会自动调整电流的流动来保持输出电压的稳定。
这样,无论输入电压如何变化,输出电压都能够保持在设定值附近。
为了进一步提高稳压效果,串联调整型稳压电源电路还可以添加滤波电容。
滤波电容能够平滑输出电压的波动,减少电压的纹波,使输出电压更加稳定。
同时,负载电阻也起到了平衡电流的作用,确保电流的稳定流动。
通过串联调整型稳压电源电路的原理,我们可以实现对电压的稳定调整。
这种电路结构简单、可靠性高,能够满足各种电子设备对电压稳定性的需求。
无论是家用电器、通信设备还是工业控制系统,都离不开稳定的电源供应。
串联调整型稳压电源电路正是为了满足这种需求而设计的,它在各个领域都有着广泛的应用。
串联调整型稳压电源电路是一种通过串联的方式实现对电压的稳定调整的电子设备。
它的原理是利用稳压管、滤波电容和负载电阻的组合来实现对输出电压的稳定控制。
这种电路结构简单、可靠性高,能够满足各种电子设备对电压稳定性的需求。
无论是家用电器、通信设备还是工业控制系统,都可以通过串联调整型稳压电源电路来实现稳定的电源供应。
串联型稳压电源的工作原理及电路图串联型稳压电源电原理图工作原理:图示串联型稳压电路,除了变压、整流、滤波外,稳压部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。
当电网电压或负载变动引起输出电压V0变化时,取样电路将输出电压V0的一部分馈送回比较放大器和基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管集—射极间的电压,补偿V0的变化,从而维持输出电压基本不变。
串联稳压电路的安装、焊接与调试1、.元件的安装与焊接(1)元器件的检测:在安装前应对元件的好坏进行检查,防止已损坏的元件被安装。
要求:二极管:正向电阻、极性标志是否正确。
三极管:判断极性及类型,8050,9013为NPN 管,8550 为PNP管,HFE 大于50。
电解电容:是否漏电,极性是否正确。
电阻:阻值是否合格。
发光二极管:极性及好坏插头及软线:接线是否可靠。
变压器:绕组有无断、短路,电压是否正确。
(2)根据元器件封装画好装配图。
(3)按装配图正确安装各元器件,装配工艺见附录在印制板上安装元件时,一般应注意如下几点:(1) 元件引脚若有氧化膜,则应除去氧化膜,并进行搪锡处理。
(2) 安装时,要确保元件的极性正确,如二极管的正、负板、三极管的e、b、c 极,电解电容的正、负极。
(3) 元件外形的标注字(如型号、规格、数值)应放在看得见的一面。
(4) 同一种元件的高度应当尽量一致。
(5) 安装时,应先安装小元件(如电阻),然后安装中型元件,最后安装大型元件,这样便于安装操作。
(6) 在空间允许时,功率元件的引脚应尽量留得长一些,以便有利于散热。
在进行焊接操作时要注意安全,焊接时间,送锡方法,烙铁头处理,用松香的道理和方法,防止虚焊的措施等。
2.串联型稳压电路的调试(1)通电前的检查。
电路安装完毕后,应先对照电路图按顺序检查一遍,一般地:①检查每个元件的规格型号、数值、安装位置管脚接线是否正确。
着重检查电源线,变压器连线,是否正确可靠,②检查每个焊点是否有漏焊、假焊和搭锡现象,线头和焊锡等杂物是否残留在印制电路板上。
9.5.1 串联型稳压电路的工作原理一、基本调整管电路如下图(a)所示为稳压管稳压电路,负载电流最大变化范围等于稳压管的最大稳定电流和最小稳定电流之差,即(I ZM-I Z)。
扩大负载电流的最简单方法是:利用晶体管的电流放大作用,将稳压管稳定电路的输出电流放大后,再作为负载电流。
电路采用射极输出形式,因而引入了电压负反馈,可以稳定输出电压,如图(b)所示,常见画法如图(c)所示。
其工作原理如下:调整管:晶体管的调节作用使U O稳定,晶体管称为调整管。
要使调整管起到调整作用,必须使它工作在放大状态。
串联稳压电源:由于调整管与负载相串联,故称这类电路为串联型稳压电源。
线性稳压电源:由于调整管工作在线性区,故称这类电路为线性稳压电源。
二、具有放大环节的串联稳压电路★电路构成基本调整管稳压电路的输出电压不可调,且输出电压因U BE的变化而变,稳定性较差。
为了使输出电压可调,加深电压负反馈,可在基本调整管稳压电路的基础上引入放大环节。
电路如图所示,由调整管、基准电压电路、取样电路和比较放大电路组成。
★稳压原理当电网电压波动(或负载电阻的变化)使输出电压U O上升时,取样电压U N增大,由于稳压管的电压U Z不变,运放的输入电压U NP(=U N-U P=U N-U Z)增大,使A的输出减小(即调整管的基极电位降低),而使调整管T的c-e压降低增大,从而调节输出电压U O(=U I-U ce)减小。
使输出电压得到稳定。
可见,电路是靠引入深度电压负反馈来稳定输出电压。
★输出电压的可调范围当电位器R2的滑动端在最上端时,输出电压最小为当电位器R2的滑动端在最下端时,输出电压最大为若R1=R2=R3=300Ω,U Z=6V,则输出电压9V≤U O≤18V。
