博士答辩PPT-钙钛矿型复合氧化物催化剂的二氧化碳加氢性能研究共60页文档
- 格式:ppt
- 大小:4.50 MB
- 文档页数:60
《卤化钙钛矿基催化剂的制备及其光催化CO2还原性能研究》篇一一、引言随着全球环境问题日益严重,减少二氧化碳(CO2)排放和实现其有效转化已成为科研工作的焦点。
其中,卤化钙钛矿基催化剂作为一种新兴的光催化剂材料,以其优异的电子结构、光物理特性和高的光电转化效率,在光催化CO2还原领域展现出巨大的应用潜力。
本文旨在研究卤化钙钛矿基催化剂的制备方法,并对其光催化CO2还原性能进行深入探讨。
二、卤化钙钛矿基催化剂的制备卤化钙钛矿基催化剂的制备主要包括原料选择、合成方法和工艺参数的优化等步骤。
首先,选择适当的卤素离子和钙钛矿结构的前驱体,如碘化物、溴化物等。
其次,采用溶液法或气相沉积法等合成方法,通过控制反应温度、时间、浓度等工艺参数,制备出具有良好结晶度和光催化活性的卤化钙钛矿基催化剂。
三、光催化CO2还原性能研究1. 实验方法本部分研究采用光催化实验装置,以卤化钙钛矿基催化剂为光催化剂,以CO2为反应底物,在光照条件下进行光催化CO2还原反应。
通过调整反应条件(如光源、光源强度、反应温度等),探究不同条件下卤化钙钛矿基催化剂的光催化性能。
2. 实验结果与讨论实验结果表明,卤化钙钛矿基催化剂在光催化CO2还原过程中表现出良好的活性。
通过调整光源和光源强度等参数,可以显著提高催化剂的光催化性能。
此外,我们还发现,卤素离子的种类和浓度对催化剂的光催化性能也有重要影响。
例如,碘化物基催化剂在可见光区域具有较高的光吸收能力,而溴化物基催化剂则具有较高的电子传输效率。
因此,通过优化卤素离子的种类和浓度,可以进一步提高卤化钙钛矿基催化剂的光催化性能。
在光催化CO2还原过程中,卤化钙钛矿基催化剂可以将CO2转化为多种有机物,如一氧化碳(CO)、甲酸(HCOOH)、甲醇(CH3OH)等。
其中,甲醇是一种重要的化工原料,具有较高的经济价值。
因此,研究卤化钙钛矿基催化剂在光催化CO2还原过程中对甲醇的选择性具有重要意义。
通过优化反应条件和催化剂组成,可以提高甲醇的选择性和产率。
钙钛矿型催化剂La1-x Ce x CoO3对一氧化氮的氧化催化研究摘要本文介绍了在钙钛矿氧化物中的NO的氧化性能的研究La1-x Ce x CoO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4)通过柠檬酸盐法合成钙钛矿型氧化物并以XRD, BETand XPS为特征。
当使用铈替代催化剂时催化活性显著增强,并取得了当x=0.2时活性最大,但X越大活性会降低。
分析表明,表面上吸附的氧对NO氧化成NO2起着重要的作用。
在室温下,NO和O2共吸附层之下的表面化合物,通过红外光谱和TPD实验进行了研究。
有三个品种形成在表明上分别是:桥接硝酸盐,次硝酸和单齿硝酸盐。
热稳定性的顺序为:单齿硝酸盐> 次硝酸>桥接硝酸盐。
其中,仅单齿硝酸盐在300摄氏度以上会分解,解除吸附变为NO2进入气相。
当Ce的加入,单齿硝酸盐解脱吸附的温度变低,另外两个品种的吸附减少。
这可能与表面上的钴的氧化状态有关。
通过对表征结果和催化活性的数据的结合分析显示,大量吸附的氧,表面上少量的非活性化合物和较低的NO2接触吸附温度会有利于NO的氧化。
#2007爱思唯尔B.V.保留所有权利。
1 介绍对NO x催化消除的广泛研究已进行了多年。
然而,除去柴油发动机和过量氧气贫燃条件下的汽油发动机中的NO x仍然是一个挑战。
在研制的几个NO X氧化环境转化的过程中NO2总是比NO更加受宠,例如NO x的储存和还原技术(NSR)[1],为去除氮氧化物和烟尘的连续再生陷阱技术(CRT)[2],选择性催化还原氮氧化物(SCR),尤其是某些N-所含物种如氨或尿素。
[3-5]我们还发现,形成二氧化氮是在NO的SCR的碳氢化合物机制的重要一步[6.7]。
一些研究人员也开发了几种更复杂的系统,例如'VHRO系统'(V= 对NO到NO2的氧化催化剂,H =水解催化剂,R = SCR催化剂,O =对NH3的氧化催化剂)[5]和IAR法(在氧化和还原剂的还原催化剂之间加入)[8]。
