2020版高考数学(天津专用)大一轮精准复习精练:2.8 函数模型及函数的综合应用 含解析
- 格式:docx
- 大小:172.93 KB
- 文档页数:7
天津市2020年〖人教版〗高三数学复习试卷函数的图象创作人:百里公地 创作日期:202X.04.01 审核人: 北堂址重创作单位: 博恒中英学校) (的图象3x 2=)x (f 函数.1 A .关于y 轴对称B .关于x 轴对称 C .关于直线y =x 对称D .关于原点对称)(的图象大致是⎩⎪⎨⎪⎧x2,x<0,2x -1,x≥0=y 函数.2 12=y 为了得到函数)北京海淀二模·(.3)(的图象上所有的点的x 2g lo =y 可将函数,的图象)1-x (2log 个单位长度1移再向右平,横坐标不变,12纵坐标缩短到原来的.A 个单位长度1移再向左平,横坐标不变,12纵坐标缩短到原来的.B C .横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度 D .横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度4.(·陕西高考)设函数f (x )(x∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图象可能是( ))(的大致图象为1|x +1|lg =y 函数)济南模拟·(.5 ⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b>1.=b ⊗a :”⊗“定义运算,b 和a 对实数)天津高考·(.6∈x,)2x -x (⊗)2-2x (=)x (f 设函数R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )⎝ ⎛⎭⎪⎫-1,32∪(]-∞,-2A. ⎝⎛⎭⎪⎫-1,-34∪(]-∞,-2B. ⎝ ⎛⎭⎪⎫14,+∞∪⎝ ⎛⎭⎪⎫-1,14C. ⎣⎢⎡⎭⎪⎫14,+∞∪⎝ ⎛⎭⎪⎫-1,-34D.2log=)x (g 则函数,的图象如图所示)x (f 已知函数.7f (x )的定义域是________..________为称中心图象的对x +1x=)x (f 函数.8 9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________. 错误!=)x (f 已知函数.10 (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.的图象有两个)1≠a 且0>a (1|-x a |=y 与函数a 2=y 若直线.11公共点,求a 的取值范围..对称)1,0(A 的图象关于点2+1x+x =)x (h 的图象与函数)x (f 已知函数.12 (1)求函数f (x )的解析式;.值范围的取a 求实数,6于上的值不小]2,0(在区间)x (g ,ax+)x (f =)x (g 若)2( 1.(·威海质检)函数y =f (x )(x∈R )的图象如图所示,下列说法正确的是( )①函数y =f (x )满足f (-x )=-f (x ); ②函数y =f (x )满足f (x +2)=f (-x );③函数y =f (x )满足f (-x )=f (x ); ④函数y =f (x )满足f (x +2)=f (x ).A .①③B .②④C .①②D .③④2.若函数f (x )的图象经过变换T 后所得图象对应函数的值域与函数f (x )的值域相同,则称变换T 是函数f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f (x )的同值变换的是( )轴对称y 的图象关于)x (f 将函数T 变换,2)1-x (=)x (f .A 轴对称x 的图象关于)x (f 将函数T 变换,1-1-x 2=)x (f .B C .f (x )=2x +3,变换T 将函数f (x )的图象关于点(-1,1)对称对称)0,1-(的图象关于点)x (f 将函数T 变换,⎝⎛⎭⎪⎫x +π3sin =)x (f .D 3.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.[答 题 栏]A 级1._________2._________3._________4._________5.__________6._________B 级1.______2.______7.__________8.__________9.__________答 案A 级1.D2.B3.A4.B5.选D 由题知该函数的图象是由函数y =-lg|x |的图象左移一个单位得到的,故其图象为选项D 中的图象.6.选B 由题意可知f (x )= 错误!⎩⎪⎨⎪⎧x2-2,-1≤x≤32,x -x2,x<-1或x>32=,34-<c 1<-或2-≤c ,有两个交点时c =y 与)x (f =y 由图象可知,作出图象 即函数y =f (x )-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪.⎝ ⎛⎭⎪⎫-1,-34有意义,)x (f 2log=)x (g 时,函数0>)x (f 当解析:.7 由函数f (x )的图象知满足f (x )>0的x ∈(2,8].答案:(2,8]的图)x (f 个单位,即得函数1移的图象向上平1x=y ,把函数1x +1=x +1x =)x (f 解析:.8.)1,0(图象的对称中心为)x (f ,可得平移后的)0,0(的对称中心为1x=y 由.象 答案:(0,1)9.解析:当-1≤x ≤0时,设解析式为y =kx +b ,⎩⎪⎨⎪⎧k =1,b =1.得⎩⎪⎨⎪⎧-k +b =0,b =1,则 ∴y =x +1.,1-2)2-x (a =y 时,设解析式为0>x 当 ∵图象过点(4,0),.14=a ,得1-2)2-4(a =0∴ 错误!=)x (f 答案: 10.解:(1)函数f (x )的图象如图所示.(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5]. ,1-=)2(f =min )x (f 时,2=x 由图象知当)3( 3.=)0(f =max )x (f 时,0=x 当 所示,1图的图象如|1-x a |=y 时,1<a <0当解:.11 .12<a <0即,1<a 2<0得由已知 所示,2图的图象如|1-x a |=y 时,1>a 当 由已知可得0<2a <1,.∅∈a ,故1>a ,但12<a <0即 .⎝ ⎛⎭⎪⎫0,12的取值范围为a 综上可知, 12.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ,2+1-x+x =-y -2∴ ,1x +x =y ∴ .1x+x =)x (f 即 ,a +1x +x =)x (g 由题意)2( .]2,0(∈x ,6≥a +1x+x =)x (g 且 ∵x ∈(0,2], ∴a +1≥x (6-x ), 1.-x 6+2x -≥a 即 ,]2,0(∈x ,1-x 6+2x =-)x (q 令 ,8+2)3-x (=-1-x 6+2x =-)x (q ,7=)2(q =max )x (q 时,]2,0(∈x ∴故a 的取值范围为[7,+∞).B 级1.选C 由图象可知,函数f (x )为奇函数且关于直线x =1对称,所以f (1+x )=f (1-x ),所以f [1+(x +1)]=f [1-(x +1)],即f (x +2)=f (-x ).故①②正确.2.选x (=2)1-x -(=)x (g 轴对称的图象对应的函数解析式为y 的图象关于2)1-x (=)x (f 与,A 于对B 与,)∞,+1-(的值域为1-1-x 2=)x (f 函数,B 于对;)∞,+0[易知两者的值域都为,2)1+)1,∞-(其值域为,1+1-x 2=-)x (g 轴对称的图象对应的函数解析式为x 的图象关于)x (f 函数;对于C ,与f (x )=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g (x )=2(-2⎝⎛⎭⎪⎫x +π3sin=)x (f 与,D 于对;易知值域相同,3+x 2=)x (g 即,3+)x --[其值域为,⎝ ⎛⎭⎪⎫x -π3+2sin =)x (g 对称的图象对应的函数解析式为)0,1-(的图象关于点1,1],易知两函数的值域相同.关于直线P ,点)0x (f =0y 图象上任一点,则)x (f =y 是函数)0y ,0x (P 证明:设)1(解:.3,所0y =)0x (f =))0x -2(-2(f =))0x -2(+2(f =)0x -4(f 因为.)0y ,0x -4(′P 的对称点为2=x 以P ′也在y =f (x )的图象上,所以函数y =f (x )的图象关于直线x =2对称.(2)因为当x ∈[-2,0]时,-x ∈[0,2],所以f (-x )=-2x -1. 又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0].当x ∈[-4,-2]时,4+x ∈[0,2], 所以f (4+x )=2(4+x )-1=2x +7.而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].⎩⎪⎨⎪⎧2x +7,x∈[-4,-2],-2x -1,x∈[-2,0].=)x (f 所以创作人:百里公地创作日期:202X.04.01 审核人: 北堂址重创作单位: 博恒中英学校。
