(完整)(浙大第四版)概率论与数理统计知识点总结,推荐文档
- 格式:pdf
- 大小:330.40 KB
- 文档页数:29
概率论与数理统计知识点总结(详细)[整理]概率论与数理统计(Probability and Mathematics Statistics)是一门基础性学科,广泛应用于统计学、管理科学、数学、计算机科学、社会学、地理学等领域。
它建立在概率论、数理逻辑、微积分以及线性代数的基础上,把统计与数学有机地结合起来,以高效的数学建模对不确定的实际事件分析、推断、做出预测,从而达到指导管理决策的目的。
概率论是概率论与数理统计的重要组成部分,研究概率事件的拓扑结构,以及随机变量的分布规律和抽样特征,用于表示评价系统不确定性及极端情况的几率分析,并且发展出概率密度函数、累积分布函数等数学工具来描述不确定性的变化趋势。
数理统计包括描述性统计和推断性统计两个主要部分。
其中,描述性统计是利用统计指标来描述从待研究对象获取的样本实际数据;推断性统计是利用概率推断理论对样本数据进行分析,以此来得出可推断出总体相应参数和特性的结论。
它所依据的基本概念有抽样统计和统计推断,数理统计关键技术有抽样调查方案的设计、统计量的估计、差异和相关分析等。
数理统计的重要技术有抽样调查方案的设计,它将抽样技术结合统计思想,以达到把握系统性质的目的;统计量的估计,它是用以衡量总体特征的参数估计,它不仅仅只是给出数据量,而且可以推断出总体特征;差异分析,通过它可以看出变量之间的差异情况,从而得出不同水平所代表的总体特征;相关分析,它是一种估计变量之间的相关系数,主要的指标有多元线性回归分析、卡方分析等。
概率论与数理统计在社会中已经得到广泛的应用,主要表现在以下几个方面:在财务分析中,可以根据现实数学模型和概率论分析技术,构建合适的经济风险模型,实现优化的资源配置;在互联网流量分析中,可以根据用户行为分析来挖掘用户特征,指导电子商务推广;在决策分析中,可以利用决策树和数据挖掘技术,建立逻辑模型,形成系统性决策,从而指导业务发展;在信息系统测试中,可以根据质量参数估计系统各项技术指标,为用户提供高质量的信息服务。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
NO.1 概率论基本概念一、随机试验1.确定性现象:必然发生或必然不发生的现象。
2.随机现象:在一定条件下我们事先无法准确预知其结果的现象,称为随机现象.3.随机现象的特点:人们通过长期实践并深入研究之后,发现这类现象在大量重复试验或观察下,它的结果却呈现出某种统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.4.随机试验:为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E .随机试验具有下列特点:(1)可重复性: 试验可以在相同的条件下重复进行;(2)可观察性: 试验结果可观察,所有可能的结果是明确的;(3)随机性(不确定性): 每次试验出现的结果事先不能准确预知. ,但可以肯定会出现所有可能结果中的一个.二、样本空间、随机事件1.样本点:随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ω.2.样本空间:全体样本点组成的集合称为这个随机试验的样本空间,记为∧.(或S ).即∧={ω1 ,ω2 ,!,ωn ,!}3.随机事件:我们称试验E 的样本空间∧的子集为E 的随机事件,简称事件,在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性.一般用A, B, C,,…等大写字母表示事件.设A 为一个事件,当且仅当试验中出现的样本点ω∈A 时,称事件 A 在该次试验中发生.注: 要判断一个事件是否在一次试验中发生,只有当该次试验有了结果以后才能知道.(1)基本事件:仅含一个样本点的随机事件称为基本事件.(2)必然事件:样本空间∧本身也是∧的子集,它包含∧的所有样本点,在每次试验中∧必然发生,称为必然事件.即必然发生的事件.(3)不可能事件:.空集Φ也是∧的子集,它不包含任何样本点,在每次试验中都不可能发生,称为不可能事件.不可能发生的事件是不包含任何样本点的.三、事件间的关系与运算记号概率论集合论∧ 样本空间,必然事件全集∅ 不可能事件空集ω 基本事件元素A 事件子集A A的对立事件A的余集A ⊂B 事件A发生导致B发生A是B的子集A =B 事件A与事件B相等A与B的相等A ! B事件A与事件B至少有一个发生A与B的并集AB 事件A与事件B同时发生A与B的交集A -B 事件A发生而事件B不发生A与B的差集AB =∅ 事件A和事件B互不相容A与B没有相同的元素1.子事件、包含关系A ⊂B事件A是事件B的子事件含义:事件A发生必然导致事件B发生, ∅⊂A ⊂∧2.相等事件A =B :若事件A发生必然导致事件B 发生,且若事件B 发生必然导致事件A 发生,即B ⊃A且A ⊃B ⇔A=B注:事件 A 与事件 B 含有相同的样本点3.和事件或并事件A !B = { x x ∈A或x∈B },事件A ! B是事件A和事件B的和事件事件A ! B 发生⇔ 事件A 发生或事件B 发生⇔ 事件A 与B 至少有一个发生n称" A k 为n 个事件A 1,A 2,!,A n 的和事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的和事件k =14. 