1-2介质的电磁性质
- 格式:ppt
- 大小:2.08 MB
- 文档页数:27
介质的极化和介电常数介质是指具有一定的电导率、介电常数、介磁常数和磁导率的物质,因此,在电磁学中,介质起着非常重要的作用。
介质的极化和介电常数是介质的两个重要性质,对于了解介质的性质和在电磁学应用中起着非常重要的作用。
一、介质的极化介质的极化是指当电场作用于介质时,介质中的分子或离子会发生定向排列,使得介质不再是电中性的状态。
介质中正负电荷的分离称为极化。
1.取向极化介质中的分子或离子具有磁矩或偶极矩,当外加电场作用时,它们会在外力的作用下发生旋转,并与电场方向调整一致而产生极化。
这种极化称为取向极化,它是介电常数与频率有关的一个主要因素。
2.电子云极化电子具有电荷,它在外电场作用下会产生势能,电子云会向外扩散,然后与电场相反的方向移动,形成极化电荷。
因为电子云的大小不一,电子云极化是介电常数与频率有关的另一个重要影响。
3.离子极化在某些情况下,例如在液态和熔融状态下,介质分子可以发生电离或掉电子,从而产生离子极化。
离子极化主要与介质的物理状态、化学结构和温度有关。
二、介电常数介电常数是介质在外电场作用下对电荷的电场力的响应能力的一种量度。
它反映了介质的电介质性质,是比电常数的函数。
介电常数在多种电磁学应用中都有它的功能,例如极板电容器、电场探测器、能量储存设备等。
它的理论计算通过一些基本理论可以求解,例如连续性方程、功率定理、闭合波导等。
综上所述,介质的极化和介电常数是介质电磁性质中的两个基本分支。
极化是介质对电场响应的一种体现,介电常数则对介质电场作用的响应能力进行定量描述,两种性质在相互联系、相互作用的基础上,共同组成了介质电介质学这个广泛应用的分支。
时变电磁场不同介质分界面上的衔接条件
时变电磁场在不同介质分界面上的衔接条件由两个主要方面决定:电场的切向分量和磁场的法向分量。
以下是在不同介质分界面上衔接条件的简要说明:
1. 电场的切向分量:
●切向电场分量(电场强度的切向分量)在分界面上是连续的。
这意味着两个相邻介质的
切向电场分量的大小和方向必须相等。
●假设在介质1中的电场强度为E1,介质2中的电场强度为E2,当电磁波从介质1传播
到介质2时,有E1⊥= E2⊥,即切向电场分量垂直于分界面。
2. 磁场的法向分量:
●法向磁场分量(磁感应强度的法向分量)在分界面上也是连续的。
这意味着两个相邻介
质的法向磁场分量的大小和方向必须相等。
●假设在介质1中的磁感应强度为B1,介质2中的磁感应强度为B2,当电磁波从介质1
传播到介质2时,有B1⊥= B2⊥,即法向磁场分量垂直于分界面。
这些衔接条件基于麦克斯韦方程组和电磁场的连续性原理,确保了电场和磁场在介质分界面上的平滑衔接。
遵循这些衔接条件可以确保电磁波在介质分界面上的传播正确和连续。
需要注意的是,当介质的性质不同时(例如,电介质到导体的分界面),衔接条件可能会有所不同。
在这种情况下,还需要考虑介质表面上的电荷分布和电流分布,以满足电磁场的连续性。
第三章 媒质的电磁性质和边界条件众所周知,物质是由原子核和电子组成的,原子核带正电,电子带负电。
就是说任何物质材料,不论是气体、液体还是固体都含有带电粒子,这些带电粒子的周围一定存在着电场;同时电子一方面绕原子核运动,另一方面也作自旋运动,电荷的运动形成电流,这些电流周围存在磁场。
从微观上看,材料中这些带电粒子是存在电磁效应的,但从宏观上看,由于相邻原子产生的场相互抵消,及大量带电粒子热运动的平均结果,使自然状态下的物质仍呈现电中性。