天津市2020年〖人教版〗高三数学复习试卷高考模拟题复习试卷习题资料高考数学试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(5分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(﹣∞,5]B.[2,+∞)C.(2,5)D.[2,5]3.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.72cm3B.90cm3C.108cm3D.138cm34.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位5.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2B.﹣4C.﹣6D.﹣86.(5分)设m、n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α7.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>98.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A. B. C. D.9.(5分)设θ为两个非零向量,的夹角,已知对任意实数t,|+t|的最小值为1.()A.若θ确定,则||唯一确定B.若θ确定,则||唯一确定C.若||确定,则θ唯一确定D.若||确定,则θ唯一确定10.(5分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练,已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP与平面ABC所成的角).若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是()A. B. C. D.二、填空题(本大题共7小题,每小题4分,满分28分)11.(4分)已知i是虚数单位,计算=.12.(4分)若实数x,y满足,则x+y的取值范围是.13.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.14.(4分)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是.15.(4分)设函数f(x)=,若f(f(a))=2,则a=.16.(4分)已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是.17.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.三、解答题(本大题共5小题,满分72分。
天津市2020年〖人教版〗高三数学复习试卷高考模拟题复习试卷习题资料高考数学试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}2.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x0∈R,x02+1≤03.(5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P34.(5分)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()A.f(x)=B.f(x)=x2+1C.f(x)=x3D.f(x)=2﹣x5.(5分)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A. B. C. D.6.(5分)若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21B.19C.9D.﹣117.(5分)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6]8.(5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.49.(5分)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x110.(5分)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C (3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]二、填空题(共5小题,每小题5分,共25分)11.(5分)复数(i为虚数单位)的实部等于.12.(5分)在平面直角坐标系中,曲线C:(t为参数)的普通方程为.13.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为.14.(5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是.15.(5分)若f(x)=ln(e3x+1)+ax是偶函数,则a=.三、解答题(共6小题,75分)16.(12分)已知数列{a n}的前n项和S n=,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=+(﹣1)n a n,求数列{b n}的前2n项和.17.(12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.18.(12分)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.19.(13分)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.20.(13分)如图,O为坐标原点,双曲线C1:﹣=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P(,1),且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(Ⅰ)求C1、C2的方程;(Ⅱ)是否存在直线l,使得l与C1交于A、B两点,与C2只有一个公共点,且|+|=||?证明你的结论.21.(13分)已知函数f(x)=xcosx﹣sinx+1(x>0).(Ⅰ)求f(x)的单调区间;(Ⅱ)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.2.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x0∈R,x02+1≤0【分析】题设中的命题是一个特称命题,按命题否定的规则写出其否定即可找出正确选项【解答】解∵命题p:∀x∈R,x2+1>0,是一个特称命题.∴¬p:∃x0∈R,x02+1≤0.故选:B.【点评】本题考查特称命题的否定,掌握其中的规律是正确作答的关键.3.(5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P3【分析】根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论.【解答】解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,即P1=P2=P3.故选:D.【点评】本题主要考查简单随机抽样、系统抽样和分层抽样的性质,比较基础.4.(5分)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()A.f(x)=B.f(x)=x2+1C.f(x)=x3D.f(x)=2﹣x【分析】本题利用函数的奇偶性和单调性的定义或者利用图象的特征加以判断,判断函数是偶函数又在区间(﹣∞,0)上单调递增,得到本题结论.【解答】解:选项A,,∵f(﹣x)==f(x),∴f(x)是偶函数,图象关于y轴对称.∵f(x)=x﹣2,﹣2<0,∴f(x)在(0,+∞)单调递减,∴根据对称性知,f(x)在区间(﹣∞,0)上单调递增;适合题意.选项B,f(x)=x2+1,是偶函数,在(0,+∞)上单调递增,在区间(﹣∞,0)上单调递减,不合题意.选项C,f(x)=x3是奇函数,不是偶函数,不合题意.选项D,f(x)=2﹣x在(﹣∞,+∞)单调递减,不是奇函数,也不是偶函数,不合题意.故选:A.【点评】本题考查了函数的奇偶性和单调性、函数图象与性质,本题难度不大,属于基础题.5.(5分)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A. B. C. D.【分析】利用几何槪型的概率公式,求出对应的区间长度,即可得到结论.