2014版高中数学复习方略配套课件:6.5合情推理与演绎推理(北师大版 理 通用)
- 格式:ppt
- 大小:3.35 MB
- 文档页数:46
【全程复习方略】2014版高考数学 6.5合情推理与演绎推理课时提升作业理北师大版一、选择题1.(2013·上饶模拟)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是( )(A)n+(n+1)+(n+2)+…+(3n-2)=n2(B)n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(C)n+(n+1)+(n+2)+…+(3n-1)=n2w(D)n+(n+1)+(n+2)+…+(3n-1)=(2n-1)22.(2013·宝鸡模拟)观察下列数1,3,2,6,5,15,14,x,y,z,122,…中x,y,z的值依次是( )(A)13,39,123 (B)42,41,123(C)24,23,123 (D)28,27,1233.如图是2012年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )4.(2013·海口模拟)记S n是等差数列{a n}前n项的和,T n是等比数列{b n}前n项的积,设等差数列{a n}公差d ≠0,若对小于2011的正整数n,都有S n=S2011-n成立,则推导出a1006=0.设等比数列{b n}的公比q≠1,若对于小于23的正整数n,都有T n=T23-n成立,则( )(A)b11=1 (B)b12=1(C)b13=1 (D)b14=15.将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数列”.根据图形的构成,此数列的第2 012项与5的差,即a2 012-5=( )(A)1 009×2 011 (B)1 009×2 010(C)1 009×2 009 (D)1 010×2 0116.已知f1(x)=sinx+cosx,记f2(x)=f'1(x),f3(x)=f'2(x),…,f n(x)=f'n-1(x)(n∈N+且n≥2),则f1()+f2()+…+f2012()= ( )(A)503 (B)1006 (C)0 (D)20127.求的值时,采用了如下的方法:令=x,两边同时平方,得2,由极限的概念,上式可以化为1+x=x2,解得x=负值舍去).类比上述方法,可求得111212++++⋯的值为( )8.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如图(阴影区域及其边界):其中为凸集的是( )(A)①②(B)②③(C)③④(D)①④二、填空题9.(能力挑战题)方程f(x)=x的根称为 f (x)的不动点,若函数f(x)=有唯一不动点,且x1=1000,x n+1=(n∈N*),则x2012= .10.(2013·黄山模拟)给出如下定理:“若Rt△ABC的斜边AB上的高为h,则有=+”,在四面体P -ABC 中,若PA,PB,PC两两垂直,底面ABC上的高为h,类比上述定理,得到的正确结论是.11.(2013·长安模拟)已知i1=i,i2=-1,i3=-i,i4=1,i5=i,…由此可猜想i2014= .12.(能力挑战题)已知P(x0,y0)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得:在y2=2px两边同时求导,得:2yy'=2p,则y'=,所以过P的切线的斜率:k=.试用上述方法求出双曲线x2-=1在P(,)处的切线方程为.三、解答题13.(2013·潍坊模拟)某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f (n)个小正方形.(1)求出f(5).(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的关系式.答案解析1.【解析】选B.由已知的三个式子归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2,右边均为2n-1的平方,故得出的一般结论为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.2.【解析】选B.∵3=1×3,2=3-1,6=2×3,5=6-1,15=5×3,…∴从第一个数开始每两个数为一组,每组的第二个都是第一个的3倍,且下一组的第一个数是上一组的第二个数减1,故x=14×3=42,y=42-1=41,z=41×3=123,∴x,y,z分别为42,41,123.3.【解析】选A.观察可知:该五角星对角上的两盏花灯(相连亮的看成一盏)依次按顺时针方向隔一盏闪烁,故下一个呈现出来的图形是A.4.【解析】选B.由等差数列中S n=S2011-n,可导出中间项a1006=0,类比得等比数列中T n=T23-n,可导出中间项b12=1.5.【思路点拨】观察已知的三个图形中点的个数及其规律,从而得到一般结论,再求a2 012,得到表达式后通过化简变形与选项对照得出正确答案.【解析】选A.由给出的三个图形可知,第n个图形中共有2+3+4+…+(n+2)=()()n4n12++个点,因此数列的第2 012项为a2 012=2 016 2 0132⨯,于是a2 012-5=2 016 2 0132⨯-5=1 008×2 013-5=1 009×2 013-2 013-5=1 009×2 011+2 018-2 013-5=1 009×2 011.6.【思路点拨】先观察,归纳出f n(x)的解析式的周期,再代入求解.【解析】选C.由已知可得f1(x)=sinx+cosx,f2(x)=cosx-sinx,f3(x)=-sinx- cosx,f4(x)=sinx-cosx,f5(x)=sinx+cosx,…,因此f1()+f2()+…+f2012() =503[f1()+f2()+f3()+f4()]=503(1-1-1+1)=0.7.【解析】选C.令x=111212++++⋯,由极限的概念,可化为x=1+12x+,得x2+x-3=0,于是1x2=(负值舍去).【方法技巧】解题的关键是从欲求值式子的无限性出发,用变量表示其值,然后建立关于这个变量的方程,通过解方程求得式子的值.8.【思路点拨】根据凸集的定义,结合图形的形状特征即可判定.【解析】选B.根据凸集的定义,结合图形任意连线可得②③为凸集.9.【解析】由=x得ax2+(2a-1)x=0.因为f(x)有唯一不动点,所以2a-1=0,即a=.所以f(x)=.所以x n+1===x n+.所以x2012=x1+×2011=1000+=.答案:10.【解析】由平面类比到空间,在四面体P -ABC中,若PA,PB, PC两两垂直,底面ABC上的高为h,则=++.答案:=++11.【解析】由已知可知,i4n=1,∴i2014=i503×4+2=i2=-1.答案:-1【变式备选】设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,故f n(x)= .【解析】根据题意知,分子都是x,分母中的常数项依次是2,4,8,16,…可知f n(x)的分母中常数项为2n,分母中x的系数为2n-1,故f n(x)=.答案:12.【解析】用类比的方法对=x2-1两边同时求导得,yy'=2x,∴y'=,∴y'===2,∴切线方程为y-=2(x-),∴2x-y-=0.答案:2x-y-=013.【解析】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(5)=25+4×4=41.(2)由f(2)-f(1)= 4=4×1.f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,…得f(n+1)-f(n)=4n.∴f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,…f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1)∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)] =2n(n-1),∴f(n)=2n2-2n+1.。
