2018学年八下数学第一章-三角形的证明含答案
- 格式:pptx
- 大小:15.04 MB
- 文档页数:183
北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,已知点P到△ABC三边的距离相等,DE∥AC,AB=8.1cm,BC=6cm,△BDE的周长为()cmA.12B.14.1C.16.2D.7.052、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB 于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°3、如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°4、如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°5、如图,在等腰△ABC中,∠A=120°,AB=4,则△ABC的面积为()A. B.4 C. D.6、如图,在ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.35°B.30°C.25°D.20°7、已知、,,以、、为两角和一边作三角形,则可以作出()不同的三角形(彼此全等的只能算一种)A.一种B.二种C.三种D.无数种8、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12D.159、如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点10、一个等腰三角形的顶角是120°,底边上的高是1cm,那么它的周长是()A.(2 )cmB.2(2 )cmC. cmD.2cm11、在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.30°或40°D.50°12、如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°13、如图,AB为的直径,P为BA延长线上的一点,D在上(不与点A,点B重合),连结PD交于点C,且PC=OB.设,下列说法正确的是()A.若,则B.若,则C.若,则 D.若,则14、下列说法不正确的是().A.关于某条直线对称的两个三角形一定全等.B.到线段两端点距离相等的点有无数个.C.等腰三角形的中线、高、角平分线三线合一.D.轴对称图形的对称轴是对称点所连线段的垂直平分线.15、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm二、填空题(共10题,共计30分)16、如图,在中,,是的角平分线,若,,则的面积是________.17、如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为________.18、如图,反比例函数y= 的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC 时,点A的坐标为________.19、如图,在中,分别以点A和点C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线分别交,于点D,E.若,的周长为13,则的周长为________.20、如图,DE是三角形ABC的边AB的垂直平分线,分别交AB、BC于D、E,AE 平分∠BAC,若∠B=30度,则∠C=________度.21、等腰三角形的两条边长为2,4,则等腰三角形的周长为________22、如图,在中,,平分,已知,,则的面积是________.23、已知的三边长,,,,,都是整数,且,的最大公约数为.点和点分别为的重心和内心,且.则的周长为________.24、如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是________cm.25、如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD=________时,四边形MENF是正方形.三、解答题(共5题,共计25分)26、如图,AC⊥BD,垂足点E是BD的中点,且AB=CD,求证:AB//CD.27、如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=5cm,BD=3cm,求BE的长.28、如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.29、如图,在△ABC中,∠A=90 ,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.30、已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、A5、C6、D7、B8、D9、D10、B11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,D,E,F分别在BC,AC,AB上,若BD=CE,CD=BF,则∠EDF()A. 90°-∠AB. 90°-∠AC. 180°-∠AD. 180°-2∠A2、若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.65°或50°B.50°或80°C.50°D.80°3、如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.15cmD.12cm或15cm4、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.15C.12或15D.不能确定5、如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A.(2,)B.(1,2)C.(1,)D.(,1)6、已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是()A.18cmB.21cmC.18cm或21cmD.无法确定7、如图,在中,,依据尺规作图的痕迹,计算的度数是()A.67°29′B.67°9′C.66°29′D.66°9′8、如图,在△ABC中,AB=AC,BC=5cm,作AB的中垂线DE交另一腰AC于E,连接BE,如果△BCE的周长是17cm,则腰长为()A.12cmB.6cmC.7cmD.5cm9、如图所示,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于()A. B. C.1 D.210、如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D 点,则∠DBC的度数是()A.15°B.20°C.25°D.30°11、如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG.其中正确的有()A.①②④B.①②③C.①②④⑤D.①②③⑤12、如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A.5B.4C.3D.213、如图,在中,,,分别以、为圆心,大于的长为半径画弧,两弧相交于点、.作直线,交于点;同理作直线交于点,若,则的长为()A.1B.C.3D.14、如图,中,,,点是的中点,过点作交于点,连接.