【解答】解:在区间[﹣2,3]上随机选取一个数X,则﹣2≤X≤3,则X≤1的概率P=,故选:B.【点评】本题主要考查几何槪型的概率的计算,求出对应的区间长度是解决本题的关键,比较基础.6.(5分)若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21B.19C.9D.﹣11【分析】化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m值.【解答】解:由C1:x2+y2=1,得圆心C1(0,0),半径为1,由圆C2:x2+y2﹣6x﹣8y+m=0,得(x﹣3)2+(y﹣4)2=25﹣m,∴圆心C2(3,4),半径为.∵圆C1与圆C2外切,∴,解得:m=9.故选:C.【点评】本题考查两圆的位置关系,考查了两圆外切的条件,是基础题.7.(5分)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6]【分析】根据程序框图,结合条件,利用函数的性质即可得到结论.【解答】解:若0≤t≤2,则不满足条件输出S=t﹣3∈[﹣3,﹣1],若﹣2≤t<0,则满足条件,此时t=2t2+1∈(1,9],此时不满足条件,输出S=t﹣3∈(﹣2,6],综上:S=t﹣3∈[﹣3,6],故选:D.【点评】本题主要考查程序框图的识别和判断,利用函数的取值范围是解决本题的关键,比较基础.8.(5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r.【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则8﹣r+6﹣r=,∴r=2.故选:B.【点评】本题考查三视图,考查几何体的内切圆,考查学生的计算能力,属于基础题.9.(5分)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x1【分析】分别设出两个辅助函数f(x)=e x+lnx,g(x)=,由导数判断其在(0,1)上的单调性,结合已知条件0<x1<x2<1得答案.【解答】解:令f(x)=e x﹣lnx,则f′(x)=,当x趋近于0时,xe x﹣1<0,当x=1时,xe x﹣1>0,因此在(0,1)上必然存在f′(x)=0,因此函数f(x)在(0,1)上先递减后递增,故A、B均错误;令g(x)=,,当0<x<1时,g′(x)<0.∴g(x)在(0,1)上为减函数,∵0<x1<x2<1,∴,即.∴选项C正确而D不正确.故选:C.【点评】本题考查利用导数研究函数的单调性,考查了函数构造法,解答此题的关键在于想到构造两个函数,是中档题.10.(5分)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C (3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]【分析】由于动点D满足||=1,C(3,0),可设D(3+cosθ,sinθ)(θ∈[0,2π)).再利用向量的坐标运算、数量积性质、模的计算公式、三角函数的单调性即可得出.【解答】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值范围是.或|++|=|++|,=(2,),将其起点平移到D点,由其与CD同向反向时分别取最大值、最小值,即|++|的取值范围是.故选:D.【点评】本题考查了向量的坐标运算、数量积性质、模的计算公式、三角函数的单调性等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题(共5小题,每小题5分,共25分)11.(5分)复数(i为虚数单位)的实部等于﹣3 .【分析】直接由虚数单位i的运算性质化简,则复数的实部可求.【解答】解:∵=.∴复数(i为虚数单位)的实部等于﹣3.故答案为:﹣3.【点评】本题考查复数代数形式的乘法运算,考查了虚数单位i的运算性质,是基础题.12.(5分)在平面直角坐标系中,曲线C:(t为参数)的普通方程为 x﹣y﹣1=0 .【分析】利用两式相减,消去t,从而得到曲线C的普通方程.【解答】解:∵曲线C:(t为参数),∴两式相减可得x﹣y﹣1=0.故答案为:x﹣y﹣1=0.【点评】本题考查参数方程化成普通方程,应掌握两者的互相转化.13.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为 7 .【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即C(3,1),此时z=2×3+1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.14.(5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是 k<﹣1或k>1 .【分析】由抛物线的定义,求出机器人的轨迹方程,过点P(﹣1,0)且斜率为k的直线方程为y=k(x+1),代入y2=4x,利用判别式,即可求出k的取值范围.【解答】解:由抛物线的定义可知,机器人的轨迹方程为y2=4x,过点P(﹣1,0)且斜率为k的直线方程为y=k(x+1),代入y2=4x,可得k2x2+(2k2﹣4)x+k2=0,∵机器人接触不到过点P(﹣1,0)且斜率为k的直线,∴△=(2k2﹣4)2﹣4k4<0,∴k<﹣1或k>1.故答案为:k<﹣1或k>1.【点评】本题考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.15.(5分)若f(x)=ln(e3x+1)+ax是偶函数,则a= ﹣.【分析】根据函数奇偶性的定义,建立方程关系即可得到结论.【解答】解:若f(x)=ln(e3x+1)+ax是偶函数,则f(﹣x)=f(x),即ln(e3x+1)+ax=ln(e﹣3x+1)﹣ax,即2ax=ln(e﹣3x+1)﹣ln(e3x+1)=ln=ln=lne﹣3x=﹣3x,即2a=﹣3,解得a=﹣,故答案为:﹣,【点评】本题主要考查函数奇偶性的应用,根据偶函数的定义得到f(﹣x)=f (x)是解决本题的关键.三、解答题(共6小题,75分)16.(12分)已知数列{a n}的前n项和S n=,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=+(﹣1)n a n,求数列{b n}的前2n项和.【分析】(Ⅰ)利用公式法即可求得;(Ⅱ)利用数列分组求和即可得出结论.【解答】解:(Ⅰ)当n=1时,a1=s1=1,当n≥2时,a n=s n﹣s n﹣1=﹣=n,∴数列{a n}的通项公式是a n=n.(Ⅱ)由(Ⅰ)知,b n=2n+(﹣1)n n,记数列{b n}的前2n项和为T2n,则T2n=(21+22+…+22n)+(﹣1+2﹣3+4﹣…+2n)=+n=22n+1+n﹣2.∴数列{b n}的前2n项和为22n+1+n﹣2.【点评】本题主要考查数列通项公式的求法﹣公式法及数列求和的方法﹣分组求和法,考查学生的运算能力,属中档题.17.(12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.【分析】(Ⅰ)分别求出甲乙的研发成绩,再根据平均数和方差公式计算平均数,方差,最后比较即可.(Ⅱ)找15个结果中,找到恰有一组研发成功的结果是7个,求出频率,将频率视为概率,问题得以解决.【解答】解:(Ⅰ)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,则=,==乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1则=,==.因为所以甲的研发水平高于乙的研发水平.(Ⅱ)记E={恰有一组研发成功},在所抽到的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b)共7个,故事件E发生的频率为,将频率视为概率,即恰有一组研发成功的概率为P(E)=.【点评】本题主要考查了平均数方差和用频率表示概率,培养的学生的运算能力.18.(12分)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.【分析】(Ⅰ)运用直线与平面垂直的判定定理,即可证得,注意平面内的相交二直线;(Ⅱ)根据异面直线的定义,找出所成的角为∠ADO,说明∠DEO是二面角α﹣MN﹣β的平面角,不妨设AB=2,从而求出OD的长,再在直角三角形AOD 中,求出cos∠ADO.【解答】(1)证明:如图∵DO⊥面α,AB⊂α,∴DO⊥AB,连接BD,由题设知,△ABD是正三角形,又E是AB的中点,∴DE⊥AB,又DO∩DE=D,∴AB⊥平面ODE;(Ⅱ)解:∵BC∥AD,∴BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角,由(Ⅰ)知,AB⊥平面ODE,∴AB⊥OE,又DE⊥AB,于是∠DEO是二面角α﹣MN﹣β的平面角,从而∠DEO=60°,不妨设AB=2,则AD=2,易知DE=,在Rt△DOE中,DO=DEsin60°=,连AO,在Rt△AOD中,cos∠ADO==,故异面直线BC与OD所成角的余弦值为.