积事件或交事件A !B = {x x ∈ A 且x ∈ B }, 事件A ! B 是事件A 与事件B 的积事件事件A ! B 发生⇔ 事件A 与事件B 同时发生积事件A ! B 可简记为ABn称" A k 为n 个事件A 1,A 2,!,A n 的积事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的积事件.k =15. 事件的差A -B = {x x ∈ A 且x ∉ B }, 事件A - B 称为事件A 与事件B 的差事件事件A - B 发生⇔ 事件A 发生而事件B 不发生.注: A - B = A - AB6. 互斥或互不相容A !B = Φ 则称事件A 与事件B 是互不相容的,或互斥的.A !B = Φ ⇔事件 A 和随机 B 不能同时发生.注: 任一个随机试验E 的基本事件都是两两互不相容的.推广:设事件 A 1,A 2,!,A n 满足 A i A jA 1,A 2,!,A n 是两两互不相容的. 7. 对立事件或互逆事件= Φ (i , j = 1, 2,!, n , i ≠ j ) 称事件若事件 A 和事件 B 中有且仅有一个发生,即 A ! B = ∧, AB = Φ则事件 A 和事件 B 为互逆事件或对立事件。
第1章随机事件及其概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数)!(!nmmP nm-=从m个人中挑出n个人进行组合的可能数)!(!!nmnmC nm-=(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
ω基本事件的全体,称为试验的样本空间,用表示。
Ω一个事件就是由中的部分点(基本事件)组成的集合。
通常用Ωω大写字母A,B,C,…表示事件,它们是的子集。
Ω为必然事件,Ø为不可能事件。
Ω不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有,,则称事件A与事件B等价,或称ABA⊂AB⊃等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事BA件。
A、B同时发生:A B,或者AB。
A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。
基本事件是互不相容的。
Ω-A称为事件A的逆事件,或称A的对立事件,记为A。
它表示A不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11iiii AA,BABA=BABA=(7)概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件1A,2A,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(iiii APAP常称为可列(完全)可加性。
则称P(A)为事件A的概率。
(8)古典概型1° ,{}nωωω21,=Ω2° 。
nPPPn1)()()(21===ωωω设任一事件A,它是由组成的,则有mωωω21,P(A)= ={})()()(21mωωω)()()(21mPPPωωω+++nm=基本事件总数所包含的基本事件数A=(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。
对任一事件A,。
其中L为几何度量(长度、面积、体积)。
)()()(Ω=LALAP(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B A时,P(A-B)=P(A)-P(B)⊂当A=Ω时,P()=1- P(B)B(12)条件概率定义设A、B是两个事件,且P(A)>0,则称为事件A发生)()(APABP条件下,事件B 发生的条件概率,记为。
=)/(A B P )()(A P AB P 条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1P(/A)=1-P(B/A)⇒B (13)乘法公式乘法公式:)/()()(A B P A P AB P =更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。
(14)独立性①两个事件的独立性设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的。
若事件A 、B 相互独立,且0)(>A P ,则有)()()()()()()|(B P A P B P A P A P AB P A B P ===若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。
必然事件Ω和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性设ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A 、B 、C 相互独立。
