稳定性模型 数学建模
- 格式:ppt
- 大小:1.24 MB
- 文档页数:46
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。
根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。
如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。
出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。
(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。
B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。
以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。
在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。
而对于教练和运动员最为关心的问题是如何使铅球掷得最远。
影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。
最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。
参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。
以降落点为原点O建立直角坐标系。
山西工程技术学院数学建模竞赛垃圾焚烧厂布袋式除尘系统运行稳定性的模型参赛队员:安宁 14电气工程及其自动化4班 140712101张宇豪 14电气工程及其自动化4班 140712107雷添墨 14土木3班 140611069指导老师:刘桃凤2016年4月27日垃圾焚烧厂布袋式除尘系统运行稳定性分析摘要本文对垃圾焚烧厂布袋式式除尘系统的稳定性进行了深入的研究,我们通过对布袋除尘器工作原理的分析,确立袋式除尘器稳定性的表示方法。
可以对除尘效率,过滤速度,压力损失,滤袋寿命定性分析建立模型运用数学的计算公式布袋来体现出布袋除尘器的稳定性。
对于问题一我们运用了数学中的威布尔函数建立了滤袋寿命模型,并对寿命分布进行了验证。
再运用数理模型来分析除尘效率,过滤速度和压力损失。
用多因素分析法借助SPSS软件画出清灰次数与清灰周期的关系图。
通过对附件中所提供数据进行筛选,去除异常数据分析出布袋损坏的原因。
做出总结,向政府提出了环境保护监测方案。
对于问题二我们运用了数理模型计算出超净新型除尘工艺除尘效率的增加。
关键词:滤袋寿命过滤速度威布尔模型数理模型问题的重述与分析今天,以焚烧方法处理生活垃圾已是我国社会维持可持续发展的必由之路。
然而,随着社会对垃圾焚烧技术了解的逐步深入,民众对垃圾焚烧排放污染问题的担忧与日俱增,甚至是最新版的污染排放国标都难以满足民众对二恶英等剧毒物质排放的控制要求(例如国标允许焚烧炉每年有60小时的故障排放时间,而对于焚烧厂附近的居民来说这是难以接受的)。
事实上,许多垃圾焚烧厂都存在“虽然排放达标,但却仍然扰民”的现象。
国标控制排放量与民众环保诉求之间的落差,已成为阻碍新建垃圾焚烧厂选址落地的重要因素。
而阻碍国标进一步提升的主要问题还是现行垃圾焚烧除尘工艺存在缺乏持续稳定性等重大缺陷。
另外,在各地不得不建设大型焚烧厂集中处理垃圾的情况下,采用现行除尘工艺的大型焚烧厂即便其排放浓度不超标,却仍然存在排放总量限额超标的问题,也会给当地的环境带来重大的恶化影响。
数学建模的关键知识点数学建模是一种将现实问题抽象化并用数学方法解决的过程。
它是数学与实际问题相结合的一种学科,广泛应用于各个领域,如物理、经济、生物、环境等。
在数学建模过程中,有一些关键的知识点需要掌握和应用。
本文将介绍数学建模的关键知识点,帮助读者更好地理解和应用数学建模。
首先,数学建模的第一个关键知识点是问题的数学化。
在进行数学建模之前,我们需要将实际问题转化为数学问题。
这就要求我们对问题进行分析和理解,找出问题中的关键因素和变量,并建立数学模型来描述问题。
数学化的过程需要我们具备一定的抽象思维能力和数学建模的基础知识。
其次,数学建模的第二个关键知识点是数学模型的选择和建立。
在数学建模中,我们可以使用不同的数学模型来描述和解决问题。
选择合适的数学模型是解决问题的关键。
常用的数学模型包括线性模型、非线性模型、概率模型等。
建立数学模型需要我们对不同的模型有一定的了解,并根据问题的特点选择合适的模型。
第三,数学建模的第三个关键知识点是数学方法的应用。
在解决数学模型时,我们需要运用各种数学方法和技巧。
这些数学方法包括微积分、线性代数、概率论等。
在应用数学方法时,我们需要熟练掌握各种数学工具和技巧,灵活运用,以求得问题的解答。
第四,数学建模的第四个关键知识点是模型的求解和分析。
在建立数学模型之后,我们需要对模型进行求解和分析,得到问题的解答和结论。
求解和分析模型需要运用数值计算、优化方法、统计分析等技术。
在进行模型求解和分析时,我们需要注意结果的可行性和合理性,并对结果进行验证和解释。
最后,数学建模的第五个关键知识点是模型的评价和改进。
在解决问题之后,我们需要对模型进行评价和改进。
评价模型的好坏可以从模型的准确性、稳定性、可解释性等方面进行考察。
改进模型需要从模型的假设、参数等方面入手,对模型进行修正和优化,以提高模型的预测能力和解释能力。
综上所述,数学建模的关键知识点包括问题的数学化、数学模型的选择和建立、数学方法的应用、模型的求解和分析以及模型的评价和改进。
数学建模的常用模型和方法嘿,朋友们!今天咱来聊聊超厉害的数学建模哦!那数学建模里常用的模型和方法可多啦,就像一个百宝箱,每个都有独特的魅力和用处呢!先来说说线性规划模型吧。
步骤呢,就是先明确目标函数和约束条件。
你得清楚自己想要最大化或最小化什么,然后把各种限制因素用数学式子表达出来。
就好比你要规划一次旅行,预算就是约束条件,你想在有限的预算内让旅行体验最好,这就是目标函数啦!注意事项嘛,要仔细检查约束条件有没有遗漏,数据是不是准确。