【点评】本题主要考查线面垂直的判定,以及空间的二面角和异面直线所成的角的定义以及计算,是一道基础题.19.(13分)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【分析】(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.21.(13分)已知函数f(x)=xcosx﹣sinx+1(x>0).(Ⅰ)求f(x)的单调区间;(Ⅱ)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.【分析】(Ⅰ)求函数的导数,利用导数研究f(x)的单调区间;(Ⅱ)利用放缩法即可证明不等式即可.【解答】解:(Ⅰ)∵f(x)=xcosx﹣sinx+1(x>0),∴f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,由f′(x)=﹣xsinx=0,解得x=kπ(k∈N*),当x∈(2kπ,(2k+1)π)(k∈N),sinx>0,此时f′(x)<0,函数单调递减,当x∈((2k+1)π,(2k+2)π)(k∈N),sinx<0,此时f′(x)>0,函数单调递增,故f(x)的单调增区间为((2k+1)π,(2k+2)π),k≥0,单调递减区间为(2kπ,(2k+1)π),k∈N*).(Ⅱ)由(Ⅰ)知,f(x)在区间(0,π)上单调递减,又f()=0,故x1=,当n∈N*,∵f(nπ)f((n+1)π)=[(﹣1)n nπ+1][(﹣1)n+1(n+1)π+1]<0,且函数f(x)的图象是连续不间断的,∴f(x)在区间(nπ,(n+1)π)内至少存在一个零点,又f(x)在区间(nπ,(n+1)π)是单调的,<(n+1)π,故nπ<x n+1因此当n=1时,有=<成立.当n=2时,有+<<.当n≥3时,…++…+<[][](6﹣)<.综上证明:对一切n∈N*,有++…+<.【点评】本题主要考查函数单调性的判定和证明,以及利用导数和不等式的综合,利用放缩法是解决本题的关键,综合性较强,运算量较大.20.(13分)如图,O为坐标原点,双曲线C1:﹣=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P(,1),且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(Ⅰ)求C1、C2的方程;(Ⅱ)是否存在直线l,使得l与C1交于A、B两点,与C2只有一个公共点,且|+|=||?证明你的结论.【分析】(Ⅰ)由条件可得a1=1,c2=1,根据点P(,1)在上求得=3,可得双曲线C1的方程.再由椭圆的定义求得a2=,可得=﹣的值,从而求得椭圆C2的方程.(Ⅱ)若直线l垂直于x轴,检验部不满足|+|≠||.若直线l不垂直于x 轴,设直线l得方程为y=kx+m,由可得y1•y2 =.由可得(2k2+3)x2+4kmx+2m2﹣6=0,根据直线l和C1仅有一个交点,根据判别式△=0,求得2k2=m2﹣3,可得≠0,可得|+|≠||.综合(1)、(2)可得结论.【解答】解:(Ⅰ)设椭圆C2的焦距为2c2,由题意可得2a1=2,∴a1=1,c2=1.由于点P(,1)在上,∴﹣=1,=3,∴双曲线C1的方程为:x2﹣=1.再由椭圆的定义可得2a2=+=2,∴a2=,∴=﹣=2,∴椭圆C2的方程为:+=1.(Ⅱ)不存在满足条件的直线l.(1)若直线l垂直于x轴,则由题意可得直线l得方程为x=,或 x=﹣.当x=时,可得A(,)、B(,﹣),求得||=2,||=2,显然,|+|≠||.同理,当x=﹣时,也有|+|≠||.(2)若直线l不垂直于x轴,设直线l得方程为 y=kx+m,由可得(3﹣k2)x2﹣2mkx﹣m2﹣3=0,∴x1+x2=,x1•x2=.于是,y1•y2=k2x1•x2+km(x1+x2)+m2=.由可得(2k2+3)x2+4kmx+2m2﹣6=0,根据直线l和C1仅有一个交点,∴判别式△=16k2m2﹣8(2k2+3)(m2﹣3)=0,∴2k2=m2﹣3.∴=x1•x2+y1•y2=≠0,∴≠,∴|+|≠||.综合(1)、(2)可得,不存在满足条件的直线l.【点评】本题主要考查椭圆的定义、性质、标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,体现了分类讨论的数学思想,属于中档题.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。
天津市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科参考答案与试题解析创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x ≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x 2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6 B.﹣3 C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan()的最小正周期为2π,排除B.解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.创作人:百里公地创作日期:202X.04.01解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.创作人:百里公地创作日期:202X.04.01考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2 B.0 C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时y min=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g (b)=f(b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.创作人:百里公地创作日期:202X.04.01考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.创作人:百里公地创作日期:202X.04.01专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{a n},{b n}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设c n=a n+b n,S n为数列{c n}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.创作人:百里公地创作日期:202X.04.01分析:先根据等比数列的通项公式分别求出a n和b n,再根据等比数列的求和公式,分别求得S n 的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.和S n﹣1解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y (元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为创作人:百里公地创作日期:202X.04.01故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P (a,b),圆P截X 轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X 轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d 有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,创作人:百里公地创作日期:202X.04.01P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校创作人:百里公地创作日期:202X.04.01。