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第七章 推理与证明第1课时 合情推理与演绎推理1. (选修12P 35练习题4改编)“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理错误的原因是______________.答案:大前提错误解析:y =a x是增函数这个大前提是错误的,从而导致结论错. 2. (选修12P 35练习题3改编)用三段论的形式写出“矩形的对角线相等,正方形是矩形,所以正方形的对角线相等.” 的演绎推理过程________________________________________________________________________________________________________________________________________________. 答案:每一个矩形的对角线相等(大前提) 正方形是矩形(小前提) 正方形的对角线相等(结论)3. (选修12P 29练习题3(2) 改编)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2解析:等式右边的底数为左边的项数.4. (选修12P 29练习题3(2)改编)观察下列等式: 21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为______________________.答案:n +1n +(n +1)=n +1n×(n +1)(n∈N *)解析:由归纳推理得n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n , n +1n×(n +1)=(n +1)2n ,所以得出结论n +1n +(n +1)=n +1n×(n +1)(n∈N *). 5. 已知扇形的弧长为l ,所在圆的半径为r ,类比三角形的面积公式:S =12×底×高,可得扇形的面积公式为________.答案:12rl1. 归纳推理(1) 归纳推理的定义从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理. (2) 归纳推理的思维过程大致如图实验、观察―→概括、推广―→猜测一般性结论(3) 归纳推理的特点① 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.② 由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.③ 归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2. 类比推理(1) 根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理.(2) 类比推理的思维过程观察、比较―→联想、类推―→猜测新的结论3. 演绎推理(1) 演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程.(2) 主要形式是三段论式推理. (3) 三段论的常用格式为 M — P(M 是P)① S -M(S 是M)② S — P(S 是P)③ 其中,①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般原理,对特殊情况作出的判断.[备课札记]题型1 归纳推理例1 在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎪⎫a n +1a n .(1) 求a 1,a 2,a 3;(2) 由(1)猜想数列{a n }的通项公式; (3) 求S n .解:(1) 当n =1时,S 1=12⎝⎛⎭⎪⎫a 1+1a 1,即a 21-1=0,解得a 1=±1.∵ a 1>0,∴ a 1=1;当n =2时,S 2=12⎝ ⎛⎭⎪⎫a 2+1a 2,即a 22+2a 2-1=0.∵ a 2>0, ∴ a 2=2-1.同理可得,a 3=3- 2.(2) 由(1)猜想a n =n -n -1.(3) S n =1+(2-1)+(3-2)+…+(n -n -1)=n. 变式训练已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n∈N *),则a 3=________,a 1·a 2·a 3·…·a 2007=________.答案:-123解析:(解法1)分别求出a 2=-3、a 3=-12、a 4=13、a 5=2,可以发现a 5=a 1,且a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3.(解法2)由a n +1=1+a n1-a n,联想到两角和的正切公式,设a 1=2=tan θ,则有a 2=tan ⎝ ⎛⎭⎪⎫π4+θ,a 3=tan ⎝ ⎛⎭⎪⎫π2+θ,a 4=tan ⎝ ⎛⎭⎪⎫3π4+θ,a 5=tan(π+θ)=a 1,….则a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3. 题型2 类比推理例2 现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.答案:a 38解析:在已知的平面图形中,中心O 到两边的距离相等(如图1),即OM =ON.四边形OPAR是圆内接四边形,Rt △OPN ≌Rt △ORM ,因此S 四边形OPAR =S 正方形OMAN =14a 2.同样地,类比到空间,如图2.两个棱长均为a 的正方体重叠部分的体积为18a 3.备选变式(教师专享)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 为椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y2b2=1写出具有类似特性的性质,并加以证明.解:类似的性质为:若M 、N 是双曲线:x 2a 2-y2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.证明如下:设点M 的坐标为(m ,n),则点N 的坐标为(-m ,-n),其中m 2a 2-n2b2=1.