则的度数为( )A.30°B.80°C.90°D.110°15、如图所示,在3×3的网格中,每个网格线的交点称为格点,已知图中A、B为两格点,请在图中再寻找另一格点C,使△ABC成为等腰三角形.则满足条件的C点的个数为()A.10个B.8个C.6个D.4个二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,CA=CB,AD是△ABC的角平分线,过点D作DE⊥AB于点E,若CD=1,则BD=________.17、如图,在△ 中,,点在上,,,,垂足分别为,,且,则的长为________.18、如图,长方形中,,,点是的中点,点在边上运动,当是等腰三角形时,的长为________.19、如图,△ABC中,∠C=90°,D是BC上一点,∠1=∠2,CB=10,BD=6,则D到AB 的距离为________.20、己知,如图,在△ABC中,∠C=90°,∠A=24°,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹),直线________ 即为所求.21、如图, 利用四边形的不稳定性改变矩形ABCD的形状,得到A1BCD1,若A 1BCD1的面积是矩形ABCD面积的一半,则∠A1BC的度数是________.22、如图,在△ABC中,∠ACB的平分线交AB于点D,DE⊥AC于点E,F为BC 上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为________。
北师大版八年级数学下册第一章 三角形的证明(含答案)一、选择题1.由线段a,b,c 组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=43,c=53 C.a=9,b=12,c=15 D.a=√3,b=2,c=√5 答案 D D 中,a 2+b 2=7,c 2=5,a 2+b 2≠c 2,故选D.2.下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等答案 D 当两直角边对应相等时,再由直角相等,根据SAS 可以判定两直角三角形全等.3.到三角形三个顶点的距离相等的点是三角形的( )A.三个内角平分线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条高的交点答案 B 到三角形三个顶点距离相等的点在三角形三边的垂直平分线上.4.用反证法证明:“三角形中必有一个内角不小于60°”时,应当先假设这个三角形中( )A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°答案B反证法第一步是提出与结论相反的假设.5.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()图1-5-1A.√6B.4C.2√3D.5答案B∵AD⊥BC,∠ABC=45°,∴∠BAD=90°-∠ABC=45°=∠ABC,∴BD=AD,又∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=90°,∠BEC=90°.∴∠C+∠CAD=90°,∠C+∠CBE=90°,∴∠CAD=∠CBE,∴△ADC≌△BDH.∴BH=AC=4.6.已知等腰直角三角形ABC,斜边AB的长为2,以AB所在直线为x轴,AB的垂直平分线为y 轴建立直角坐标系,则点C的坐标是()A.(0,1)B.(0,-1)C.(0,1)或(0,-1)D.(1,0)或(-1,0)答案C∵OC⊥AB,∠CAB=45°,∴∠ACO=45°.AB=1,∴C(0,1)或(0,-1).∴CO=AO=127.下列命题中的假命题是()A.等腰三角形的顶角一定是锐角B.等腰三角形的底角一定是锐角C.等腰三角形至少有两个角相等D.等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合答案A等腰三角形的顶角可以是锐角,也可以是直角或钝角.8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠AB.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点答案D∵A=36°,AB=AC,∴∠C=∠ABC=72°.∴∠C=2×36°=2∠A,A选项正确.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠A=∠ABD=36°,∴△ABD是等腰三角形,C选项正确.又∵∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,B选项正确,只有D选项结论错误.9.如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过A作DE∥BC交∠ABC的平分线BE于点E、交∠ACB的平分线CD于点D,则DE为()A.18B.16C.14D.8答案C在Rt△ABC中,AC=6,BC=10,由勾股定理得AB=8,∵DE∥BC,∴∠D=∠DCB,∠E=∠EBC,∵CD平分∠ACB,BE平分∠ABC,∴∠ACD=∠DCB,∠ABE=∠EBC,∴∠D=∠ACD,∠E=∠ABE,∴AD=AC=6,AE=AB=8,∴DE=6+ 8=14,故选C.10.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS,下面结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()图1-5-4A.①②B.②③C.①③D.①②③答案A∵PR⊥AB,PS⊥AC,且PR=PS,∴∠BAP=∠CAP.又∵AQ=PQ,∴∠CAP=∠APQ.∴∠BAP=∠APQ.∴QP∥AR.在Rt△APR和Rt△APS中,{AP=AP,PR=PS,∴Rt△APR≌Rt△APS.∴AS=AR.故①②均正确.由已知条件不能得到△BRP≌△CSP.故选A.二、填空题11.等腰三角形两腰上的中线相等,这个命题的逆命题是,这个逆命题是命题.答案两边上的中线相等的三角形是等腰三角形;真12.等腰三角形的两边长分别是7和3,则它的周长是.答案17解析当7为腰长时,周长为7+7+3=17.当3为腰长时,∵3+3=6<7,∴不能构成三角形,故答案为17.13.已知△ABC的三边长分别为a,b,c,且满足(a-b)2+(b-c)2+(c-a)2=0,则△ABC是三角形.答案等边解析∵(a-b)2+(b-c)2+(c-a)2=0,∴a-b=0,b-c=0,c-a=0,∴a=b,b=c,c=a,∴a=b=c.∴△ABC 是等边三角形.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD∶DC=2∶1,BC=7.8cm,则D到AB 的距离为cm.答案 2.6解析∵AD平分∠BAC且∠C=90°,∴点D到AB的距离等于CD的长.∵BD∶DC=2∶1,BC=7.8×7.8=2.6 cm.故答案为2.6.cm,∴CD=1315.如图,在△ABC中,AB的垂直平分线MN交AB于点E,交AC于点D,且AC=16,△BCD的周长等于26,则BC的长为.答案10解析∵MN垂直平分AB,∴AD=BD.∴△BCD的周长=BD+DC+BC=AC+BC.∴16+BC=26.∴BC=10.16.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为.答案1+√3解析∵CD⊥AB,∴∠ADC=∠BDC=90°.