《卤化钙钛矿基催化剂的制备及其光催化CO2还原性能研究》篇一一、引言随着全球工业化的快速发展,环境问题日益严重,尤其是温室气体的排放和全球气候变暖问题。
在这些温室气体中,二氧化碳(CO2)尤为引人关注。
卤化钙钛矿作为一种新兴的催化剂材料,其光催化还原CO2为太阳能存储的一种高效方法已得到广泛的关注和研究。
因此,本研究着重探讨了卤化钙钛矿基催化剂的制备工艺以及其光催化CO2还原性能的研究。
二、卤化钙钛矿基催化剂的制备1. 材料选择本实验选择合适的卤化物和钙源,制备卤化钙钛矿基催化剂。
这些材料具有较高的化学稳定性、良好的电子传输性能以及优良的光学性能,有利于提高光催化还原CO2的效率。
2. 制备方法首先,将选定的卤化物和钙源按一定比例混合均匀。
然后,采用高温煅烧的方法,在特定温度和时间下合成卤化钙钛矿基催化剂。
这种方法简单易行,具有良好的可重复性。
三、光催化CO2还原性能研究1. 实验装置实验采用光催化反应装置,该装置包括光源、反应器、气相色谱仪等部分。
光源采用LED灯,能够发出适合光催化反应的波长范围内的光。
反应器中加入催化剂、CO2气体和水,形成反应体系。
2. 实验方法在实验中,我们研究了不同条件对光催化还原CO2的影响,如催化剂的浓度、光照时间、温度等。
同时,通过气相色谱仪分析反应过程中生成的气体产物,包括一氧化碳(CO)、甲烷(CH4)等。
此外,我们还研究了卤化钙钛矿基催化剂的光催化稳定性,以评估其实际应用价值。
四、结果与讨论1. 制备结果经过高温煅烧后,我们成功制备了卤化钙钛矿基催化剂。
通过XRD和SEM等手段对其结构和形貌进行了表征,证实了其具有优良的晶体结构和形貌特征。
2. 光催化性能分析实验结果表明,卤化钙钛矿基催化剂具有优异的光催化CO2还原性能。
在光照条件下,该催化剂能够有效地将CO2转化为CO和CH4等有价值的化学物质。
此外,我们还发现催化剂的浓度、光照时间和温度等因素对光催化还原CO2的效率具有显著影响。
《卤化钙钛矿基催化剂的制备及其光催化CO2还原性能研究》篇一一、引言随着人类工业文明的高速发展,碳排放量不断增加,导致全球气候变暖、环境恶化等一系列问题。
光催化技术因其能够将太阳能转化为化学能,从而实现CO2的有效转化和利用,成为了解决这一问题的有效途径。
卤化钙钛矿基催化剂作为一种新型的光催化材料,因其独特的光电性能和催化性能,近年来备受关注。
本文将重点研究卤化钙钛矿基催化剂的制备方法,以及其在光催化CO2还原方面的性能。
二、卤化钙钛矿基催化剂的制备卤化钙钛矿基催化剂的制备主要采用溶液法。
首先,选择合适的钙源、卤素源以及必要的添加剂,将它们按照一定的摩尔比例溶解在有机溶剂中。
然后,通过控制溶液的pH值、温度等条件,使钙离子与卤素离子发生反应,生成卤化钙钛矿纳米晶体。
最后,通过离心、洗涤、干燥等步骤,得到卤化钙钛矿基催化剂。
在制备过程中,可以通过调整钙源、卤素源的比例,以及溶液的pH值、温度等条件,来调控催化剂的形貌、尺寸以及光电性能。
此外,还可以通过引入其他元素或基团,对催化剂进行掺杂或修饰,进一步提高其光催化性能。
三、光催化CO2还原性能研究卤化钙钛矿基催化剂具有优异的光吸收能力和光电转换效率,使其成为光催化CO2还原的理想材料。
本部分将研究卤化钙钛矿基催化剂在光催化CO2还原方面的性能。
首先,通过光谱分析、电化学测试等手段,研究催化剂的光吸收、光电转换等基本性能。
然后,在光催化反应器中,以卤化钙钛矿基催化剂为光催化剂,以水或甲醇等为牺牲剂,进行CO2光催化还原实验。
通过检测反应产物的种类、产量等指标,评估催化剂的光催化性能。
实验结果表明,卤化钙钛矿基催化剂具有较高的CO2还原活性,能够有效地将CO2转化为甲酸、甲醇等有价值的化学物质。
此外,该催化剂还具有较好的稳定性和可重复使用性,为实际应用提供了良好的基础。
四、结论本文研究了卤化钙钛矿基催化剂的制备方法及其在光催化CO2还原方面的性能。
通过调整制备过程中的条件,可以有效地调控催化剂的形貌、尺寸以及光电性能。
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 钙钛矿型稀土催化剂的制备及性能研究+文献综述摘要:本文优化了溶胶凝胶法,以乙醇为溶剂,加入PEG为分散剂,降低了凝胶形成的时间在降低的温度下焙烧,成功的获得具有纯的钙钛矿型复合氧化物LaCoO3纳米颗粒。
