激光焊接的特性
- 格式:pdf
- 大小:1.54 MB
- 文档页数:8
3系铝合⾦的激光焊接特性详解作者 / 刘东宇、王锦军上海飞博激光科技有限公司随着汽车⾏业的不断壮⼤,纯电动汽车和燃料电池汽车将共同主导中国新能源汽车市场的未来发展。
电动车轻量化和电池的⼤量使⽤,必然涉及到越来越多的铝合⾦焊接⼯艺。
铝合⾦具有良好的物理、化学和机械性能,是⼯业⽣产中⼀种重要的轻⾦属材料。
⽬前铝合⾦材料的焊接仍然主要以惰性⽓体钨极保护焊和熔化极惰性⽓体保护焊两种传统焊接⼯艺进⾏焊接。
这两种焊接⼯艺焊接速度慢、⽣产效率低,⽽且焊接热输⼊⼤,导致铝合⾦焊接变形较⼤;同时焊接接头处晶粒粗⼤,导致产品质量较差。
⽽激光作为⼀种⾼能量密度的热源,具有较快的焊接速度和较⼩的热输⼊,因此焊接变形⼩,获得的产品质量也较为优异。
下⾯以激光焊接⼯艺来进⾏铝合⾦材料的焊接实验。
实验条件与⽅法实验设备实验采⽤⾼光束质量的飞博激光YDFL-2000-CW-SM(单模,30 µm芯径,M2≈1.6)和YDFL-2000-CW-MM(多模,50 µm芯径,M2≈7)⾼功率连续光纤激光器(⼯作模式为CW,中⼼波长为1080nm),嘉强BW240-4KW光纤激光⾼功率以及具有同轴 CCD 显⽰和照明功能的透射聚焦焊接头(准直聚焦配⽐为100:200),史陶⽐尔TX90六轴机器⼈,JZX91熔深显微镜等。
综合运⽤以上实验设备和⼯具,本⽂将具体对⽐同功率单模和多模两款激光器的焊接效果。
实验材料3系铝合⾦具有优秀的防锈特性,成形性、熔接性、耐蚀性同样良好,其中3003铝合⾦通常⽤于动⼒电池外壳,3A21铝合⾦⽤于微波组件外壳。
本次实验采⽤3003铝合⾦材料进⾏激光焊接测试。
焊接接头采⽤对接的⽅式,将⼯件切割成100 mm×100 mm×2 mm板材进⾏对焊。
3003 铝合⾦标准化学成分表元素Si Mg Fe Cu Mn Zn Ti元素含量0.60.050.70.2 1.0-1.60.10.15实验⽅法在焊接前⽤丙酮溶液超声波清洗器对试样进⾏25分钟的清洗,以清除试样表⾯的油污等杂质。
激光焊接技术激光焊接技术是一种新型的高精度、高效率的焊接技术,可以在材料表面形成高能量密度焊缝,并将材料熔化焊接在一起。
激光焊接技术的特点是焊接速度快、效率高,焊缝形状优美,自动化程度高,质量可靠,广泛应用于航空、航天、军工、汽车、电子等领域。
一、激光焊接技术原理激光焊接技术是利用激光器将高能量密度的激光束集中在焊缝上,使材料熔化、熔池形成、冷却凝固而实现焊接的一种先进的现代化焊接方法。
激光束是由半导体激光器或固体激光器通过电子控制系统控制光束形状和作用时间发射出来的。
激光焊接的过程主要包括:激光束的聚焦、能量传递、熔化和混合、物质传递、凝固、焊缝形成。
二、激光焊接技术的发展激光焊接技术的发展主要经历了三个阶段:第一阶段:激光器材料的发展阶段,20世纪60年代,激光器材料逐渐成熟,发展起了高质量的氦氖和二氧化碳激光器。
第二阶段:焊接技术发展阶段,20世纪70年代,随着激光器的发展和材料科学的进步,激光焊接技术出现并得到了发展。
激光焊接技术的应用范围不断扩展,新型激光器的发展也为激光焊接技术的发展提供了更加先进的技术支持。
第三阶段:新技术的发展阶段, 20世纪80年代,多光子激光焊接技术、激光力学碎片技术、光纤激光传输技术等激光技术新技术的产生,为激光焊接技术的提升和发展提供了新的方向和思路。
三、激光焊接技术的应用激光焊接技术广泛应用于各种材料的焊接中,如金属材料、塑料材料、陶瓷材料等。
特别是对于高难度、高要求的应用领域,如修复设备、航空、航天、军工、汽车、电子、仪器、5G通信等领域的应用,激光焊接技术具有独特的优势。
四、激光焊接技术的优点1、激光焊接技术的焊缝成型放心,无需表面处理,可以达到密封、抗剪强度高等特点。
2、激光焊接技术的深度可以向内渗透,从而保证长时间有效的连接,无需二次处理。
3、激光焊接技术的低热影响区,焊接过程中的热量非常集中,对焊接件的影响很小,可以减轻变形。
4、激光焊接技术的可靠性高,通过电脑控制,可以达到一定的自动化程度。
激光焊的特点及其应用一、激光焊的特点1、优点激光焊是以高能量密度激光束作为热源的熔焊方法。
采用激光焊,不仅生产率高于彳专统的焊接方法,而且焊接质量也得到显著提高。