又∵∠A=45°,∠B=30°,∴∠ACD=∠A=45°,BC=2CD=2.∴AD=CD=1,BD=√BC2-CD2=√22-12=√3.∴AB=AD+DB=1+√3.17.如图,D是线段AB、BC的垂直平分线的交点,若∠ABC=60°,则∠ADC=.答案120°解析连接BD并延长.∵D是线段AB、BC的垂直平分线的交点,∴AD=BD=CD,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=2∠ABC=120°.又∵∠5=∠1+∠2,∠6=∠3+∠4,∴∠ADC=∠5+∠6=120°.18.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在边AC 上移动,则BP 的最小值是 .答案245解析 过点A 作AE ⊥BC 于点E,因为AB=AC=5,所以BE=CE=12BC=3,所以AE=√AB 2-BE 2=√52-32=4,所以S △ABC =12BC ·AE=12.易知BP 的最小值是S △ABC 12AC =245. 三、解答题19.如图,在Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,求BN 的长.答案 设BN=x,由题意可得DN=AN=9-x.∵D 是BC 的中点,∴BD=3.在Rt △NBD 中,x 2+32=(9-x)2,解得x=4,即BN=4.20.如图所示,在△ABC 中,∠ACB=90°,CD 、CE 三等分∠ACB,CD ⊥AB.求证:(1)AB=2BC;(2)CE=AE=BE.证明 (1)∵∠ACB=90°,CD 、CE 三等分∠ACB,∴∠1=∠2=∠3=30°,∴∠1+∠2=60°,∴∠A=30°.在Rt△ACB中,∵∠A=30°,∴AB=2BC.(2)由(1)知∠A=∠1=30°,∴CE=AE.又∵∠B=∠BCE=60°,∴△BCE为等边三角形,∴CE=BE.∴CE=AE=BE.21.如图,在△ABC中,AB=8,AC=4,G为BC的中点,DG⊥BC交∠BAC的平分线AD于D,DE⊥AB 于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)求AE的长.答案(1)证明:连接DB、DC,易知△BDE与△CDF均为直角三角形.∵DG垂直平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AF,∴DE=DF(角平分线上的点到这个角的两边的距离相等).∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,又∠DAE=∠DAF,AD=AD,∴△ADE≌△ADF.∴AE=AF=AC+CF.由(1)知BE=CF,∴AE=AC+BE=4+BE.∴AE=4+8-AE.∴AE=6.22.如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?答案由题意可知AP=2t cm,BQ=t cm(0≤t≤3),则BP=AB-AP=(6-2t)cm.(1)若△PBQ为等边三角形,已知∠B=60°,需BP=BQ,即6-2t=t,解得t=2,即当t=2时,△PBQ 为等边三角形.(2)当PQ⊥BQ时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即6-2t=2t,解得t=1.5;当PQ⊥BP时,同理可得BQ=2BP,即t=2(6-2t),解得t=2.4.综上可知,当t为1.5或2.4时,△PBQ为直角三角形.。
第一章 三角形的证明1 等腰三角形专题1 等腰三角形和等边三角形1. A 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE =CD .求证:BD =DE .2. B 如图,等边三角形ABC 内有一点P ,PE ⊥AB ,PF ⊥AC ,PD ⊥BC ,垂足分别为E ,F ,D ,且AH ⊥BC 于H ,试用三角形面积公式证明:PE +PF +PD =AH .3. B 如图所示,在等边△ABC 中,点D 、E 分别在边BC 、AB 上,且BD =AE ,AD 与CE 交于点F ,求证:△ABD ≌△CAEBB4. A △ABC 中,∠B =∠C ,求证:AB =AC5. B 如图,AD 和BC 交于点O ,AB ∥DC ,OA =OB ,试说明△OCD 是等腰三角形.B6. B 如图,已知OC 平分∠AOB ,CD ∥OB ,若OD =3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cm7. B 如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下述结论错误的是( )A .BD 平分∠ABCB .△BCD 的周长等于AB +BCC .AD =BD =BCD .点D 是线段AC 的中点8. A 下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④9. B 如图,等边△ABC 中,D 、E 分别为AB 、AC 上两点,下列结论:①若AD =AE ,则△ADE 是等边三角形;②若DE ∥BC ,则△ADE 是等边三角形,其中正确的有( )A .①B .②C .①②D .都不对OBB10. B 如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD =BE =CF ,求证:△DEF 是等边三角形.11. B 如图,D 为等边三角形ABC 内一点,将△BDC 绕着点C 旋转成△AEC ,则△CDE 是怎样的三角形?请说明理由.B1. A 如图,已知BD=CE,AD=AE,求证:∠B=∠C.2. A 已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE.3. B 如图所示,△ABC是等腰直角三角板,过A点作AE⊥EF,过B点作BF⊥EF.请证明:∠EAC=∠BCF,EF=AE+BF.4. A 如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.1. B 两个全等的含30°,60°角的三角板ADE和三角板ABC,如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2. C 如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,则符合条件的点C有()个.A. 3B. 5C. 8D. 103. B 如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于点D,则DE的长为.4. C 如图,△ABC中,∠ABC=46º,D是BC边上一点,DC=AB,∠DAB=21º,试确定∠CAD的度数.5. C 一个三角形可被剖分成两个等腰三角形,原三角形的一个内角为36º,求原三角形最大内角的所有可能值.专题2 重要的30°1. A 已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =12∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =12DB .2. B 如图,在一场足球比赛中,球员A 欲传球给同伴B ,对方球员C 意图抢断传球,已知球速为16m/s ,球员速度为8m/s.当球由A 传出的同时,球员C 选择与AC 垂直的方向出击,恰好在点D 处将球成功抢断,则角α=.