倘若存在外加电磁场,则由于带电粒子和外加电磁场的相互作用,介质的分子电矩和磁矩将部分或全部取向一致,引起宏观电或磁效应,相当于在材料内部存在附加的场源,这样就需要对真空中的电磁学定律作进一步推广。
在第二章中,我们研究了在真空(或近似真空的空气)中电磁场各场量,如H B D E和,,所遵循的普遍规律,并得到一组麦克斯韦方程组。
麦克斯韦方程组的积分形式描述大尺度(如一个线段、曲面或体积)上的电磁特性,而微分形式描写空间任意一点的电磁场,但归根结底两者描述的仍然是宏观电磁现象。
这一章我们要研究物质的微观模型和性质,把麦克斯韦方程组推广到一般电磁材料中去.本章先研究由材料中带电粒子和电磁场的相互作用而产生的三个基本现象:传导、极化和磁化。
每一种物质在电磁场中均有传导、极化和磁化三种现象,根据某种主要的现象,可将材料分为导体、半导体、电介质和磁介质等。
讨论材料的电磁性质之后,我们可获得三个物态方程和一般媒质中的麦克斯韦方程组。
最后我们研究在不均匀媒质中电磁场所遵循的规律——边界条件。
§3.1 电场中的导体导体是一种含有大量可以自由移动的带电粒子的物质。
导体可分为两种——金属导体和电解质导体。
金属导体的导电靠的是自由电子,由于自由电子的质量比原子核的质量小得多,所以导电过程中没有明显的质量迁移,也不伴随任何化学变化。
而碱、酸、和盐溶液等电解液则属于第二种导体,其导电靠的是带电离子,导电过程中伴随有质量迁移,也要发生化学变化。
§1.1介质的电磁性质从电学的角度,宏观物质大体可分为导体、绝缘体、半导体。
其中,绝缘体一般又称为“电介质”。
半导体则介于导体与绝缘体之间,根据研究的需要,常常将它纳入导体或电介质模型,或者两种模型都套用。
磁学则认为,一切物质材料都是“磁介质”,依据磁导率的大小,磁介质仅仅有“铁磁质”和“非铁磁质”的区分。
铁磁质的相对导磁率,它相当于磁场的“导体”;而非铁磁质的相对导磁率,它部分地相当于磁场的“绝缘体”。
通过电磁学课程,已对介质的电磁特性作了详尽的研究和讨论,述及的概念和规律正是电动力学起步的基础,因此,我们在这里仅对介质的电磁特性做一个总结性的概述。
1.介质的分类从材料性质分:各向异性、各向同性介质;线性、非线性介质;均匀、非均匀介质;从电磁行为分:电介质、导电介质;铁磁质、顺磁质、抗磁质等。
从场的作用分:磁介质、电介质。
介质是一个带电粒子系统,内部存在规则而迅速变化的微观电磁场。
真空则被看作一种特殊的介质(),现代物理认为,真空是“量子场的基态”,它也具有物质性。
2.介质的极化和磁化规律在电磁场中,介质又可划分为两类情况,即电介质和磁介质。
它们在电场和磁场中分别发生极化和磁化。
下表虽然不能概括介质在场中行为的详尽情况,却反映了它们的主要特点与规律。
从表中罗列的内容我们还可以看出,介质的极化与介质的磁化有着高度的对称性。
不仅介质的极化与“分子电流模型描述的介质磁化”对称,而且介质极化也与“磁荷模型描述的磁极化”对称。
清楚这种对称对我们的学习记忆是在现代电磁理论中,实验和推理都赞成诠释磁场起源的“分子电流观点”,但这并不意味着古典的“磁荷观点”已经失效。
虽然迄今还没有在现实中找到“磁单极子”,或许它根本不存在,但是“磁偶极子”却是真实存在的。
因为一个微小的电流环既可以用“磁矩”表述,同时也可用“磁偶极矩”表述,这就是说,电流环可以等效于磁偶极子,即无论从“环流模型”还是从“磁偶极矩模型”计算研究磁场是等效的,殊途同归的。