在这个过程中,安全性就体现在它的逻辑严谨性上,只要你按照正确的步骤来,一般不会出大错,稳定性也不错,因为它的算法和理论都比较成熟。
它的应用场景可广啦,比如生产安排、资源分配等。
优势就是能帮你在复杂的条件下找到最优解,让资源得到最合理的利用。
比如说一个工厂要安排生产不同产品的数量,用线性规划就能算出怎样安排能让利润最大。
实际应用中,效果那是杠杠的,能大大提高生产效率和经济效益呢!再讲讲层次分析法。
它的步骤是先构建层次结构,把问题分成不同层次,像搭积木一样一层一层的。
然后通过专家打分或者数据统计确定各因素的权重。
这就好像给一个球队的球员打分,不同位置的球员重要性不一样嘛。
要注意的是,专家的选择要合理,打分要尽量客观。
它的安全性在于整个过程有一套系统的方法,不容易跑偏。
稳定性也还可以,只要层次结构合理,结果一般比较可靠。
应用场景呢,比如选方案、做决策的时候就很管用。
它的优势是能综合考虑多个因素,把复杂的问题简单化。
比如说要选一个投资项目,用层次分析法就能综合考虑风险、收益等各种因素,选出最合适的。
实际案例中,很多企业在做战略决策时都用到它,效果很不错,能让决策更科学合理。
还有个很有趣的模型叫聚类分析。
步骤是先确定聚类的指标,然后选择合适的聚类算法,把数据分成不同的类。
就好像把一堆水果按照种类分堆一样。
注意要选对指标和算法哦,不然分出来的类可能就不靠谱啦。
它的安全性体现在能对数据进行合理分类,帮助我们更好地理解数据的结构。
《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。
它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。
通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。
学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。
要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。
不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。
2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。
课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。
除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。
上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。
数学建模的五个步骤数学建模是指利用数学方法来解决实际问题的过程。
它在现代科学研究、工程技术等领域都有广泛的应用。
数学建模的过程可以分为五个步骤,包括问题理解、建立模型、模型求解、模型评价和结果解释。
下面将详细介绍这五个步骤。
第一步:问题理解问题理解是数学建模的第一步,也是至关重要的一步。
正确的问题理解能够确保后续建模过程的准确性和有效性。
在问题理解阶段,研究者需要明确问题的背景和要求,确定问题的范围和目标,以及搜集相关的实验数据和文献资料。
这些信息将有助于研究者在后续的建模过程中更好地进行模型的构建和求解。
第二步:建立模型建立模型是数学建模的核心步骤,它是将实际问题转化为数学问题的过程。
在建立模型时,研究者需要根据问题的特点和要求,选取合适的数学方法和工具,构建数学模型。
数学模型可以是代数方程、差分方程、微分方程、最优化问题等等。
模型的构建需要充分考虑实际问题中的各种因素和假设条件,并进行适当的抽象和简化。
此外,研究者还需要对所选用的数学模型进行合理的验证和修正。
第三步:模型求解模型求解是数学建模中的关键步骤之一、在模型求解过程中,研究者需要选择合适的求解方法和算法,使用计算机软件或手工计算来解决所建立的数学模型。
求解的过程中,研究者需要考虑求解的效率和精度,以及结果的可靠性和实用性。
第四步:模型评价模型评价是对所建立的数学模型进行有效性和可行性的评估。
在模型评价过程中,研究者需要利用实验数据和实际情况进行模型的验证和检验。
评价的指标可以是模型的拟合度、预测精度、稳定性等等。
通过模型评价的结果,可以对模型进行合理的调整和改进,以便更好地解决实际问题。
第五步:结果解释结果解释是数学建模的最后一步,也是将数学模型的结果转化为实际应用的关键一步。
在结果解释过程中,研究者需要将模型的结果与实际问题进行对比和分析,解释模型的意义和结论,提出相应的建议和策略。
结果解释的目的是使模型的结果能够被决策者、管理者和其他利益相关方所理解和接受,并能够指导实际问题的解决和处理。
差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。
1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。
2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。
3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。
4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。
2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。
2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。
3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。
4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。
随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。