绝密★启用前2020年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共9小题,每小题5分,共45分. 参考公式:·如果事件A 与事件B 互斥,那么()()()P AB P A P B =+.·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. ·球的表面积公式24πS R =,其中R 表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UA B =∩A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---2.设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数241xy x =+的图象大致为A BC D4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.365.若棱长为23A.12πB.24πC.36πD.144π6.设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 8.已知函数π()sin()3f x x =+.给出下列结论: ①()f x 的最小正周期为2π; ②π()2f 是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移π3个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A .①B .①③C .②③D .①②③9.已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数8i2i-=+_________. 11.在522()x x+的展开式中,2x 的系数是_________.12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值. 17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 19.(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.20.(本小题满分16分)已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.2020年普通高等学校招生全国统一考试(天津卷)数学参考解答一.选择题:每小题5分,满分45分.1.C2.A3.A4.B5.C6.D7.D8.B9.D二.填空题:每小题5分,满分30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.32i - 11.1012.513.16;2314.4 15.16;132三.解答题 16.满分14分.(Ⅰ)解:在ABC △中,由余弦定理及22,5,13a b c ===,有2222cos 2a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,22,134C a c ===,可得sin 213sin a C A c ==. (Ⅲ)解:由a c <及213sin 13A =,可得2313cos 1sin 13A A =-=,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=. 所以,πππ12252172sin(2)sin 2cos cos 2sin 4441313A A A +=+=⨯+⨯=.17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA ⋅〈〉==n n n ,于是sin ,CA 〈〉=n . 所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,3||||AB AB AB ⋅==-n n n . 所以,直线AB 与平面1DB E 所成角的正弦值为3. 18.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221kx k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121kk k -⎛⎫⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.19.满分15分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得1d =,从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又0q ≠,可得2440q q -+=,解得2q =,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()22211(1)24n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<. (Ⅲ)解:当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++;当n 为偶数时,1112n n n n a n c b -+-==. 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和22311211352144444nnk knk k k n c ==--==++++∑∑. ① 由①得22311113232144444n k nn k n n c +=--=++++∑. ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑,从而得21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 20.满分16分.(Ⅰ)(i )解:当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-. (ii )解:依题意,323()36ln ,(0,)g x x x x x x =-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x xx x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+--⎪⎝⎭. ① 令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。
题型练8 大题专项(六) 函数与导数综合问题题型练第62页1.设函数f (x )=[ax 2-(4a+1)x+4a+3]e x.(1)若曲线y=f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x=2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a+1)x+4a+3]e x,所以f'(x )=[2ax-(4a+1)]e x+[ax 2-(4a+1)x+4a+3]e x =[ax 2-(2a+1)x+2]e x(x ∈R ).f'(1)=(1-a )e .由题设知f'(1)=0,即(1-a )e =0,解得a=1. 此时f (1)=3e ≠0,所以a 的值为1.(2)由(1)得f'(x )=[ax 2-(2a+1)x+2]e x =(ax-1)(x-2)e x. 若a>12,则当x ∈(1a ,2)时,f'(x )<0; 当x ∈(2,+∞)时,f'(x )>0. 所以f (x )在x=2处取得极小值.若a ≤12,则当x ∈(0,2)时,x-2<0,ax-1≤12x-1<0,所以f'(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(12,+∞).2.已知f (x )=ax-ln(-x ),x ∈[-e,0),其中e 是自然对数的底数,a ∈R . (1)当a=-1时,证明:f (x )+ln(-a )a>12.(2)是否存在实数a ,使f (x )的最小值为3?如果存在,求出a 的值;如果不存在,请说明理由. (1)证明由题意可知,所证不等式为f (x )>12−ln(-a )a,x ∈[-e,0).因为f'(x )=-1-1a =-a +1a,所以当-e≤x<-1时,f'(x )<0,此时f (x )单调递减; 当-1<x<0时,f'(x )>0,此时f (x )单调递增. 所以f (x )在区间[-e,0)内有唯一极小值f (-1)=1, 即f (x )在区间[-e,0)内的最小值为1; 令h (x )=12−ln(-a )a,x ∈[-e,0),则h'(x )=ln(-a )-1a 2,当-e≤x<0时,h'(x )≤0,故h (x )在区间[-e,0)内单调递减, 所以h (x )max =h (-e)=1e +12<12+12=1=f (x )min . 所以当a=-1时,f (x )+ln(-a )a>12.(2)解假设存在实数a ,使f (x )=ax-ln(-x )的最小值为3,f'(x )=a-1a ,x ∈[-e,0).①若a ≥-1e ,由于x ∈[-e,0),则f'(x )=a-1a ≥0,所以函数f (x )=ax-ln(-x )在区间[-e,0)内是增函数, 所以f (x )min =f (-e)=-a e -1=3, 解得a=-4e <-1e,与a ≥-1e矛盾,舍去.②若a<-1e ,则当-e≤x<1a 时,f'(x )=a-1a <0,此时f (x )=ax-ln(-x )是减函数, 当1a <x<0时,f'(x )=a-1a >0, 此时f (x )=ax-ln(-x )是增函数,所以f (x )min =f (1a )=1-ln (-1a)=3,解得a=-e 2.综上①②知,存在实数a=-e 2,使f (x )的最小值为3. 