稳定性模型 数学建模
- 格式:ppt
- 大小:1.24 MB
- 文档页数:46
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。
根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。
如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。
出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。
(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。
B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。
以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。
在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。
而对于教练和运动员最为关心的问题是如何使铅球掷得最远。
影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。
最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。
参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。
以降落点为原点O建立直角坐标系。
山西工程技术学院数学建模竞赛垃圾焚烧厂布袋式除尘系统运行稳定性的模型参赛队员:安宁 14电气工程及其自动化4班 140712101张宇豪 14电气工程及其自动化4班 140712107雷添墨 14土木3班 140611069指导老师:刘桃凤2016年4月27日垃圾焚烧厂布袋式除尘系统运行稳定性分析摘要本文对垃圾焚烧厂布袋式式除尘系统的稳定性进行了深入的研究,我们通过对布袋除尘器工作原理的分析,确立袋式除尘器稳定性的表示方法。
可以对除尘效率,过滤速度,压力损失,滤袋寿命定性分析建立模型运用数学的计算公式布袋来体现出布袋除尘器的稳定性。
对于问题一我们运用了数学中的威布尔函数建立了滤袋寿命模型,并对寿命分布进行了验证。
再运用数理模型来分析除尘效率,过滤速度和压力损失。
用多因素分析法借助SPSS软件画出清灰次数与清灰周期的关系图。
通过对附件中所提供数据进行筛选,去除异常数据分析出布袋损坏的原因。
做出总结,向政府提出了环境保护监测方案。
对于问题二我们运用了数理模型计算出超净新型除尘工艺除尘效率的增加。
关键词:滤袋寿命过滤速度威布尔模型数理模型问题的重述与分析今天,以焚烧方法处理生活垃圾已是我国社会维持可持续发展的必由之路。
然而,随着社会对垃圾焚烧技术了解的逐步深入,民众对垃圾焚烧排放污染问题的担忧与日俱增,甚至是最新版的污染排放国标都难以满足民众对二恶英等剧毒物质排放的控制要求(例如国标允许焚烧炉每年有60小时的故障排放时间,而对于焚烧厂附近的居民来说这是难以接受的)。
事实上,许多垃圾焚烧厂都存在“虽然排放达标,但却仍然扰民”的现象。
国标控制排放量与民众环保诉求之间的落差,已成为阻碍新建垃圾焚烧厂选址落地的重要因素。
而阻碍国标进一步提升的主要问题还是现行垃圾焚烧除尘工艺存在缺乏持续稳定性等重大缺陷。
另外,在各地不得不建设大型焚烧厂集中处理垃圾的情况下,采用现行除尘工艺的大型焚烧厂即便其排放浓度不超标,却仍然存在排放总量限额超标的问题,也会给当地的环境带来重大的恶化影响。
数学建模的关键知识点数学建模是一种将现实问题抽象化并用数学方法解决的过程。
它是数学与实际问题相结合的一种学科,广泛应用于各个领域,如物理、经济、生物、环境等。
在数学建模过程中,有一些关键的知识点需要掌握和应用。
本文将介绍数学建模的关键知识点,帮助读者更好地理解和应用数学建模。
首先,数学建模的第一个关键知识点是问题的数学化。
在进行数学建模之前,我们需要将实际问题转化为数学问题。
这就要求我们对问题进行分析和理解,找出问题中的关键因素和变量,并建立数学模型来描述问题。
数学化的过程需要我们具备一定的抽象思维能力和数学建模的基础知识。
其次,数学建模的第二个关键知识点是数学模型的选择和建立。
在数学建模中,我们可以使用不同的数学模型来描述和解决问题。
选择合适的数学模型是解决问题的关键。
常用的数学模型包括线性模型、非线性模型、概率模型等。
建立数学模型需要我们对不同的模型有一定的了解,并根据问题的特点选择合适的模型。
第三,数学建模的第三个关键知识点是数学方法的应用。
在解决数学模型时,我们需要运用各种数学方法和技巧。
这些数学方法包括微积分、线性代数、概率论等。
在应用数学方法时,我们需要熟练掌握各种数学工具和技巧,灵活运用,以求得问题的解答。
第四,数学建模的第四个关键知识点是模型的求解和分析。
在建立数学模型之后,我们需要对模型进行求解和分析,得到问题的解答和结论。
求解和分析模型需要运用数值计算、优化方法、统计分析等技术。
在进行模型求解和分析时,我们需要注意结果的可行性和合理性,并对结果进行验证和解释。
最后,数学建模的第五个关键知识点是模型的评价和改进。
在解决问题之后,我们需要对模型进行评价和改进。
评价模型的好坏可以从模型的准确性、稳定性、可解释性等方面进行考察。
改进模型需要从模型的假设、参数等方面入手,对模型进行修正和优化,以提高模型的预测能力和解释能力。
综上所述,数学建模的关键知识点包括问题的数学化、数学模型的选择和建立、数学方法的应用、模型的求解和分析以及模型的评价和改进。
数学建模的常用模型和方法嘿,朋友们!今天咱来聊聊超厉害的数学建模哦!那数学建模里常用的模型和方法可多啦,就像一个百宝箱,每个都有独特的魅力和用处呢!先来说说线性规划模型吧。
步骤呢,就是先明确目标函数和约束条件。
你得清楚自己想要最大化或最小化什么,然后把各种限制因素用数学式子表达出来。
就好比你要规划一次旅行,预算就是约束条件,你想在有限的预算内让旅行体验最好,这就是目标函数啦!注意事项嘛,要仔细检查约束条件有没有遗漏,数据是不是准确。
在这个过程中,安全性就体现在它的逻辑严谨性上,只要你按照正确的步骤来,一般不会出大错,稳定性也不错,因为它的算法和理论都比较成熟。
它的应用场景可广啦,比如生产安排、资源分配等。
优势就是能帮你在复杂的条件下找到最优解,让资源得到最合理的利用。
比如说一个工厂要安排生产不同产品的数量,用线性规划就能算出怎样安排能让利润最大。
实际应用中,效果那是杠杠的,能大大提高生产效率和经济效益呢!再讲讲层次分析法。
它的步骤是先构建层次结构,把问题分成不同层次,像搭积木一样一层一层的。
然后通过专家打分或者数据统计确定各因素的权重。
这就好像给一个球队的球员打分,不同位置的球员重要性不一样嘛。
要注意的是,专家的选择要合理,打分要尽量客观。
它的安全性在于整个过程有一套系统的方法,不容易跑偏。
稳定性也还可以,只要层次结构合理,结果一般比较可靠。
应用场景呢,比如选方案、做决策的时候就很管用。
它的优势是能综合考虑多个因素,把复杂的问题简单化。
比如说要选一个投资项目,用层次分析法就能综合考虑风险、收益等各种因素,选出最合适的。
实际案例中,很多企业在做战略决策时都用到它,效果很不错,能让决策更科学合理。
还有个很有趣的模型叫聚类分析。
步骤是先确定聚类的指标,然后选择合适的聚类算法,把数据分成不同的类。
就好像把一堆水果按照种类分堆一样。
注意要选对指标和算法哦,不然分出来的类可能就不靠谱啦。
它的安全性体现在能对数据进行合理分类,帮助我们更好地理解数据的结构。
《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。
它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。
通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。
学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。
要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。
不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。
2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。
课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。
除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。
上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。