★调整管的选择在串联型稳压电路中,调整管是核心元件,它的安全工作是电路正常工作的保证。
调整管一般为大功率管,因而选用原则与功率放大电路中的功放管相同,主要考虑其极限参数I CM、U(BR)CEO和P CM。
串联型稳压电路工作原理
串联型稳压电路是一种常见的稳压电路,由稳压二极管、电阻和负载组成。
其工作原理如下:
1. 基本原理:稳压二极管是一种具有负温度系数的二极管,其正向电压降随温度的升高而下降,因此稳压二极管可以通过改变其工作温度来调节电压。
串联型稳压电路利用这一特性,将稳压二极管与电阻串联,通过电阻对电压进行调节,从而实现稳定输出电压。
2. 稳压作用:当输入电压发生变化时,稳压二极管会自动调整自身的工作温度,使其正向电压降保持不变,从而保持输出电压的稳定性。
3. 调节范围:串联型稳压电路的调节范围一般受稳压二极管的限制,一般在几十毫伏至几伏之间。
4. 负载调节:稳压电路的输出电压还受到负载电流的影响。
当负载电流发生变化时,错误地影响稳压二极管的温度,导致输出电压的波动。
为了解决这个问题,可以在稳压二极管与电阻之间加上一个电容,通过电容的滤波作用来平稳输出电压。
总的来说,串联型稳压电路通过稳压二极管和电阻组成串联电路,通过改变稳压二极管的工作温度来调节电压,实现稳定输出电压的目的。
同时,通过加入滤波电容可以减小负载变化对输出电压的影响。
串联型稳压电源的制作串联型稳压电源,稳压精度高,内阻小,本例输出电压能在3—6V随意调节,输出电流100mA,可供以后一般实验线路使用。
原理图如下:一、工作原理电源变压器T次级的低压交流电,经过整流二极管VD1—VD4整流,电容器C1滤波,获得直流电,输送到稳压部分。
稳压部分由复合调整管VT1、VT2、比较放大管VT3及起稳压作用的硅二极管VD5、VD6和取样微调电位器RP等组成。
晶体管集电极发射极之间的电压降简称管压降。
复合调整管上的管压降是可变的,当输出电压有减小的趋势,管压降会自动地变小,维持输出电压不变;当输出电压有增大的趋势,管压降又会自动地变大,维持输出电压不变。
复合调整管的调整作用是受比较放大管控制的,输出电压经过微调电位器RP分压,输出电压的一部分加到VT3的基极和地之间。
由于VT3的发射极对地电压是通过二极管VD5、VD6稳定的,可认为VT3的发射极对地电压是不变的,这个电压叫做基准电压。
这样VT3基极电压的变化就反映了输出电压的变化。
如果输出电压有减小趋势,VT3基极发射极之间的电压也要减小,这就使VT3的集电极电流减小,集电极电压增大。
由于VT3的集电极和VT2的基极是直接耦合的,VT3集电极电压增大,也就是VT2的基极电压增大,这就使复合调整管加强导通,管压降减小,维持输出电压不变。
同样,如果输出电压有增大的趋势,通过VT3的作用又使复合调整管的管压降增大,维持输出电压不变。
VD5、VD6是利用它们在正向导通的时候正向压降基本上不随电流变化的特性来稳压的。
硅管的正向压降约为0.7V左右。
两只硅二极管串联可以得到约为1.4V左右的稳定电压。
R2是提供VD5、VD6正向电流的限流电阻。
R1是VT3的集电极负载电阻,又是复合调整管基极的偏流电阻。
C2是考虑到在市电电压降低的时候,为了减小输出电压的交流成分而设置的。
C3的作用是降低稳压电源的交流内阻和纹波。
二、元器件选择VD1—VD4 二极管1N4001×4VD5—VD5 二极管1N4148×2VT1—VD2 三极管9013×2VT3 三极管9011R1 电阻2KΩR2 电阻680ΩRP 微调电位器1KΩC1 电解电容470μF/16VC2 电解电容47μF/16VC1 电解电容100μF/16VT 电源变压器200V/9VF 熔断丝0.5A三、安装、调试与检测1.按装配图正确安装元件。
串联型稳压电路工作原理1. 什么是串联型稳压电路?嘿,朋友们,今天咱们聊聊串联型稳压电路。
这听起来像是高深莫测的科技名词,其实就是一套让电压稳如老狗的电路,别看它名字长,其实用起来真心不复杂。
想象一下,你的手机、电脑要是没了电压保护,搞不好就得在一瞬间“瘫痪”了。
可别小瞧这个小小的稳压电路,它可是我们电子产品的守护神,帮我们抵挡那些电压的“波动小子”。
那么,什么叫串联呢?就是把多个组件串在一起,像串珠子一样,电流得一个个通过,才能保证电压的稳定。
这种电路的设计,简直就是为了解决我们日常生活中最常见的问题:电压不稳带来的烦恼。
试想一下,如果你正在看电影,忽然电压一波动,屏幕就黑了,简直让人心碎!2. 串联型稳压电路的工作原理2.1 稳压元件的作用好,咱们来说说串联型稳压电路是怎么工作的。
首先,这里得有一个稳压元件,通常是二极管或者稳压器,这家伙就像是你家里的门卫,专门把关,确保电流不会乱窜。
电流从电源来,经过稳压元件,二极管就开始工作了,电流只有在特定的电压下才能通过,超过这个电压的部分,嘿,就得“乖乖”放弃,转头去别的地方了。
