生物制氢过程的运用、前景和发展方向ppt生物制氢过程的
- 格式:pptx
- 大小:246.89 KB
- 文档页数:25
生物制氢技术的发展及应用前景摘要:氢气作为环境友好的洁净能源和高能燃料,在国民经济的各个方面有着重要的应用,如何经济、高效制氢已经成为有待解决的重大问题。
与传统制氢技术相比,生物制氢技术以其低成本、可处理有机废弃物等优点受到了人们的重视。
本文对生物制氢技术及其发展历程进行了介绍,对生物制氢技术的应用前景进行了展望。
关键词:生物制氢技术发展应用前景随着社会的进步与发展,人们对能源的需求也日益提高。
目前我国的能源消费结构还是以煤、石油等化石能源为主,化石能源的短缺和大量燃烧所带来的环境污染已经成为面临的两大难题,开发新型清洁、高效、可再生的绿色能源势在必行。
氢气因其高热值、清洁、高效、可再生等优点,具有十分广阔的开发前景。
目前,氢气的制取有高温分解天然气、电解水、太阳能制氢、水煤气转化、甲烷裂解等方法,但是大都成本过高或者可操作性过低。
随着氢气用途的日益广泛,如何经济、高效制氢已经成为有待解决的重大问题。
一、生物制氢技术的概述1.生物制氢技术简介生物制氢是利用某些微生物的代谢过程,以工农业废水、废渣等为原材料,在常温常压的条件下以有机物为基质产生氢气的方法,把废弃物的处理与能源回收相结合,生产过程清洁、节能,不消耗矿物资源。
随着20世纪70年代石油危机,各国政府和科学界开始寻找替代能源,生物制氢技术受到了广泛的关注,并以此开展了研究,现代生物技术的应用,极大的促进了生物制氢技术的发展。
现有的研究表明,氢气与某些厌氧微生物的代谢过程密切相关。
例如,氢代谢在调节厌氧发酵的碳及电子流动中起着重要的作用,氢代谢伴随着各种有机物的分解及合成,为厌氧微生物的正常生长提供所必须的能量。
根据微生物的能量利用形式,可以将产氢微生物分为光能产氢微生物和厌氧发酵微生物,其中光能产氢微生物可进一步分为光能自养微生物和光能异养微生物。
光能自养微生物,例如蓝细菌和绿藻,在光照、厌氧的条件下通过分解水从而产生氢气;光能异养微生物,例如光合细菌,在光照、厌氧的条件下分解有机物产生氢气;厌氧发酵微生物,例如厌氧细菌,在黑暗、厌氧条件下分解有机物产生氢气。
生物质制氢技术的发展历史、现状及其前景作者:祁晓东摘要:氢能以其清洁, 来源及用途广泛等优点成为最有希望的替代能源之一, 用可再生能源制氢是氢能发展的必然趋势。
由于生物质制氢具有一系列独特的优点, 它已成为发展氢经济颇具前景的研究领域之一。
生物质制氢技术可以分为两类, 一类是以生物质为原料利用热物理化学方法制取氢气, 如生物质气化制氢, 超临界转化制氢, 高温分解制氢等热化学法制氢, 以及基于生物质的甲烷、甲醇、乙醇的化学重整转化制氢等; 另一类是利用生物转化途径转换制氢, 包括直接生物光解, 间接生物光解, 光发酵, 光合异养细菌水气转移反应合成氢气, 暗发酵和微生物燃料电池等技术。
本文综述了目前主要的生物质制氢技术的特点和发展概况,介绍了国内外发展生物制氢技术的现状,并做出了21世纪发展的展望。
关键词:生物质制氢历史现状前景1、绪论氢气具有热值高( 每千克氢143MJ) 、污染物零排放的特点, 是未来大规模利用的能源形式之一。
氢能不是一次能源( 燃料) , 自然界中不存在纯氢, 只能通过其他化学物质中转化、分解、分离得到,但该过程需要耗费大量的能源。
制氢技术有很多种, 其中生物质制氢技术显得有吸引力, 它不仅可提供氢燃料, 改善燃料利用结构, 实现大气污染状况的根本好转; 且能有效利用生物质这种丰富的、经济的可再生资源, 真正实现CO2 “零排放”。
1.1、生物质制氢的概念生物质制氢,生物质通过气化和微生物催化脱氢方法制氢。
在生理代谢过程中产生分子氢过程的统称。
生物质制氢是当前最有发展前景的清洁的生物质能转换技术之一,且由于生物质是廉价的可再生制氢原料,每千克生物质可生产0.672m3的氢气,占生物质总能量的40%以上,已成为世界各国可再生能源科学技术领域的研究发展开发热点之一。
1.2、几种制氢技术的特点比较不同的国家或地区的制氢原料存在着很大的区别, 这决定了制氢工艺的不同。
制氢技术主要有以下几种方式。