3.已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b=c-a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),求c 的值.解:(1)f'(x )=3x 2+2ax , 令f'(x )=0,解得x 1=0,x 2=-2a 3.当a=0时,因为f'(x )=3x 2>0(x ≠0), 所以函数f (x )在区间(-∞,+∞)内单调递增; 当a>0时,x ∈(-∞,-2a 3)∪(0,+∞)时,f'(x )>0,x ∈(-2a 3,0)时,f'(x )<0,所以函数f (x )在区间(-∞,-2a 3),(0,+∞)内单调递增,在区间(-2a 3,0)内单调递减;当a<0时,x ∈(-∞,0)∪(-2a 3,+∞)时,f'(x )>0,x ∈(0,-2a 3)时,f'(x )<0,所以函数f (x )在区间(-∞,0),(-2a 3,+∞)内单调递增,在区间(0,-2a 3)内单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (-2a 3)=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f (-2a 3)=b (427a 3+a )<0,从而{a >0,-427a 3<a <0或{a <0,0<a <-427a 3.又b=c-a ,所以当a>0时,427a 3-a+c>0或当a<0时,427a 3-a+c<0.设g (a )=427a 3-a+c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),则在(-∞,-3)内g (a )<0,且在(1,32)∪(32,+∞)内g (a )>0均恒成立,从而g (-3)=c-1≤0,且g (32)=c-1≥0,因此c=1.此时,f (x )=x 3+ax 2+1-a=(x+1)[x 2+(a-1)x+1-a ],因函数有三个零点,则x 2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a )=a 2+2a-3>0,且(-1)2-(a-1)+1-a ≠0,解得a ∈(-∞,-3)∪(1,32)∪(32,+∞).综上c=1.4.(2019全国Ⅱ,理20)已知函数f (x )=ln x-a +1a -1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y=ln x 在点A (x 0,ln x 0)处的切线也是曲线y=e x的切线. (1)解f (x )的定义域为(0,1)∪(1,+∞). 因为f'(x )=1a +2(a -1)2>0,所以f (x )在区间(0,1),(1,+∞)内单调递增.因为f (e)=1-e +1e -1<0,f (e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f (x )在区间(1,+∞)内有唯一零点x 1,即f (x 1)=0. 又0<1a 1<1,f1a 1=-ln x 1+a 1+1a 1-1=-f (x 1)=0,故f (x )在区间(0,1)内有唯一零点1a 1.综上,f (x )有且仅有两个零点.(2)证明因为1a 0=e -ln a 0,故点B -ln x 0,1a 0在曲线y=e x上.由题设知f (x 0)=0,即ln x 0=a 0+1a 0-1, 故直线AB 的斜率k=1a-ln a 0-lna0-a 0=1a 0-a 0+1a 0-1-a 0+1a 0-1-a 0=1a 0.曲线y=e x在点B -ln x 0,1a 0处切线的斜率是1a 0,曲线y=ln x 在点A (x 0,ln x 0)处切线的斜率也是1a 0,所以曲线y=ln x 在点A (x 0,ln x 0)处的切线也是曲线y=e x的切线.5.(2019山东烟台一模)已知函数f (x )=e x -2ax+3a 2e -x(a ∈R ),其中e =2.718 28…为自然对数的底数. (1)讨论f (x )的单调性;(2)当x ∈(0,+∞)时,e x (x-a )+3a 2e -x -x 2-a 2+10>f (x )恒成立,求a 的取值范围. 解:(1)由题意可知,f'(x )=e x-2a-3a 2e -x=e 2a -2a e a -3a 2e a=(e a -3a )(e a +a )e a.当a=0时,f'(x )=e x>0,此时f (x )在R 上单调递增; 当a>0时,令f'(x )=0,解得x=ln(3a ),当x ∈(-∞,ln(3a ))时,f'(x )<0,f (x )单调递减; 当x ∈(ln(3a ),+∞)时,f'(x )>0,f (x )单调递增; 当a<0时,令f'(x )=0, 解得x=ln(-a ),当x ∈(-∞,ln(-a ))时,f'(x )<0,f (x )单调递减; 当x ∈(ln(-a ),+∞)时,f'(x )>0,f (x )单调递增; 综上可知,当a=0时,f (x )在R 上单调递增; 当a>0时,x ∈(-∞,ln(3a ))时,f (x )单调递减,x ∈(ln(3a ),+∞)时,f (x )单调递增;当a<0时,x ∈(-∞,ln(-a ))时,f (x )单调递减,x ∈(ln(-a ),+∞)时,f (x )单调递增. (2)由e x (x-a )+3a 2e -x -x 2-a 2+10>f (x ), 可得,e x (x-a-1)-x 2+2ax-a 2+10>0, 令g (x )=e x(x-a-1)-x 2+2ax-a 2+10, 只需在x ∈(0,+∞)时使g (x )min >0即可.g'(x )=e x (x-a-1)+e x -2x+2a=(e x -2)(x-a ), ①当a ≤0时,x-a>0.当0<x<ln2时,g'(x )<0,当x>ln2时,g'(x )>0,所以g (x )在区间(0,ln2)内是减函数,在区间(ln2,+∞)内是增函数, 只需g (ln2)=-a 2+(2ln2-2)a-(ln2)2+2ln2+8>0, 解得ln2-4<a<ln2+2,所以ln2-4<a ≤0;②当0<a<ln2时,g (x )在区间(0,a )内是增函数,在区间(a ,ln2)内是减函数,在区间(ln2,+∞)内是增函数, 则{a (ln2)>0,a (0)≥0,解得0<a<ln2;③当a=ln2时,g'(x )≥0,g (x )在区间(0,+∞)内是增函数,而g (0)=9-ln2-(ln2)2>0成立;④当a>ln2时,g (x )在区间(0,ln2)内是增函数,在区间(ln2,a )内是减函数,在区间(a ,+∞)内是增函数,则{a (a )=-e a +10>0,a (0)=9-a -a 2≥0,解得ln2<a<ln10.综上可知,a 的取值范围为(ln2-4,ln10). 6.设函数f (x )=aa ln a a ,g (x )=-12x+(a+b )(其中e 为自然对数的底数,a ,b ∈R ,且a ≠0),曲线y=f (x )在点(1,f (1))处的切线方程为y=a e(x-1). (1)求b 的值;(2)若对任意x ∈[1e ,+∞),f (x )与g (x )的图象有且只有两个交点,求a 的取值范围. 解:(1)由f (x )=aa ln aa ,得f'(x )=aa (1-ln a )a 2, 由题意得f'(1)=ab=a e .∵a ≠0,∴b=e .(2)令h (x )=x [f (x )-g (x )]=12x 2-(a+e)x+a eln x ,则任意x ∈[1e,+∞),f (x )与g (x )有且只有两个交点,等价于函数h (x )在区间[1e,+∞)有且只有两个零点.由h (x )=12x 2-(a+e)x+a eln x ,得h'(x )=(a -a )(a -e)a,①当a ≤1e 时,由h'(x )>0得x>e;由h'(x )<0得1e <x<e .此时h (x )在区间(1e ,e )内单调递减,在区间(e,+∞)内单调递增. 因为h (e)=12e 2-(a+e)e +a elne =-12e 2<0,h (e 2)=12e 4-(a+e)e 2+2a e =12e(e -2)(e 2-2a )≥12e(e -2)·(e 2-2e )>0(或当x →+∞时,h (x )>0亦可),所以要使得h (x )在区间[1e ,+∞)内有且只有两个零点, 则只需h (1e )=12e 2−a +e e+a eln 1e =(1-2e 2)-2e(1+e 2)a2e 2≥0,即a ≤1-2e 22e(1+e 2).②当1e <a<e 时,由h'(x )>0得1e <x<a 或x>e; 由h'(x )<0得a<x<e .此时h (x )在区间(a ,e)内单调递减,在区间(1e ,a )和(e,+∞)内单调递增. 此时h (a )=-12a 2-a e -a eln a<-12a 2-a e +a elne =-12a 2<0, 即h (x )在区间[1e ,+∞)内至多只有一个零点,不合题意.③当a>e 时,由h'(x )>0得1e <x<e 或x>a ,由h'(x )<0得e <x<a ,此时h (x )在区间(1e,e )和(a ,+∞)内单调递增,在区间(e,a )上单调递减,且h (e)=-12e 2<0,即h (x )在区间[1e,+∞)内至多只有一个零点,不合题意.综上所述,a 的取值范围为(-∞,1-2e 22e(1+e 2)].。