(球员反应速度、天气等其他因素均不予考虑)1. A 如图,△ABC 中,∠C =90°,∠B =30°,AD 平分∠BAC 交BC 于D . 求证:BD =2CD .CB2. A 如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°,AC=2,求AB的长.1. B 如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为,ME的长为.专题3 反证法1. A 求证:一个三角形中至多有一个钝角.2. B 用反证法证明:若a ,b 是正整数,ab 能被3整除,那么a ,b 中至少有一个能被3整除.1. C 已知:在同一平面内,直线m ⊥l ,直线n 与l 相交但不垂直,求证:直线m 、n 相交.1. C 设x ,y等腰三角形习题课1. B 已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD .C B2. C 如图,在△ABC 中,∠B =90°,M 是AC 上任意一点(M 与A 不重合)MD ⊥BC ,交∠BAC 的平分线于点D ,求证:MD =MA .3. C 如图,∠AOB 是一钢架,且∠AOB =15°,为了使钢架更加坚固,需要其内部添加一些钢管EF 、FG 、GH ,···,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.4. B 如图,△ABC 为等边三角形,∠BAD = ∠CBE =∠ACF .(1)求∠EDF 的度数;(2)求证:△DEF 为等边三角形.BOB5. B 已知,△ABC 中,∠C =90°,∠A =30°,请证明:AB =2BC .6. B 已知△ABC 是等边三角形,D 、E 、F 分别是各边上的一点.(1)若AD =BE =CF .试证明△DEF 是等边三角形.(2)若△DEF 是等边三角形,那么AD =BE =CF 成立吗?若成立,请证明;若不成立,请说明原因.7. B 如图,等边△ABC 与等边△DEC 共顶点于C 点.求证:AE =BD .BB8. C 如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线与BC 交于点D ,交AB 于E ,DB =8,求AC 的长.9. C 如图,点O 是等边△ABC 内一点,∠AOB =105°,∠BOC =α.以OC 为边作等边△OCD ,连接AD .(1)请证明:OB =AD .(2)△AOD 能否成为等边三角形?如能,请求出α的值;如不能,请说明理由.DBB10. C 等腰三角形的底角为15°,腰长为2,则该等腰三角形的面积是.2 直角三角形专题1 直角三角形1. A 如图,∠C=∠D=90°,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?2. B 如图,∠ACB =90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?变式1:若∠ACD=∠B,∠ACB=90°,则CD是△ACB的高吗?为什么?变式2:若∠ACD=∠B,CD⊥AB,则△ACB为________三角形.变式3:如图,若∠C=90°,∠AED=∠B,则△ADE是___________三角形.3. A 判断正误:这样描述勾股定理的逆定理正确吗?如果一个三角形斜边的平方等于直角边的平方和,那么这个三角形为直角三角形.4. A 分别以下列四组数为一个三角形的边长(1)1,2,3;(2)3,4,5;(3)5,12,13;(4)6,8,10.其中能组成直角三角形的有()A.4组B.3组C.2组D.1组5. B 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CF、EF D.GH、AB、CD6. A 在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,则下列说法中错误的是( ).A .如果∠C -∠B =∠A ,那么△ABC 是直角三角形,∠C =90°B .如果a :b :c =3:4:5,则∠B =60°,∠A =30°C .如果∠A :∠B :∠C =5:2:3,那么△ABC 是直角三角形D .如果c 2-a 2=b 2,那么△ABC 是直角三角形7. B 如图所示,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,∠A =90°,求四边形ABCD 的面积.1. B 若两个三角形的两边和其中一边上的高对应相等,则这两个三角形第三边所对的角的关系是_______.2. C 【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】(1)第一种情况:当∠B 是直角时,△ABC ≌△DEF .如图1,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据__________,可以知道Rt △ABC ≌Rt △DEF .B(2)第二种情况:当∠B是钝角时,△ABC≌△DEF.如图2,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.(3)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.①在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图3中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)②∠B还要满足什么条件,就可以使△ABC ≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若_________,则△ABC≌△DEF.3. C 下列4个判断是否正确?若正确,说明理由;若不正确,请举出反例.(1)有两边及其中一边上的高对应相等的两个三角形全等;(2)有两边及第三边上的高对应相等的两个三角形全等;(3)三角形6个边、角元素中,有5个元素分别相等的两个三角形全等;(4)有一边及其他两边上的高对应相等的两个三角形全等.专题2 逆命题和逆定理1. A 指出下列命题的题设和结论,并说出它的逆命题. 等边三角形的每个角都等于60°.2. A 指出下列命题的题设和结论,并说出它的逆命题.如果一个三角形是直角三角形,那么它的两个锐角互余.3. A 在你学过的定理中,有哪些定理有逆定理?试举出几个例子说明.线段垂直平分线上的点到这条线段的两个端点的距离相等.4. A 在你学过的定理中,有哪些定理有逆定理?试举出几个例子说明. 1.同旁内角互补,两直线平行;2.有两个角相等的三角形是等腰三角形;3.到一个角的两边距离相等的点,在这个角的角平分线上.