这样一来,电路输出的电压就能稳稳当当地维持在我们需要的范围内。
2.2 工作过程中的电流流动电流流动的过程,就像是一个流动的舞蹈。
在这个舞台上,稳压元件是主角,电源是乐队,电流则是舞者。
当电源给电路提供电压时,电流像是听到音乐后兴奋的舞者,跃跃欲试。
经过稳压元件的“审查”,只有符合标准的电压才能顺利通过,真是一个“严格的舞会”。
这样一来,电流就会保持在一个相对稳定的状态,让我们的设备正常工作。
3. 优缺点分析3.1 串联型稳压电路的优点说到优点,那可真不少。
首先,这种电路结构简单,制作成本也低,简直是“省心省钱”的典范。
其次,它能很好地应对小幅度的电压波动,尤其适合用在一些对电压要求不高的场合,比如手机充电器、玩具等小型电子产品。
你想想,哪儿有便宜又实用的电路呢,没几样!此外,串联型稳压电路体积小,重量轻,真的是家居生活中的“隐形战士”。
串联稳压电源电路工作原理
串联稳压电源电路工作原理:
①串联稳压电源是一种通过调整串联在输入输出之间的控制元件来实现稳定输出电压的直流电源装置;
②典型的串联稳压电路主要包括整流滤波调整三个部分其中调整部分是实现稳压功能的关键所在;
③输入交流电首先经过变压器降压至所需水平然后送入整流电路整流电路通常采用桥式整流方式将交流转变为脉动直流;
④经过整流后的电流含有大量纹波需要通过滤波电容进行平滑滤波电容越大输出电压越平稳但响应速度会下降;
⑤调整部分的核心元件为调整管如晶体管场效应管等它工作在线性放大区根据反馈信号控制自身导通程度;
⑥输出端连接基准电压源与误差放大器共同构成负反馈系统当输出电压波动时误差放大器会调整调整管基极电流;
⑦通过改变调整管集电极发射极之间导通程度即可调节流过负载的实际电流进而保持输出电压恒定;
⑧为了提高效率减少调整管发热现代设计中常采用复合调整电路如带电流限制保护功能的电路;
⑨在实际应用中还需考虑输入电压变化负载波动等因素对稳压性能的影响通过优化设计提高电路适应性;
⑩完整的串联稳压电源还需包含过载保护短路保护等功能确保在异常情况下不会损坏设备;
⑪随着技术进步出现了如开关电源等新型稳压方案它们在效率体积等方面更具优势;
⑫总结串联稳压电源以其简单可靠的特点在众多场合仍占有重要地位。
摘要电子技术在21世纪飞速发展,在我们身边几乎处处可以看到它们的身影,如家里的电视,冰箱等家用电器,办公用的电脑,手机等,可以肯定地说在当今的社会我们的生活离不开电子产品。
而每一个电子产品都离不开电源。
一个可靠稳定的直流电源是各系统和正常产品工作的基础。
作为一个电子专业的大学生,能够制作一个可调的直流电压源是一项基本功。
本文系统地介绍了串联型连续可调直流稳压正电源的设计。
本课设的目的是如何把220V 50HZ的交流市电通过降压电路把电源幅值降下来;通过全波整流电路把小幅值的交流电转变成单向脉动的直流电压;通过滤波电路把整流电路输出直流电压里的交流成分滤除,由稳压电路稳定输出电压,最后由取样电路使输出电压可调。
并且该电路具有电流过流保护功能和输出电流扩展功能。
经过设计、参数确定以及焊接电路板后,较为完美地完成了本次课设,最终的产品也达到了所有的要求。
关键字:整流、滤波、稳压、扩流、输出可调第一章设计内容及要求基本要求(1) 输出直流电压1.5~10V可调;要求输出的电压为连续可调,其范围为1.5到10V。
(2 输出电流Iom=300mA(有电流扩展功能);(3)稳压系数Sr<=0.05;(4) 具有过流保护功能。
提高要求1、要求对电路板合理布局,充分利用板子,元器件按照平行、垂直的规律摆放。
焊接美观,焊接连线要求连接直线和垂直连接。
2、要求做出的产品能够在实际中经久耐用。
第二章系统设计方案选择2.1 方案一采用集成稳压器搭建电路电路图如下:2.1.12.2方案二采用分立元件搭建电路电路图如下:2.2.1比较方案一和方案二,方案二充分用到了所学的理论知识,并且结合了运放,晶体管等知识。
可以更好的巩固理论,同时可以在实践中很好地锻炼自己的焊接,电路布局等能力,因而选择方案二作为本次课设的电路。
第三章系统组成及工作原理1.交流变压电路变压电路主要由变压器组成,变压器如下所示:3.1.1变压器的作用是把交流市电的幅值升高或减少。
----串联调整型稳压电源设计原理1,设计方案简介1.1 基本方案介绍本设计电路分为降压电路、整流电路、滤波电路和调压稳压电路四大部分,稳压电路部分又由基准电压源、输出电压采样电路、电压比较放大电路、过流保护电路和输出电压调整电路组成。
1.1.1降压电路本电路使用的降压电路是单相交流变压器,选用电压和功率依照后级电路的设计需求而定。
1.1.2整流电路整流电路的主要作用是把经过变压器降压后的交流电通过整流变成单个方向的直流电。
但是这种直流电的幅值变化很大。
它主要是通过二极管的截止和导通来实现的。
常见的整流电路主要有全波整流电路、桥式整流电路、倍压整流电路。