介质基础必学知识点
介质是指电磁波的传播媒介,包括空气、水、玻璃等。
介质的性质对
于电磁波的传播和反射有着重要的影响。
以下是介质基础必学的知识点:
1. 导电性:介质的导电性决定了其对电磁波的阻抗。
导电性较高的介
质能够吸收和散射电磁波,导致能量损耗。
金属是导电性最高的介质,所以金属可以很好地反射电磁波。
2. 折射率:介质的折射率决定了光在介质中传播的速度。
折射率较高
的介质使光速度减小,折射角度变大。
这就是我们常见的折射现象,
比如光线从空气射入水中时的折射。
3. 透明度:透明度是介质对电磁波的透射能力。
透明度较高的介质能
够让大部分的电磁波穿过,而透明度较低的介质则会吸收或反射大部
分的电磁波。
透明度与介质的导电性和折射率有关。
4. 散射:散射是指光在介质中遇到细小“杂质”时发生的偏折现象。
散射使光传播的方向发生改变,这也是我们能够看到物体的原因。
天
空的蓝色就是因为大气中的气溶胶对太阳光的散射造成的。
5. 反射:反射是指电磁波在介质的界面上发生改变方向的现象。
一部
分反射回来的电磁波会形成反射光线。
反射现象是我们看到物体的基础,通过反射我们能够看到周围的物体。
6. 吸收:吸收是介质对电磁波能量的吸收现象。
吸收使电磁波的能量
被转化为介质内部的能量,导致其温度升高。
吸收现象在微波炉和红
外线加热器中得到了广泛应用。
这些是介质基础必学的知识点,理解这些知识可以帮助我们更好地理解电磁波的传播和相互作用。
一、介绍磁介质及其在电磁学中的作用磁介质是指在外加磁场作用下能够产生磁化的材料。
磁介质在电磁学中起着重要的作用,它们可以用于制造变压器、电感器、磁性存储器等电磁设备,同时也被应用于信息存储、传感器、电磁屏蔽等方面。
二、B-H关系曲线的定义B-H关系曲线也被称为磁滞回线,它表示了磁介质在外加磁场下的磁化特性。
通过测量磁介质在不同外加磁场下的磁化强度和磁场强度的关系,可以得到B-H关系曲线。
B-H关系曲线是研究磁介质特性的重要工具,可以帮助我们了解磁介质的磁化行为、磁滞损耗等性质。
三、磁介质的分类及特性1. 铁磁性材料:铁磁性材料是一类常见的磁介质,其具有明显的磁滞特性和磁饱和现象,通常用于制造变压器、电感器等电磁设备。
铁磁性材料的磁化曲线呈现明显的磁滞现象,磁化强度随着外加磁场的增大呈非线性变化。
2. 铁氧体材料:铁氧体是一类具有特殊磁性和电性能的陶瓷材料,广泛应用于电磁设备中。
其磁化曲线一般以非线性的形式呈现,具有较高的矫顽力和饱和磁感应强度。
3. 铁氧体材料:铁氧体是一类具有特殊磁性和电性能的陶瓷材料,广泛应用于电磁设备中。
其磁化曲线一般以非线性的形式呈现,具有较高的矫顽力和饱和磁感应强度。
四、三种不同磁介质的B-H关系曲线1. 铁磁性材料的B-H关系曲线:铁磁性材料的B-H关系曲线呈现明显的对称性,在磁化过程中存在明显的磁滞现象。
随着外加磁场的增大,磁化曲线逐渐变宽,磁化强度增大,最终趋于饱和。
2. 铁氧体材料的B-H关系曲线:铁氧体材料的B-H关系曲线呈现非线性的特点,表现为磁化曲线不对称,有明显的饱和磁感应强度,并且矫顽力较大。
3. 铁氧体材料的B-H关系曲线:铁氧体材料的B-H关系曲线呈现非线性的特点,表现为磁化曲线不对称,有明显的饱和磁感应强度,并且矫顽力较大。
五、不同磁介质的应用领域及发展趋势1. 铁磁性材料的应用领域主要包括电力电子器件、变压器、电感器等电磁设备,随着现代电子技术的发展,对铁磁性材料磁化特性的要求也越来越高。