专题3 斜边、直角边判定定理1. A 已知:如图,△ABC 中,AB =AC ,过点A 作BC 边上的高AD ,求证:△ABD ≌△ACD .2. A 已知:如图,点E 、F 在线段BD 上,AF ⊥BD ,CE ⊥BD ,AD =CB ,DE =BF ,求证:AF =CE .3. A 已知:如图,AB ⊥BD ,AC ⊥CD ,要使△ABD ≌△ACD ,若根据“HL”判定,还需要加条件___________________,若加条件∠BAD =∠CAD ,则可用________________判定.CA4. A 如图,△ABC 中,AD 为BC 边上的中线,由点D 分别向AB 、AC 两边引垂线,并与AB 、AC 交于E 、F 两点,且BE =CF ,请判断AD 是否为∠BAC 的角平分线,并证明.3 线段的垂直平分线1. A 如图,点D 是△ABC 内一点,且AB =AC ,DB =CD ,求证:线段AD 在线段BC 的垂直平分线上.B2. B 求证:三角形的三条垂直平分线交于一点.3. A 如图,已知线段AB ,分别以点A 、点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P 、M ,连接P A 、PB 、MA 、MB ,则下列结论一定正确的是( )A. P A =MAB. MA=PEC. PE =BED. P A =PB4. A 如图所示,A 、B 为2个村庄,现在政府想在河道l 上建一个供水站点C ,请你设计一个方案,使供水站到两村庄的距离相等,不写画法,但要保留作图痕迹 .B1. A 如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB2. A 如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.3. C 小傲做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)小德同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意小德的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.4. B △ABC 中,边AB 、AC 的垂直平分线交于点P ,求证:点P 也在BC 的垂直平分线上.5. C △ABC 中,D 为BC 中点,DE ⊥BC 交∠BAC 的平分线于点E ,EF ⊥AB 于F ,EG ⊥AC 于G .求证:BF =CG .6. C 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在AC ,BC 两边高线的交点处B .在AC ,BC 两边中线的交点处C .在AC ,BC 两边垂直平分线的交点处D .在∠A ,∠B 两内角平分线的交点处BB1. C 在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB、CE、ED可以构成一个含有多少度角的三角形,并证明.2. B 如图,在Rt△ABC中,∠ACB=45°,∠BAC =90°,点D是AB的中点,AF⊥CD于H交BC于F,BE//AC交AF的延长线于E.求证:BC垂直且平分DE.3. B 已知,如图△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.求证:∠EAF=∠ABD.4. C 已知△ABC内一点M满足∠BMC=100︒,线段BM的中垂线交边AB于点P,线段CM的中垂线交边AC于点Q,∠A=20︒,求证:P、M、Q三点共线.4 角平分线专题1 角平分线的性质和判定1. A 如图,在△ABC 中,D 为△ABC 边BC 上一点,DE ⊥AB 于E ,DF ⊥AC 于F ,且DE =DF ,M 为AD 上任意一点,则下列结论错误的是( )A .AD 平分∠BACB .ME =MFC .AE =AFD .BD =DC2. A 如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,且BD =CD .求证:AD 平分∠BAC .3. A 如图,AD ⊥DC ,BC ⊥DC ,E 是DC 中点,且AE 平分∠DAB .求证:BE 平分∠ABC .BA4. A 已知:△ABC 中,PB 、PC 分别平分∠ABC 和∠ACB .求证:AP 平分∠BAC .5. A 如图所示,BD 平分∠ABC ,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM =PN .6. A 已知,在四边形ABCD 中对角线AC 平分∠DAB ,且∠DAB =120°,∠B 和∠D 互补.求证:AB +AD =AC .B1. B (1)如图,△ABC 中,PB 、PC 分别平分∠ABC 、∠ACB ,求证:点P 在∠A 的角平分线上.(2)求证:三角形两外角平分线所在直线的交点,在第三个角内角平分线所在直线上.2. B 如图,已知△ABC 的周长是21,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是多少?BB3. A 如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP4. A 在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,求PE的长.5. A 如图,AD为△ABC的角平分线,AD的中垂线交AB于点E、交BC的延长线于点F,AC于EF交于点O.(1)求证:∠3=∠B;(2)连接OD,求证:∠B+∠ODB=180°.6. B 如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.1. C 在△ABC中,如图,分别以△ABC的边AB、AC为边向外作等腰三角形ABD和ACE,AB=AD,AE=AC,∠DAB=∠CAE,CD与BE相交于点O.(1)求证:BE=CD;(2)若设∠BAD=α,∠AOE=β,则用α表示β为,并证明你的结论.专题2 角平分线的模型1. A 如图,在△ABC中,(1)PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2;(2)PB、P A为平分线,证明PC也是平分线;(3)PC、P A为平分线,证明PB也是平分线.2. B △ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,连接AP、CP,若∠BPC=40°,求∠CAP的度数.3. B 如图,△ABC中,∠ABC、∠EAC的角平分线PB、P A交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若PM⊥BE,PN⊥BC,则AM+CN=AC;④∠BAC=2∠BPC .其中正确的是( )A.只有①②③B.只有①③④C.只有②③④D.只有①③4. B 已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC. 求证:BC=AB+CD.5. B 已知:如图,四边形ABCD中,∠B+ ∠D =180°,AC平分∠BAD.求证:BC=CD.6. B 在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于E ,求证:BE =1()2AC AB .7. B 已知,如图1,△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线相交于点O ,过O 点作EF ∥BC 交AB 、AC 于点E 、F .①图中有几个等腰三角形,请说明EF 与BE 、CF 间有怎样的关系?②若AB ≠AC ,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们,另第①问中EF 与BE 、CF 的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F,如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?8. B 如图,正方形ABCD中,F为BC的中点,E为AB上的一点,且DF平分∠CDE,求证:DE=BC+EB .1. B 如图,在Rt△ABC中,∠ACB=90°,∠CAB =60°,∠ACB的平分线与∠ABC的外角平分线交于点E,则∠AEB=_______.2. C 如图,△ABC中,AB=AC,∠A=20°,BD平分∠ABC,求证:BD+BC=AD.3. C 如图,在△ABC中,AC=BC,∠ACB=90°,点D是AC上一点,且AE垂直BD的延长线于点E,AE=12BD,求证:BD是∠ABC的平分线.