与一般焊接方法相比,激光焊具有以下特点。
1)聚焦激光束具有很高的功率密度(105~107W∕cm2或更高),加热速度快,具有高深宽比(在穿孔焊接的情况下,焊缝深度与宽度之比可以达到10:1),焊接速度快特点,可实现深熔焊和高速焊。
激光焊接可以实现电脑或者数位控制,焊接速度相比传统焊接要快3-5倍,可明显提高焊接效率,提升整体制造效率。
2)焊缝平整美观,焊后无需处理或只需简单处理工序,同时焊缝质量高,无气孔,焊后组织可细化,焊缝强度、韧性相当于甚至超过母材金属。
4)激光加热范围小(<1mm),在同等功率和焊件厚度条件下,可将热量输入减少到最小所需量,热影响区变化范围小,热传导引起的变形也最低。
5)激光能发射、透射,能在空间传播相当距离而衰减很小,通过光导纤维、棱镜等光学方法弯曲传输、偏转、聚焦,并精确控制,聚焦光点小,可高精度定位,易实现自动化,特别适合于微型零件、难以接近的部位或远距离的焊接。
6)激光在大气中损耗不大,可以穿过玻璃等透明物体,适合于在玻璃制成的密封容器里焊接被合金等剧毒材料,同时激光不受电磁场影响,不存在射线防护,也不需要真空保护。
7)可焊接某些异种材料和一般焊接方法难以焊接的材料,如高熔点金属、非金属材料(如陶瓷、有机玻璃等)、对热输入敏感的材料都可激光焊,且焊后无需热处理。
8)激光焊接技术属于非接触式焊接,焊接方式不同于传统焊接,无需使用电极,对机具的损耗和形变影响非常少,能够将热入量很大限度的降低,降低因热传导产生的不利影响发生率。
2.局限性1)由于光束质量和激光功率的限制,激光束的穿透深度有限,高功率、高光束质量的激光器加工成本高,激光器特别是高功率连续激光器,价格昂贵,目前工业用激光器的最大功率为20kW,可焊接的最大厚度约20mm,比电子束焊小得多。
一、激光焊接的主要特性激光焊接是激光材料加工技术应用的重要方面之一。
20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。
由于其独特的优点,已成功应用于微、小型零件的精密焊接中。
高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。
获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。
与其它焊接技术相比,激光焊接的主要优点是:1、速度快、深度大、变形小。
2、能在室温或特殊条件下进行焊接,焊接设备装置简单。
例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
5、可进行微型焊接。
激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。
6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。
尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。
7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。
但是,激光焊接也存在着一定的局限性:1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。
这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。
若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。
2、激光器及其相关系统的成本较高,一次性投资较大。
二、激光焊接热传导激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。
在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。
1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。
下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。
2. 激光深熔焊接的主要工艺参数1)激光功率。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。
