直线与椭圆弦长公式
- 格式:doc
- 大小:116.50 KB
- 文档页数:3
过原点的直线与椭圆相交弦长1. 概述本文将探讨过原点的直线与椭圆相交时的弦长问题。
我们将从椭圆的基本定义和特性入手,介绍直线与椭圆的交点求解方法,并推导出弦长的计算公式。
最后,我们将通过例题来加深理解和应用。
2. 椭圆的基本定义和特性2.1 椭圆的定义椭圆是平面上的一个几何图形,由到两个定点(焦点)距离之和等于常数的点构成。
这个常数称为椭圆的长轴长度。
椭圆的形状可以通过长轴和短轴的长度来描述。
2.2 椭圆的方程椭圆的标准方程为:x 2a2+y2b2=1,其中a和b分别表示椭圆长轴和短轴的长度。
2.3 椭圆的焦点和准线椭圆有两个焦点,分别位于椭圆的长轴两端。
椭圆的准线是横穿两个焦点的直线。
2.4 椭圆的性质椭圆有许多有趣的性质,比如焦点到椭圆上任意一点的距离之和等于长轴的长度,即焦半径之和为常数。
这些性质在求解弦长时将发挥重要作用。
3. 直线与椭圆的交点求解当直线与椭圆相交时,我们需要找到它们的交点,以便计算弦长。
下面介绍一种常用的解法。
3.1 直线的方程设直线的方程为:y =mx ,其中m 为直线的斜率。
3.2 代入椭圆方程将直线的方程代入椭圆的标准方程,可得:x 2a 2+(mx )2b 2=1。
3.3 化简方程将上式化简后可得二次方程:(1+m 2)x 2+a 2(m 2−1)=0。
3.4 解二次方程解上述二次方程,可求得x 的两个解:x 1=√m 2−1√1+m 2,x 2=√m 2−1√1+m 2。
3.5 求对应的y 值通过将x 的解代入直线方程,可求得对应的y 值:y 1=mx 1,y 2=mx 2。
3.6 交点坐标直线与椭圆的交点坐标为(x 1,y 1)和(x 2,y 2)。
4. 弦长的计算公式在求得交点坐标后,我们可以计算出弦长。
设(x 1,y 1)和(x 2,y 2)为交点坐标,弦长公式如下:弦长=√(x 1−x 2)2+(y 1−y 2)25. 实例分析5.1 例题一已知椭圆方程为x 24+y 29=1,直线方程为y =12x ,求过原点的直线与椭圆相交的弦长。
第40讲 直线和椭圆的位置关系[玩前必备]一、直线与椭圆的位置关系1.位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ,(1)Δ>0⇔直线与椭圆相交;(2)Δ=0⇔直线与椭圆相切;(3)Δ<0⇔直线与椭圆相离.2.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a . [玩转典例]题型一 直线与圆的位置关系的判断例1 若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( ) A .(1,+∞)B .(0,+∞)C .(0,1)∪(1,5)D .[1,5)∪(5,+∞)例2 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.[玩转跟踪]1.(2020·全国高三课时练习(理))已知直线y =kx -k -1与曲线C :x 2+2y 2=m(m>0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3)2.(2020·全国高三课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( ) A .2个 B .至多一个 C .1个 D .0个题型二 椭圆的弦长问题例3 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[玩转跟踪]1.已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( ) A .±1B .±12 C. 2 D .±22.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为3,求△ABF 2的面积.题型三 中点弦问题例4 (1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________________. (2)焦点是F (0,5 2),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________________. 例5 如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G横坐标的取值范围.[玩转跟踪]1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是( ) A .4x +3y -13=0B .3x +4y -13=0C .4x -3y +5=0D .3x -4y +5=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称,求实数m 的取值范围.题型四 椭圆大题例6 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC ―→·DB ―→+AD ―→·CB―→=8,O 为坐标原点,求△OCD 的面积.[玩转跟踪]1.已知动点M 到两定点F 1(-m,0),F 2(m,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA ―→·OB ―→=2(O 为坐标原点),求k 的值.[玩转练习]1.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多一个B .2C .1D .02.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-943.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( ) A.223B.423C. 2 D .24.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP ―→+OF 2―→)·PF 2―→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .15.(多选)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点M (2,1)在椭圆C 上,直线l 平行于OM 且在y 轴上的截距为m ,直线l 与椭圆C 交于A ,B 两个不同的点.下面结论正确的有( )A .椭圆C 的方程为x 28+y 22=1B .k OM =12C .-2<m <2D .m ≤-2或m ≥26.(多选)已知B 1,B 2是椭圆x 2a 2+y 2b 2=1(a >b >0)短轴上的两个顶点,点P 是椭圆上不同于短轴端点的任意一点,点Q 与点P 关于y 轴对称,则下列四个命题中正确的是( )A .直线PB 1与PB 2的斜率之积为定值-a 2b 2 B .PB 1―→·PB 2―→>0C .△PB 1B 2的外接圆半径的最大值为a 2+b 22aD .直线PB 1与QB 2的交点M 的轨迹为双曲线7.已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( ) A .