三角形综合习题课1. A 如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC2. A 如图,已知点A 、D 、C 、F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA =∠FB .∠B =∠EC .BC ∥EFD .∠A =∠EDF3. A 如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,且AD 平分∠BAC ,则下列结论中不正确的是( )A .△ADF ≌△ADEB .△BDF ≌△CDEC .△ABD ≌△ACDD .BD =AD4. A 如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .求证:△BEC ≌△CDA .AA1. B 如图,在四边形ABCD 中,点E 是BC 的中点,点F 是CD 的中点,且AE ⊥BC ,AF ⊥CD .(1)求证:AB =AD ;(2)请你探究∠EAF ,∠BAE ,∠DAF 之间有什么数量关系?并证明你的结论.2. B 两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题,试验与论证:设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ、4θ、5θ、6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ= ,4θ= ,5θ= ,6θ= ;(2)连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图证明;若不存在,请说明理由;归纳与猜想:设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中A 1与B 1重合),现将正多边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(0°<α<180n︒); (3)设n θ与上述“3θ、4θ… ”的意义一样,请直接写出n θ的度数; (4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.3. B 如图△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE,BE的长.4. B C是线段AB的中点,在CE上取两点D、E.(1)若AD = BE,求证:∠ADC=∠E;(2)若∠ADC=∠E,求证:AD = BE.A已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC 于F,求证:AF=EF.已知:如图,在△ABC中,AC≠AB,D、E在BC上,且DE=EC,过D作DF//BA交AE 于点F,DF=AC.求证:AE平分∠BAC.5. B 在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF、CF之间的数量关系,并证明你的结论.1. C 如图,在等腰△ABC 中,AB =AC ,点D 为AB 左侧的一个动点,点E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?2. C 如图,已知AB =CD =AE =BC +DE =2,∠ABC =∠AED =90°,求五边形ABCDE 的面积.3. B 如图,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.4. C 已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F . 求证:BE CF EF +>.5. C 如图,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.6. B 如图,ABC ∆中,2C B ∠=∠,AD BC ⊥.求证AC BD DC =-.7. C 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为( )A .aB .kC .2k h D .h8. C 如图,已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE .9. C 如图,求出图中∠DCA 的角度.期中期末串讲—三角形的证明1. B 如图,△ABC中,AB=AC,∠BAC=108°,若AD,AE三等分∠BAC,则图中等腰三角形有( )A.3个B.4个C.5个D.6个2. A 下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形3. B 如图,在纸片△ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,求折痕DE的长.4. B 已知:△ABC的∠B的外角平分线BD与∠C的外角平分线CE相交于点P.求证:点P也落在∠A的平分线上.5. A 平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B2C3.(3)写出点A1,B2,C3的坐标.6. B 已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.7. A 根据下列已知条件, 不能唯一确定△ABC的大小和形状的是( )A.AB=3,BC= 4,AC=5B.AB= 4,BC=3,∠A=30ºC.∠A=60º,∠B= 45º,AB= 4D.∠C=90º,AB=6,AC=58. A 如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.参考答案第一章三角形的证明1 等腰三角形专题1 等腰三角形和等边三角形1.证明:∵D是等边三角形ABC的AC边上的中点,∴BD平分∠ABC(等腰三角形三线合一),∴∠CBD=12∠ABC=30°,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=∠CDE+∠E=2∠E,∴∠E=30°=∠CBD,∴BD=DE(等角对等边).2.证明:如图,连接P A,PB,PC,则S△ABC= S△P AB+S△PBC+S△P AC,∴S△ABC=S△P AB+S△PBC+S△P AC=12PE×AB+12PD×BC+12PF×AC,又∵AB=BC=AC,∴S△ABC=12(PE+PF+PD)×BC,又∵S△ABC=12AH×BC,∴PE+PF+PD=AH.3.证明:在△ABD和△CAE中,∵,,,DBA EA BD AEBA ACC ⎧⎪==∠=⎨∠⎪⎩∴△ABD ≌△CAE (SAS).4.证明:方法一:如图,作△ABC 中BC 边上的高线,垂足为D , 在Rt △ADB 和Rt △ADC 中,∵,,,B C ADB AD AD AD C =⎧⎪⎨⎪=∠∠∠=⎩∠∴Rt △ADB ≌Rt △ADC (AAS)∴AB =AC .