我们选取单相桥式整流电路实现设计中的整流功能。
1.1.3滤波电路采用电容滤波电路。
由于电容在电路中也有储能的作用,并联的电容器在电源供给的电压升高时,能把部分能量存储起来,而当电源电压降低时,就把能量释放出来,使负载电压比较平滑。
由于本电路后级是稳压电路,因此可以使用电容滤波电路进行简单滤波。
1.1.4稳压电路串联型线性稳压电路的本质是一个具有深度负反馈的电压反馈型功率放大器,一般由基准电压源、输出电压采样电路、电压比较放大电路、过流保护电路和输出电压调整电路组成。
1.2总体设计方案晶体管串联型直流稳压电源的典型电路方框图如图1.1所示。
它由整流滤波电路、串联型稳压电路、辅助电源和保护电路等部分组成。
图1.1直流稳压电源电路原理方框图2,设计条件及主要参数表使用分立元件设计串联型稳压电源,主要参数要求为:1,输出电压在6V—12V范围内可调;2,输出额定电流 =500mA;3,纹波电压S≤5mV;4,具有过载电流保护功能3,设计主要参数计算3.1主要质量指标参数稳压电源的技术指标分为两种:一种是特性指标,包括允许的输入电压、输出电压、输出电流及输出电压调节范围等;......实验五串联型晶体管稳压电路一、实验目的1、熟悉Multisim软件的使用方法。
2、掌握单项桥式整流、电容滤波电路的特性。
3、掌握串联型晶体管稳压电路指标测试方法二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管3DG6×2(9011×2)、DG12×1(9013×1)、晶体二极管IN4007×4、稳压管IN4735×1三、知识原理要点直流稳压电源原理框图如图4-1 所示。
四、实验原理图为串联型直流稳压电源。
它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。
当电网电压或负载变动引起输出电压Vo变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Vo的变化,从而维持输出电压基本不变。
五、实验内容与步骤1、整流滤波电路测试按图连接实验电路。
取可调工频电源电压为16V~,作为整流电路输入电压u2。
整流滤波电路1) 取RL=240Ω,不加滤波电容,测量直流输出电压UL 及纹波电压 L,并用示波器观察u2和uL波形,记入表5-1 。
U2=16V~2) 取RL=240Ω,C=470μf ,重复内容1)的要求,记入表5-1。
3) 取RL=120Ω,C=470μf ,重复内容1)的要求,记入表5-12. 测量输出电压可调范围更改电路如下所示10接入负载,并调节Rw1,使输出电压Uo =9V 。
若不满足要求,可适当调整R4、R5之值。
3. 测量各级静态工作点调节输出电压Uo =9V ,输出电流Io =100mA , 测量各级静态工作点,记入表5-2。
表5-2 U 2=14V U 0=9V I 0=100mA4. 测量稳压系数S取Io =100mA ,按表5-3改变整流电路输入电压U2(模拟电网电压波动),分别测出相应的稳压器输入电压Ui 及输出直流电压Uo ,记入下表。
表5-3六、1、 对所测结果进行全面分析,总结桥式整流、 电容滤波电路的特点。
桥式整流电路在未加滤波的情况下,输出电压为输入交流电压的正负两半波的直接相加,输出直流平均电压较低,且交流纹波很大。
经电容滤波以后,直流输出电压升高,交流纹波电压减小,且电容越大(或负载电流较小)则交流纹波越小。
2、计算稳压电路的稳压系数S 和输出电阻Ro ,并进行分析。
根据表5-3稳压系数S=0.05(相对于输入电压变化率)。
输出电阻Ro=2(Ω) 3、 分析讨论实验中出现的故障及其排除方法。
1本实验中仿真系统经常出错退出,可能是电路运算量太大造成的。
本人具体的做法是分部仿真:将整流滤波与稳压部分分开仿真,在稳压部分VCC (直流电源)来替代整流滤波的输出。
2 本实验中R8=30(Ω)太大,应改为10(Ω)较妥。
以保证正常工作时限流电路不影响稳压电路工作。
目 录 一、引言...............................................................1 二、设计目的............................................................2 三、设计任务和要求......................................................3 四、设计步骤............................................................4 五、总体设计思路........................................................5 六、实验设备及原器件 (6)七、测试要求 (7)八、设计报告要求 (8)九、注意事项 (9)十、此电路的误差分析 (10)十一、综合总结 (11)十二、参考文献资料 (12)一、引言直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。