对于n 个事件类似。
(15)全概公式设事件n B B B ,,,21 满足1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>,2° ni iB A 1=⊂, (分类讨论的则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。
(16)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1°1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2° ni iB A 1=⊂,0)(>A P ,(已经知道结果 求原因则,i=1,2,…n 。
∑==nj j ji i i B A P BP B A P B P A B P 1)/()()/()()/(此公式即为贝叶斯公式。
,(1=i ,2,…,n ),通常叫先验概率。
)(i B P ,(1=i ,2,…,n ),通常称为后验概率。
贝叶斯公式)/(A B P i反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型我们作了n次试验,且满足◆每次试验只有两种可能结果,A发生或A不发生;◆n次试验是重复进行的,即A发生的概率每次均一样;◆每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。
这种试验称为伯努利概型,或称为n重伯努利试验。
用p表示每次试验A发生的概率,则A发生的概率为qp=-1,用)(kP n表示n重伯努利试验中A出现)0(nkk≤≤次的概率,knkknn qpkP C-=)(,nk,,2,1,0=。
第二章随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量X的可能取值为X k(k=1,2,…)且取各个值的概率,即事件(X=X k)的概率为P(X=x k)=p k,k=1,2,…,则称上式为离散型随机变量X的概率分布或分布律。
有时也用分布列的形式给出:,,,,,,,,|)(2121kkk pppxxxxXPX=。
显然分布律应满足下列条件:(1)0≥kp,,2,1=k,(2)∑∞==11kkp。
(2)连续型随机变量的分布密度设)(xF是随机变量X的分布函数,若存在非负函数)(xf,对任意实数x,有⎰∞-=x dxxfxF)()(,则称X为连续型随机变量。
)(xf称为X的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:1° 0)(≥xf。
2°⎰+∞∞-=1)(dxxf。
(3)离散与连续型随机变量的关系dxxfdxxXxPxXP)()()(≈+≤<≈=积分元在连续型随机变量理论中所起的作用与dxxf)(kk pxXP==)(在离散型随机变量理论中所起的作用相类似。
(4)分布函数设为随机变量,是任意实数,则函数X x )()(x X P x F ≤=称为随机变量X 的分布函数,本质上是一个累积函数。
可以得到X 落入区间的概率。
)()()(a F b F b X a P -=≤<],(b a 分布函数表示随机变量落入区间(– ∞,x]内的概率。
)(x F 分布函数具有如下性质:1° ;,1)(0≤≤x F +∞<<∞-x 2°是单调不减的函数,即时,有)(x F 21x x <;≤)(1x F )(2x F 3° , ;0)(lim )(==-∞-∞→x F F x 1)(lim )(==+∞+∞→x F F x 4° ,即是右连续的;)()0(x F x F =+)(x F 5° 。
)0()()(--==x F x F x X P 对于离散型随机变量,;∑≤=xx kk px F )(对于连续型随机变量, 。
⎰∞-=xdx x f x F )()(0-1分布P(X=1)=p, P(X=0)=q(5)八大分布二项分布在重贝努里试验中,设事件发生的概率为。
事件n A p 发生的次数是随机变量,设为,则可能取值为A X X 。
n ,,2,1,0 ,其中k n k kn n q p C k P k X P -===)()(,n k p p q ,,2,1,0,10,1 =<<-=则称随机变量服从参数为,的二项分布。
记为X n p 。
),(~p n B X 当时,,,这就是(0-1=n k k q p k X P -==1)(1.0=k 1)分布,所以(0-1)分布是二项分布的特例。
泊松分布设随机变量的分布律为X ,,,λλ-==e k k X P k!)(0>λ 2,1,0=k 则称随机变量服从参数为的泊松分布,记为X λ或者P()。
)(~λπX λ泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布),min(,2,1,0,)(n M l l k C C C k X P nNkn MN k M ==∙==-- 随机变量X 服从参数为n,N,M 的超几何分布,记为H(n,N,M)。
几何分布,其中p≥0,q=1-p 。
,3,2,1,)(1===-k p q k X P k 随机变量X 服从参数为p 的几何分布,记为G(p)。