只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。
激光焊接原理激光焊接是一种高效、精确的焊接方法,它利用激光束的能量将金属材料加热至熔化点以上,然后通过熔融池冷却凝固,从而实现金属材料的连接。
激光焊接具有独特的原理和优势,被广泛应用于各个领域。
激光焊接的原理可以简单概括为:通过激光器产生的高能量激光束,经过透镜聚焦后,集中到焊接区域,使金属材料局部加热,产生高温和高能量密度,使焊接接头区域达到熔化点以上的温度,然后快速冷却凝固。
在焊接过程中,激光束的能量被吸收并转化为热能,使金属材料表面迅速升温,形成熔融池。
通过控制激光束的功率、焦点位置和扫描速度等参数,可以实现对焊接过程的精确控制,从而达到理想的焊接效果。
激光焊接相比传统的焊接方法有许多优势。
首先,激光焊接的热影响区域小,热变形小,能够实现高精度的焊接。
其次,激光焊接速度快,生产效率高,适用于大批量生产。
此外,激光焊接可以焊接各种金属材料,包括高反射性和高导热性的材料,如铝合金和铜合金。
激光焊接还可以实现非接触焊接,减少了金属材料的污染和损坏。
激光焊接的应用十分广泛。
在汽车制造业中,激光焊接被用于焊接车身和发动机等部件,达到高强度和高密封性的要求。
在电子行业中,激光焊接被用于焊接微小的电子元件,实现高精度和高可靠性的连接。
在航空航天领域,激光焊接可用于焊接航空发动机的涡轮叶片和燃烧室等部件,提高飞机的性能和安全性。
此外,激光焊接还被广泛应用于医疗器械、光电子器件、通信设备等领域。
然而,激光焊接也存在一些挑战和限制。
首先,激光焊接设备的成本较高,需要专业的操作技术和维护人员。
其次,激光焊接对工件的表面质量和几何形状要求较高,不适用于一些复杂形状的焊接。
此外,激光焊接过程中产生的高能量激光束会产生辐射和烟尘,对操作人员的安全和健康构成一定威胁。
因此,在激光焊接过程中需要采取相应的安全措施,如戴防护眼镜和呼吸器等。
激光焊接是一种高效、精确的焊接方法,具有许多优势和广泛的应用前景。
随着激光技术的不断发展和创新,激光焊接将在更多领域发挥重要作用,为工业制造和科学研究带来更多的机遇和挑战。
激光焊接光路设计第一章:激光焊接技术概述1.1 激光焊接的基本原理激光焊接是利用高能激光束对工件进行熔化和连接的技术。
它利用激光的高能特性,通过选择性吸收并转换为热能,实现材料熔化和连接。
1.2 激光焊接的特点与优势激光焊接具有热输入小、热影响区域小、焊缝质量高等特点。
与传统焊接方法相比,激光焊接具有高效、灵活、精确的优势。
1.3 激光焊接光路设计的重要性光路设计是激光焊接技术中至关重要的一环。
合理的光路设计可以提高激光能量的利用率,确保焊接质量和效率。
第二章:激光光源选择与特性分析2.1 激光光源的种类常见的激光光源包括氩离子激光器、半导体激光器、纤维激光器等。
不同类型的激光光源具有不同的特点和适用范围。
2.2 激光光源的参数与特性激光光源的参数对光路设计和焊接效果具有重要影响。
光源功率、波长、激光束质量等参数需要根据具体应用进行选择。
2.3 选择合适的激光光源根据焊接工件的材料、厚度和加工要求等因素,选取适当的激光光源是光路设计的重要环节。
第三章:光学系统设计原理3.1 光学元件的分类与选择光学元件包括透镜、反射镜、光束分束器等。
根据焊接任务要求,选择合适的光学元件进行光线调制和聚焦。
3.2 激光光路的光学元件排列原则光学元件的排列顺序对激光光路的稳定性和焦点调制有重要影响。
按照一定原则进行光学元件的排列,可以优化焊接质量。
3.3 光学系统的光线追迹分析通过光学系统的光线追迹分析,可以了解光线在光学元件中的传输规律,为光路设计提供理论依据。
第四章:光路组件设计与优化4.1 激光传输系统的概念与结构激光传输系统包括激光光源、光纤、光学元件等组件。
合理设计传输系统的结构对提高焊接效率和质量至关重要。
4.2 激光传输系统中的光学元件设计光学元件的设计需要考虑能量损失、光路稳定性以及对焊接效果的影响。
通过光学元件的优化设计,可以提高焊接效率和质量。
4.3 光学元件的优化方法与实例分析根据具体需求,采用光学优化方法进行组件设计和排列,可以提高光学能量传输效率和焊接质量。