(1,6)B .(1,5)C .(3,6)D .(3,5)8.(一题两空)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,点A 在椭圆C 上,|AF 1|=2,∠F 1AF 2=60°,过F 2与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为线段PQ 的中点.则椭圆C 的方程为________;若点M 的坐标为⎝⎛⎭⎫0,18,且MN ⊥PQ ,则线段MN 所在的直线方程为_____________.9.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________.10.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为__________.11.(2020·上饶模拟)已知两定点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +2上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.12.(一题两空)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过点E ⎝⎛⎭⎫3,32. (1)椭圆C 的方程为____________.(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=2F 1B ―→,则直线l 的斜率k 的值为________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2. (1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.14.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求直线l 的方程.15.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 为椭圆C 上任意一点,点A 关于原点O 的对称点为点B ,有|AF 1|+|BF 1|=4,且∠F 1AF 2的最大值为π3. (1)求椭圆C 的标准方程;(2)若A ′是点A 关于x 轴的对称点,设点N (-4,0),连接NA 与椭圆C 相交于点E ,直线A ′E 与x 轴相交于点M ,试求|NF 1|·|MF 2|的值.。
大罕求圆锥曲线的弦长是学习解析几何过程中常见的问题.一般用弦长公式 |AB|=(√△/|a|)√(1+k^2).在运用上述公式之前,需要将直线方程代入到椭圆、双曲线的方程,加以化简.在整理的过程中,由于带有参数,故运算有些繁琐容易出错.作为参考材料,本文给出更具体的弦长公式.遇到选填题可直接套用,遇到解答题可供检验. 具体如下: 命题1:已知直线l:y=kx+m,椭圆C: x^2/a^2+y^2/b^2=1(a>b>0),记δ=b^2+(a·k)^2-m^2,若δ=0,则直线l与椭圆C相切若δ>0,则直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ·√(1+k^2)]/[b^2+(ak)^2].简要的推导过程是:把y=kx+m代入 x^2/a^2+y^2/b^2=1,整理得:[(ak)^2+b^2]x^2+2a^2kmx+a^2(m^2-b^2=0,∴=4a^4k^2m^2-4a^2(m^2-b^2)(a^2k^2+b^2)=4a^2b^2(b^2+a^2k^2-m^2).令δ=b^2+a^2k^2-m^2,∴当δ=0时,直线l与椭圆C相切;当δ>0时,直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ√(1+k^2)]/[b^2+(ak)^2].命题2:已知直线l:y=kx+m,双曲线C: x^2/a^2-y^2/b^2=1(a>0,b>0),记δ=b^2-(a·k)^2+m^2,若δ=0,则直线l与椭圆C相切若δ>0,则直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ·√(1+k^2)]/[b^2-(ak)^2].证明与命题1过程类似,这里从略.例1、若直线l:y=x+m与椭圆C:x^2/4+y^2/3=1相切,求m的值.解:a^2=4,b^2=3,k=1,∴δ=4a^2b^2(a^2k^2+b^2-m^2)=4+3-m^2=0,则m=±√7.例2、求直线l:y=x+1截椭圆C:x^2/4+y^2/3=1所得的弦长|AB|.解:a^2=4,b^2=3,k=1,m=1,∴δ=4a^2b^2(a^2k^2+b^2-m^2)=4+3-1=6,∴|AB|=(4√3)(√6)(√2)]/7=24/7.例3、直线l过点P(1,1),双曲线 :x^2-y^2/2=1相切,求直线l的方程. 解:设直线l:y=kx+1-k,a^2=1,b^2=2,m=1-k,令δ=b^2-(a·k)^2+m^2=2-k^2+(1-k)^2=0,解得k=3/2.。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
圆锥曲线综合问题1. 直线方程的处理:若直线方程未给出,应先假设。
(1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ;(2)若已知直线的斜率k ,则假设方程为y kx m ; (3)若仅仅知道是直线,则假设方程为ykx m【注】以上三种假设方式都要注意斜率是否存在的讨论;(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设直线为xmy t 。
【反斜截式,1m k】不含垂直于y 轴的情况(水平线) 2.弦长公式:若直线:l y kx m =+与椭圆22221(0)x y a b a b+=>>相交于,P Q 两点,求弦长||PQ 的步骤: 设1122(,),(,)P x y Q x y ,联立方程组(将直线方程代入椭圆方程):222222,,y kx m b x a y a b =+⎧⎨+=⎩消去y 整理成关于x 的一元二次方程:20Ax Bx C ++=, 则12,x x 是上式的两个根,240B AC ∆=->;由韦达定理得:12,B x x A +=-12,C x x A= 又,P Q 两点在直线l 上,故1122,y kx m y kx m =+=+,则2121()y y k x x -=-,从而||PQ ====【注意:如果联立方程组消去x 整理成关于y 的一元二次方程:20Ay By C,则||PQ ==反斜截式22(1)m A 】3、其他常见问题处理 (1)等腰(使用垂直平分),平行四边形(使用向量的平行四边形法则或者对角线中点重合) (2)直径(圆周角为直角,向量垂直或斜率乘积等于1),其次考虑是否需要求圆的方程。
(3)锐角和钝角使用数量积正负求解;涉及到其它角的问题使用正切值,转化为斜率求解; (4)三角形内切圆的半径与三角形面积的关系:,()2a b cSrp p这里; (5)圆的弦长用垂径定理;(6)涉及到焦点要联想到定义;(7)三点共线,长度之比尽量使用相似三角形转化为坐标之比,利用韦达定理。