方法二:如图,作△ABC 中∠BAC 的角平分线AD ,在△ADB 和△ADC 中,∵,,,AD A BAD CAD B D C ∠∠∠=∠=⎧⎪⎨⎪=⎩∴△ADB ≌△ADC (AAS),∴AB =AC .方法三:将△ABC 视为△ABC 和△ACB 两个三角形,在△ABC 和△ACB 中,∵,,,BC B C C B CB ∠∠∠=⎧∠==⎪⎨⎪⎩∴△ABC ≌△ACB (ASA),∴AB =AC .5.证明:∵OA =OB ,∴∠A =∠B ,又∵AB ∥DC ,∴∠C =∠B ,∠D =∠A ,∴∠C =∠D ,∴OC =OD ,∴△OCD 是等腰三角形.6. A .7. D .8. D .9. C .10.证明:∵△ABC 是等边三角形,且AD =BE =CF ,∴AF =BD =CE ,在△ADF 、△BED 和△CFE 中,∵,,AD BE CF C AF BD B E A C ==∠∠∠=⎧==⎪=⎪⎨⎩,∴△ADF ≌△BED ≌△CFE (SAS),∴DF =ED =FE ,∴△DEF 是等边三角形.11.△CDE 是等边三角形证明:∵△AEC 由△BDC 绕着点C 旋转而成, ∴△AEC ≌△BDC ,∴CD =CE ,∴△CDE 是等腰三角形,又∵∠BCD =∠ACE ,∴∠BCD +∠ACD =∠ACE +∠ACD ,即∠ACB =∠ECD ,∴∠ECD =60°,∴△CDE 是等边三角形.1.证明:∵AD =AE∴∠ADE =∠AED∴∠ADB =∠AEC∴△ABD 和△ACE 中,BD =CE ,∠ADB =∠AEC ,AD =AE∴△ABD ≌△ACE (SAS )∴∠B =∠C2.证明:∵AB=AC, ∠A=60°,∵△ABC为等边三角形,∵BD是中线,∵∵CBD=∵ABD=30°,∵CE=CD,∵∵E=∵CDE=12∵BCD,∵∵BCD=60°,∵∵E=30°,∵∵E=∵CBD,∵DB=DE.3.证明:∵∵EAC+∵ECA=90°,∵BCF+∵ECA=90°,∵∵ECA=∵BCF,∵△AEC和△CFB中,∵EAC=∵FCB,∵AEC=∵CFB=90°,AC=CB,∵△AEC∵△CFB(AAS),∵AE=CF,∵BF=CE,∵EF=AE+BF.4.证明:∵∵ABC为等边三角形,∵∵BAC=∵BCA =∵B =60°,AB=AC,∵CE平分∠ACD,∵∵ACE=∵ECD =60°,∵∵ABD和∵ACE中,AB=AC,∵B =∵ACE =60°,BD=CE,∵∵ABD∵∵ACE(SAS),∵AD=AE,∵BAD=∵CAE,∵∵BAC=∵DAE=60°,∵∵ADE为等边三角形.1.等腰直角三角形.证明:连接MA,∵∠EAD=30°,∠BAC=60°,∴∠DAB=90°∵△EDA≌△CAB,∴DA=AB,ED=CA.∴△DAB是等腰直角三角形,∴∠MDA=∠MBA=45°又∵M为BD的中点,∴∠DAM=∠MAB=45°,AM⊥BD.∴△DAM与△MAB是等腰直角三角形.∴AM=MD=MB=12 BD.∴∠MDE=∠MAC=105°.∵DE=AC,∠MDE=∠MAC,MD=AM,∴△MDE≌△MAC.∴∠DME=∠AMC,ME=MC,又∵∠DMA=90°,∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.∴△EMC是等腰直角三角形.2. C.3.1.5.4.67°.5.原三角形最大内角可能是72°,90°,108°,126°,132°.专题2 重要的30°1.证明:∵∠BAD=12∠BAC,DE⊥AB,DC⊥AC,∴DC=DE(垂直平分线上的点到角两边的距离相等),∴在△ADE和△BDE中,。
北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.52、在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,∠B的度数为()A.20°或70°B.30°或60°C.25°或65°D.35°或65°3、下列命题中错误的有()个( 1 )等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1B.2C.3D.44、如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.55°B.40°C.35°D.20°5、如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个6、如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是( )A. B. C. D.AC=AB7、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D 点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cmB.18cmC.20cmD.22cm8、等腰三角形一个为50°,则其余两角度数是()A.50°,80°B.65°,65°C.50°,80°或65°,65° D.无法确定9、如图,在中,,则的度数为()A. B. C. D.10、下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个11、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A.2B.8C.2D.1012、等腰三角形的两边长是6cm和3cm,那么它的周长是( )A.9cmB.12 cmC.12 cm或15 cmD.15 cm13、如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为( )A. B. C.8 D.914、已知一个等腰三角形的两边长是3cm和7cm,则它的周长为A.13 cmB.17cmC.13cm或17cmD.10cm或13cm15、△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°二、填空题(共10题,共计30分)16、如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为________17、如图,在Rt△ACB中,∠C=90°,∠ABC=30°,AC=4,N是斜边AB上方一点,连接BN,点D是BC的中点,DM垂直平分BN,交AB于点E,连接DN,交AB于点F,当△ANF为直角三角形时,线段AE的长为________.18、如图,在Rt△ABC中,∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长度是________cm.19、如图,于,于,且.若,,则的大小为________度.20、如图,在中,点在上,,点在的延长线上,,连接,则的度数为________ .21、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.若∠B=30°,CD=1,则BD的长为________.22、如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为________cm .cm23、如图,四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,射线BE交AD于点F,交AC于点O.若点O恰好是AC的中点,则CD的长为________.24、如图, AB的垂直平分线MN交AB于点M,交AC于点D,若∠A=38°,则∠BDM=________度.25、如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有________处。