在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。
有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。
例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic 模型),又可建立人口差分方程模型。
这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。
二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。
但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。
数学建模的基本方法与策略总结数学建模是将实际问题抽象为数学模型,并利用数学方法对该模型进行分析和求解的过程。
在实际应用中,数学建模是解决问题、预测趋势和优化决策的有效工具。
本文将对数学建模的基本方法与策略进行总结,以帮助读者更好地理解和应用数学建模。
一、问题的理解与定义数学建模的第一步是充分理解和定义问题。
这包括对问题的背景、目标、限制条件和需求进行详细的分析。
通过对问题的深入了解,可以明确问题的关键变量和参数,为后续的建模过程提供基础。
二、问题的建模和抽象在对问题进行全面理解后,接下来是将问题抽象为数学模型。
数学模型应能准确描述问题的关键要素和关联关系,以便进行后续的数学分析。
常用的数学模型包括线性模型、非线性模型、随机模型等。
合适的模型选择与问题类型密切相关,需要根据具体情况进行判断。
三、数据的收集和处理在建立数学模型之前,需要对问题所涉及的数据进行收集和处理。
数据的质量和可靠性直接影响模型的准确性和可行性。
收集到的数据可以来自于实验、调查、统计等渠道。
在处理数据时,可以使用数据平滑、插值、拟合等方法,以消除数据中的噪声和误差,提高模型的精度。
四、模型的求解与分析根据建立的模型,使用适当的数学方法对模型进行求解和分析。
常用的方法包括解析解法、数值解法、优化算法等。
求解的结果应进行合理性和可行性的验证,以确保模型的准确性和可靠性。
如果模型复杂,可以采用近似方法、计算机仿真等手段来求解。
五、模型的评价和优化在完成模型的求解后,需要对模型的效果进行评价和优化。
评价指标可以根据具体问题而定,如模型的拟合程度、稳定性、鲁棒性等。
如果模型不满足要求,可以对模型进行优化,例如调整参数、引入约束条件等,以获得更好的结果。
六、模型的推广与应用当得到满意的模型后,可以将其推广应用到实际问题中。
这需要将数学模型与实际问题相结合,并针对具体情况进行调整和改进。
在应用过程中,需要不断收集反馈信息,对模型进行修正和完善,以适应实际应用的需求。
《数学建模》课程标准一、课程性质与目的要求数学建模课程是各专业的选修课,是数学科学联系实际的主要途径之一。
通 过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法, 培养和训练学生的数学建模素质;要求学生具有熟练的计算推导能力,逻辑推理 能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为使学生 适应现代社会奠定必要的基础。
要求掌握:(一)理论知识方面1. 根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。
2. 基本掌握的内容: 初等模型、数学规划模型、微分方程模型、稳定性模型、 图论与网络模型、离散模型、概率统计模型、随机模拟等理论。
(二)实践技能方面要求学生重点掌握数据处理的一些基本方法,能够使用 Lindo/Lingo 求解各 种规划问题,使用 matlab 求解方程(组)、微分方程(组),进行数据拟合,参 数估计、假设检验、回归分析(特别是多项式回归)等概率问题。
二、学习用书教材:《数学建模与数学实验》(校本教材),谢珊主编,2010年,主要参考书:《数学模型》(第三版),姜启源等编,高等教育出版社,2004年,张珠宝主编,高等教育出版社,2005年《数学建模与数学实验》三、课程内容与考核标准(一)数学建模简介1, 教学目的与要求了解数学模型的概念。
掌握数学建模的一般步骤。
掌握人口增长模型的建立。
掌握 matlab函数拟合的方法。
2,教学内容(1)数学模型的概念及数学建模意义。
(2)介绍全国大学生数学建模竞赛。
(3)数学建模示例:人口增长模型。
3,考核要求l了解数学模型的概念及数学建模意义l会建立人口增长模型,并且能够用 matlab进行函数拟合,确定人口增长 模型中的参数。
(二)matlab入门1,教学目的与要求了解 matlab 的数组、矩阵、函数的定义与使用。
掌握 matlab 程序设计的基 本方法。
2,教学内容(1)介绍 matlab变量、数组、矩阵、表达式、流程控制、函数。
A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。
二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。
(2)简述数学模型的表现形态,并举例说明。
第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。
(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。
四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。
(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。
六(15分)(1)建立一般的战争模型,分析各项所表示的含义。
(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。
第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。