变压器把市电交流电压变为所需要的低压交流电。
整流器把交流电变为直流电。
经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。
本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在6-13V可调。
关键词:直流;稳压;变压直流稳压电源的设计二、设计目的1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。
2.学会直流稳压电源的设计方法和性能指标测试方法。
3.培养实践技能,提高分析和解决实际问题的能力。
三、设计任务及要求1.设计并制作一个连续可调直流稳压电源,主要技术指标要求:① 输出电压可调:Uo=+6V~+13V② 最大输出电流:Iomax=1A③ 输出电压变化量:ΔUo≤15mV④ 稳压系数:SV≤0.0032.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。
3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。
4.批准后,进实验室进行组装、调试,并测试其主要性能参数。
四、设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。
(2)系统分析:根据系统功能,选择各模块所用电路形式。
(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。
(4)总电路图:连接各模块电路。
2.电路安装、调试(1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。
(2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。
(3)重点测试稳压电路的稳压系数。
(4)将各模块电路连起来,整机调试,并测量该系统的各项指标。
五、总体设计思路1.直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。
2.直流稳压电源原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图1。
图1直流稳压电源方框图其中:(1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。
(2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。
(4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。
整流电路常采用二极管单相全波整流电路,电路如图2所示。
在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。
正负半周内部都有电流流过的负载电阻RL,且方向是一致的。
电路的输出波形如图3所示。
在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即。
电路中的每只二极管承受的最大反向电压为 (U2是变压器副边电压有效值)。
在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。
选择电容滤波电路后,直流输出电压:Uo1=(1.1~1.2)U2,直流输出电流:(I2是变压器副边电流的有效值。
),稳压电路可选集成三端稳压器电路。
总体原理电路见图4。
3.设计方法简介(1)根据设计所要求的性能指标,选择集成三端稳压器。
因为要求输出电压可调,所以选择三端可调式集成稳压器。
可调式集成稳压器,常见主要有CW317、CW337。
317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为6V~13V,最大输出电流为1.5A。
稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。
其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。
电路系列的引脚功能相同,管脚图和典型电路如图5.图5典型电路输出电压表达式为:式中,1.25是集成稳压块输出端与调整端之间的固有参考电压,此电压加于给定电阻两端,将产生一个恒定电流通过输出电压调节电位器,电阻常取值,一般使用精密电位器,与其并联的电容器C可进一步减小输出电压的纹波。