课时作业12函数模型及应用一、选择题1.下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是(A)x 45678910y 15171921232527A.C.指数函数模型D.对数函数模型解析:由表中数据知x,y满足关系y=13+2(x-3).故为一次函数模型.2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是(D)A.不能确定B.①②同样省钱C.②省钱D.①省钱解析:方法①用款为4×20+26×5=80+130=210(元),方法②用款为(4×20+30×5)×92%=211.6(元),因为210<211.6,故方法①省钱.3.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么(D)A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m解析:设汽车经过t 秒行驶的路程为s 米,则s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7,当t =6时,d 取得最小值为7.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =(p +1)(q +1)-1.故选D.5.李冶(1192—1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( B )A.10步,50步B.20步,60步C.30步,70步D.40步,80步解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.故选B.6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30 ,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln2(太贝克/年),则M (60)=( D )A.5太贝克B.75ln 2太贝克C.150ln 2太贝克D.150太贝克 解析:由题意M ′(t )=M 02-t 30 ⎝ ⎛⎭⎪⎫-130ln2,M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln2=-10ln2,∴M 0=600,∴M (60)=600×2-2=150.故选D.二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是108元.解析:设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.8.某人根据经验绘制了2017年春节前后,从1月21日至2月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月26日大约卖出了西红柿1909千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎨⎧ 10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.9.已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎨⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1,《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过4小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为5-1=0.2,要使酒精含量≤0.02毫克/毫升,则35⎝ ⎛⎭⎪⎫13x ≤0.02,∴x ≥log 330=1+log 310>1+log 39=3,故至少要4个小时后才能开车.三、解答题10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y=x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为y x (万元).则y x =x 5+8 000x -48≥2x 5·8 000x -48=32,当且仅当x 5=8 000x ,即x =200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元.(2)设年获得总利润为R (x )万元,则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).因为R (x )在[0,210]上是增函数,所以x =210时,R (x )有最大值,为-15(210-220)2+1 680=1 660.所以年产量为210吨时,可获得最大利润1 660万元.11.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:解:(1)y 关于x 的函数关系式为y =⎩⎪⎨⎪⎧ 2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x=3时,y=6;当x=4时,y=8;当x=5时,y=12;当x=6时,y=16;当x=7时,y=22.所以该家庭去年支付水费的月平均费用为112×(6×1+8×3+12×3+16×3+22×2)≈13(元).(3)由(1)和题意知:当y≤12时,x≤5,所以“节约用水家庭”=77%,据此估计该地“节约用水家庭”的比例为77%. 的频率为7710012.(2017·北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.解析:①设线段A i B i的中点为C i(x i,y i),则Q i=2y i(i=1,2,3).因此只需比较C1,C2,C3三个点纵坐标的大小即可.不难发现y1最大,所以Q 1最大.②由题意,知p i =y i x i(i =1,2,3).故只需比较三条直线OC 1,OC 2,OC 3的斜率即可,发现p 2最大.13.牛奶保鲜时间因储藏时温度的不同而不同.假定保鲜时间y (单位:h)与储藏温度x (单位:℃)间的关系为指数型函数y =k ·a x (k ≠0).若牛奶在0 ℃的冰箱中,保鲜时间约是192 h ,而在22 ℃的厨房中,保鲜时间约是42 h.(1)写出保鲜时间y 关于储藏温度x 的函数解析式.(2)如果把牛奶分别储藏在10 ℃和5 ℃的两台冰箱中,哪一台冰箱储藏牛奶保鲜时间较长?为什么?(参考数据:22732≈0.93)解:(1)保鲜时间y 与储藏温度x 间的关系符合指数型函数y =k ·a x (k ≠0),则⎩⎨⎧ ka 0=192,ka 22=42,解得⎩⎪⎨⎪⎧ k =192,a =22732≈0.93,故所求函数解析式为y =192×0.93x .(2)设f (x )=192×0.93x ,因为f (x )是减函数,且10>5,所以f (10)<f (5),所以把牛奶储藏在5 ℃的冰箱中,牛奶保鲜时间较长.尖子生小题库——供重点班学生使用,普通班学生慎用14.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( C )A.2[x +1]B.2([x ]+1)C.2{x }D.{2x }解析:如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A 、B ;当x =0.5时,付费为2元,此时{2x }=1,排除D ,故选C.15.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120;(2)最低种植成本是80(元/100 kg).解析:根据表中数据可知函数不单调,所以Q =at 2+bt +c ,且开口向上,对称轴t =-b 2a =60+1802=120,代入数据⎩⎪⎨⎪⎧ 3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧ b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.。