北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A.15°B.30°C.40°D.50°2、如下图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中等腰三角形的个数是()A.1个B.2个C.3个D.4个3、已知等腰三角形的一边长为,另一边长为,则它周长是()A. B. C. D. 或4、如图,△ABC中,AB=AC,BD=CE,CD=BF,若∠A=50°,则∠EDF=()A.80°B.65°C.50°D.20°5、如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于点E,连接CE交AD于点H,则图中的等腰三角形有()A.5个B.4个C.3个D.2个6、已知等腰三角形的一个外角等于100,则它的顶角是().A.80°B.20°C.80°或20°D.不能确定7、如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF 的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.8、如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180°9、在等腰三角形ABC中,∠A=80°.则∠B的度数不可能为()A.20°B.40°C.50°D.80°10、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,E在BC的延长线上,连接AE,∠E=2∠CAD,下列结论:①AD⊥BC;②∠E=∠BAC;③CE=2CD;④AE=BE.其中正确的个数是()A.1个B.2个C.3个D.4个11、已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.1212、等腰三角形一边长是3cm,另一边长是8cm,则等腰三角形的周长是()A.14cm或19cmB.19cmC.13cmD.以上都不对13、如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°14、“三等分角”大约是在公元前五世纪由古希腊人提出来的。
北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,A(0,3),B(0,6),动点C在直线y=x上,若以A,B,C三点为顶点的三角形是等腰三角形,则符合条件的点C的个数是()A.2B.3C.4D.52、如图,在中,垂直平分,与交于点下列结论正确的是()A. B. C. D.3、如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm.若点P在直线MN上,则PA-PB的最大值为()A.12cmB.8cmC.6cmD.2cm4、已知等腰三角形的一个外角等于100°,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定5、已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个6、如图,矩形中,E是的中点,且,当时,等于()A. B. C. D.7、如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于( )A.60°B.120°C.90°D.45°8、到三角形三个顶点距离相等的点是()A.三条边的垂直平分线的交点B.三条高线的交点C.三条边的中线的交点D.三条角平分线的交点9、下列能断定△ABC为等腰三角形的是()A.∠A=30º、∠B=60ºB.∠A=50º、∠B=80ºC.AB=AC=2,BC=4 D.AB=3、BC=7,周长为1310、已知等腰三角形的顶角等于30°,则这个等腰三角形的底角等于()A.120°B.75°C.60°D.30°11、若等腰三角形的两边长分别是5和10,则它的周长是()A.20B.25C.20或25D.以上都不对12、如图,在中,,,的垂直平分线交于点D,连接,若,则的长是()A. B. C.10 D.813、如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=()A.50°B.45°C.30°D.25°14、如图,在△ABC中,BC边的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为()A.18B.12C.6D.415、等腰三角形的底角为30°,腰长为2,则此三角形面积为()A. B. C.2 D.2二、填空题(共10题,共计30分)16、如图,菱形的边长为,,将该菱形沿AC方向平移得到四边形,交CD于点E,则点E到AC的距离为________ .17、如图,在扇形AOB中,,半径OC交弦AB于点D,且.若,则阴影部分的面积为________.18、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°.19、如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ADC的度数为________.20、如图,△ABC的周长为26,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长是________.21、等腰三角形的一个外角为40°,则底角的大小为________.22、在平面直角坐标系中,点的坐标为,点在第一象限且点的纵坐标为.当是腰长为的等腰三角形时,则点的坐标为________.23、如图,在△ABC中,∠ABC=90°,∠C=25°,DE是边AC的垂直平分线,连结AE,则∠BAE等于________.24、已知AB为⊙O的直径AC、AD为⊙O的弦,若AB=2AC= AD,则∠DBC的度数为________.25、如图,在△ABC中,AB=7cm,AC=4cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为________ cm.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.28、如图所示,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13 m,求旗杆AB的高.29、如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(Ⅰ)求∠OBC+∠ODC的值;(Ⅱ)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(Ⅲ)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.30、如图所示,已知点P是△ABC三条角平分线的交点,PD⊥AB,若PD=5,△ABC的周长为20,求△ABC的面积.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、C5、A6、B7、A8、A9、B10、B11、B12、D13、D14、C15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。