又设点P 的坐标为(x ,y),由k PM =y -n x -m ,k PN =y +n x +m ,得k PM ·k PN =y -n x -m ·y +n x +m =y 2-n2x 2-m2,将y 2=b 2a 2x 2-b 2,n 2=b 2a 2m 2-b 2代入得k PM ·k PN =b 2a2.题型3 演绎推理例3 设同时满足条件:①b n +b n +22≤b n +1(n∈N *);②b n ≤M (n∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界” 数列.(1) 若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2) 判断(1)中的数列{S n }是否为“特界” 数列,并说明理由. 解:(1) 设等差数列{a n }的公差为d ,则a 1+2d =4,3a 1+3d =18,解得a 1=8,d =-2,S n =na 1+n (n -1)2d =-n 2+9n.(2) 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }适合条件①,而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n∈N *),则当n =4或5时,S n 有最大值20.即S n ≤20,故数列{S n }适合条件②. 综上,数列{S n }是“特界”数列. 备选变式(教师专享)设数列{}a n 满足a 1=0且11-a n + 1 -11-a n= 1.(1) 求{}a n 的通项公式;(2) 设b n =1-a n +1n,记S n =k =1n b k ,证明:S n <1.(1)解: 由题设11-a n +1-11-a n=1,即⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列. 又11-a 1=1,故11-a n =n.所以a n =1-1n . (2) 证明: 由(1)得b n =1-a n +1n =n +1-n n +1·n =1n-1n +1,S n=1111n nkk k b ====-邋1. 观察下列不等式:1+122<32;1+122+132<53;1+122+132+142<74;…;照此规律,第五个不等式是________. 答案:1+122+132+142+152+162<1162. 观察下列各式:a +b =1;a 2+b 2=3;a 3+b 3=4;a 4+b 4=7;a 5+b 5=11;…;则a 10+b 10=________.答案:123解析:(解法1)由a +b =1;a 2+b 2=3得ab =-1代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.(解法2)令a n =a n +b n,易得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3. 在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案:1∶8解析:考查类比的方法,V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18,所以体积比为1∶8.4. (选修12P 31练习题2改编)在平面几何里可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的13”.拓展到空间,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的________ .答案:14解析:运用分割法思想,设正四面体的高为h ,底面面积为S ,正四面体SABC 的内切球的半径为R ,球心为O ,连结OS 、OA 、OB 、OC ,将四面体分成四个三棱锥,则V S ABC =V O SAC+V O SAB +V O SBC +V O ABC =13SR +13SR +13SR +13SR =43SR =13Sh ,所以R =14h.5. (2013·镇江期末)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________.答案:1-1(n +1)·2n1. (2012·江西文)观察下列事实|x|+|y|=1的不同整数解(x ,y)的个数为4 , |x|+|y|=2的不同整数解(x ,y)的个数为8, |x|+|y|=3的不同整数解(x ,y)的个数为12 ….则|x|+|y|=20的不同整数解(x ,y)的个数为________.答案:80解析:由已知条件,得|x|+|y|=n(n∈N *)的整数解(x ,y)个数为4n ,故|x|+|y|=20的整数解(x ,y)的个数为80.2. 若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则数列{nT n }为等比数列,公比为________.答案:q解析:T n =b n1qn (n -1)2,n T n =b 1(q)n -1. 3. 若一个n 面体有m 个面是直角三角形,则称这个n 面体的直度为mn,如图,在长方体ABCDA 1B 1C 1D 1中,四面体A 1ABC 的直度为________.答案:1解析:n =4,m =4,m n =44=1.4. 若P 0(x 0,y 0)在椭圆x 2a2+y2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1、P 2,则切点弦P 1P 2所在的直线方程是x 0x a2+y 0yb2=1.那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线的切点分别为P 1、P 2,则切点弦P 1P 2所在的直线方程是________.答案:x 0x a 2-y 0y b2=1解析:设P 1(x 1,y 1),P 2(x 2,y 2),P 0(x 0,y 0),则过P 1、P 2的切线方程分别是x 1x a2-y 1yb2=1,x 2x a 2-y 2y b 2=1.因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1. 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a2-y 0y b 2=1上,故切点弦P 1P 2所在的直线方程是x 0xa2-y 0yb 2=1.1. 合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新的结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路和方法.2. 合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想.3. 演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论,数学问题的证明主要通过演绎推理来进行.4. 合情推理仅是符合情理的推理,他得到的结论不一定真,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).请使用课时训练(A)第1课时(见活页).[备课札记]。