在此基础上并对其A(La)位和B(Co)位分别进行了不同元素的掺杂,制得了系列掺杂钙钛矿型复合氧化物,对该系列掺杂氧化物进行XRD检测发现,由于A位离子的掺杂含量较少,掺杂没有改变钴酸镧的ABO3型结构,得到的是系列掺杂钙钛矿型复合氧化物。
同时B位离子以Ni掺杂,LaCoxNi1-xO3在x=0.2, 0.3,0.5,0.7范围内,产物的结构并没有改变,仍然是钙钛矿结构。
最后,以CO氧化反应为目标反应,不同组成的产物的催化活性,结果表明A位离子的掺杂La0.8M0.2CoO3的催化活性要优于未掺杂的LaCoO3,其中以La0.8Ce0.2CoO3的催化活性最佳。
而B位离子Ni的掺杂,设计出LaCoxNi1-xO3催化剂要比A位离子掺杂的1 / 25La0.8M0.2CoO3的催化活性都要强。
关键词:LaCoO3,溶胶凝胶法,CO氧化,钙钛矿型4833Preparation and properties of rare earth perovskite-type catalystsAbstract: This paper optimized the sol-gel method, using ethanol as solvent, PEG as dispersing agent, which can reduces the gel forming time. By using this method, pure perovskite composite oxide LaCoO3 nanoparticles have been successfully obtained. Furthermore, the A (La) and B (Co) sites have been doped by other ions, respectively to form the rare earth catalysts with perovskite phase. Their structures have been chareaterized by X- ray diffraction, which have presented pure perovskite phase. Since the amount of doedions is less, it replacing A sites did not change the LaCoO3 structure. Besides, we have also prepared a series of perovskite-type rare earth compound oxides with the formula of LaCoxNi1-xO3 (x = 0.2, 0.3, 0.5, 0.7) by using Ni to replace Co and found that the as---------------------------------------------------------------范文最新推荐------------------------------------------------------– prepared samples remained the same perosvkite structure. Finally, taking CO oxidation as a target reaction, results showed that the catalytic activity of La0.8M0.2CoO3 doped aions are better than that of the undoped LaCoO3 and the catalytic activity of La0.8M0.2Co03 is the best. While the B ion doped by Ni, the catalytic activity of LaCoxNi1-xO3 catalyst are better than that of A ions doped by M ions.4.3.CO氧化反应催化活性的表征105 催化剂的讨论与结果分析125.1不同量的PEG对催化剂活性的影响。