2.8函数模型及函数的综合应用挖命题【考情探究】分析解读为了考查学生的综合能力与素养,高考加强了函数综合应用问题的考查力度,这一问题一般涉及的知识点较多,综合性也较强,属于中档以上的试题,题型以填空题和解答题为主,在高考中分值为5分左右,通常在如下方面考查:1.对函数实际应用问题的考查,这类问题多以社会实际生活为背景,设问新颖,要求学生掌握课本中的概念、公式、法则、定理等基础知识与方法.2.以课本知识为载体,把函数与方程、不等式、数列、解析几何等知识联系起来,构造不等式求参数范围,利用分离参数法求函数值域,进而求字母的取值等.破考点【考点集训】考点一函数的模型及实际应用1.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin x+φ为常数.其中三个月份的月平均气温如下表:x5811y133113则该地2月份的月平均气温约为℃,=.答案-5;考点二函数的综合应用问题2.动点P从点A出发,按逆时针方向沿周长为l的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,则动点P所走的图形可能是()答案 D3.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.-1或5C.-1或-4D.-4或8答案 D4.(2017课标Ⅰ,9,5分)已知函数f(x)=ln x+ln(2-x),则()A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案 C5.单位圆的内接正n(n≥3)边形的面积记为f(n),则f(3)=.下面是关于f(n)的描述:①f(n)=sin;②f(n)的最大值为π;③f(n)<f(n+1);④f(n)<f(2n)≤2f(n).其中正确结论的序号为.(请写出所有正确结论的序号)答案;①③④炼技法【方法集训】方法函数模型的实际应用问题(2015四川,13,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是小时.答案24过专题【五年高考】A组自主命题·天津卷题组1.(2013天津文,8,5分)设函数f(x)=e x+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B. f(b)<0<g(a)C.0<g(a)<f(b)D. f(b)<g(a)<0答案 A2.(2013天津,8,5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A.若- ⊆A,则实数a的取值范围是()A.-B.-C.-∪D.--答案 A3.(2011天津文,8,5分)对实数a和b,定义运算“⊗”:a⊗b=--设函数f(x)=(x2-2)⊗(x-1),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-1,1]∪(2,+ )B.(-2,-1]∪(1,2]C.(- ,-2)∪(1,2]D.[-2,-1] 答案 B4.(2016天津文,14,5分)已知函数f(x)=-(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-恰有两个不相等的实数解,则a的取值范围是.答案5.(2012天津,14,5分)已知函数y=--的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是.答案(0,1)∪(1,2)B组统一命题、省(区、市)卷题组考点一函数的模型及实际应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.- C. D.-1答案 D2.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则当z=81时,x=,y=.答案8;11考点二函数的综合应用问题1.(2017山东,15,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2-x②f(x)=3-x③f(x)=x3④f(x)=x2+2答案①④2.(2014山东,15,5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x, f(x))对称.若h(x)是g(x)=-关于f(x)=3x+b 的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.答案(2,+ )C组教师专用题组考点一函数的模型及实际应用(2015江苏,17,14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,设在点P处的切线l交x,y轴分别于A,B点,y'=-,则l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g'(t)=2t-.令g'(t)=0,解得t=10.当t∈(5,10)时,g'(t)<0,g(t)是减函数;当t∈(10,20)时,g'(t)>0,g(t)是增函数;从而,当t=10时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=15.∴当t=10时,公路l的长度最短,最短长度为15千米.评析本题主要考查函数的概念、导数的几何意义及其应用,考查运用数学模型及数学知识分析和解决实际问题的能力.考点二函数的综合应用问题1.(2017浙江,17,4分)已知a∈R,函数f(x)=-+a在区间[1,4]上的最大值是5,则a的取值范围是.答案-2.(2014湖北,14,5分)设f(x)是定义在(0,+ )上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=(x>0)时,M f(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)答案(1)(2)x3.(2014四川,15,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)答案①③④4.(2016浙江,18,15分)已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).解析(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)(i)设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)=--(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0), f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=-思路分析(1)先分类讨论去掉绝对值符号,再利用作差法求解;(2)分段函数求最值的方法是分别求出各段上的最值,较大(小)的值就是这个函数的最大(小)值.评析本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.【三年模拟】选择题(每小题5分,共40分)1.(2017天津和平一模,8)已知函数f(x)=---若关于x的方程f(x)-m=0恰有五个不相等的实数解,则m的取值范围是()A.[0,4]B.(0,4)C.(4,5)D.(0,5)答案 B2.(2019届天津耀华中学第一次月考,8)已知函数f(x)=ln x+(a-2)x-2a+4(a>0),若有且只有两个整数x1,x2,使得f(x1)>0,且f(x2)>0,则a的取值范围是()A.(ln 3,2)B.[2-ln 3,2)C.(0,2-ln 3]D.(0,2-ln 3)答案 C3.(2018天津九校联考,8)定义在R上的奇函数f(x),当x≥0时, f(x)=∈--∈则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()A.1-2aB.2a-1C.1-2-aD.2-a-a 答案 B4.(2018天津河北二模,8)已知函数f(x)=--若存在互不相等的实数a,b,c,d,满足f(a)=f(b)=f(c)=f(d)=m.则以下三个结论:①m∈[1,2);②a+b+c+d∈[e-3+e-1-2,e-4-1),其中e为自然对数的底数;③关于x的方程f(x)=x+m恰有三个不相等的实数解.正确结论的个数是()A.0B.1C.2D.3答案 C5.(2017天津十二区县二模,8)已知函数f(x)=--在定义域[0,+ )上单调递增,且对于任意a≥0,方程f(x)=a有且只有一个实数解,则函数g(x)=f(x)-x在区间[0,2n](n∈N*)上所有零点的和为()A. B.22n-1+2n-1 C. D.2n-1答案 B6.(2017天津和平四模,8)已知函数f(x)=当方程f(x)=ax恰有两个不同的实数根时,实数a的取值范围是()A. B. C. D.答案 B7.(2018天津静海一中模拟,8)已知定义在R上的函数y=f(x)对任意的x满足f(x+1)=-f(x),当-1≤x<1时, f(x)=x3,函数g(x)=-若函数h(x)=f(x)-g(x)在[-6,+ )上有6个零点,则实数a的取值范围是()A.∪(7,+ )B.∪[7,9)C.∪(7,9]D.∪(1,9]答案 C8.(2018天津红桥二模,8)已知定义在[-1,+ )上的函数在区间[-1,3)上的解析式为f(x)=----当x≥3时,函数满足f(x)=f(x-4)+1,若函数g(x)=f(x)-kx-k有5个零点,则实数k为()A. B. C. D.答案 D。