小学六年级数学知识点归纳整理
- 格式:docx
- 大小:199.35 KB
- 文档页数:11
一、数与运算1.个位数、十位数和百位数的概念及其读法2.数的读法、写法和表达法(阿拉伯数字、罗马数字、简单英文表达)3.加法和减法的口算和竖式计算(进位、退位)4.乘法表的记忆与运用(乘法口诀)5.乘法的口算和竖式计算(乘法进位)6.除法的口算和竖式计算(除法退位)7.加减法、乘法和除法的综合运用(四则运算)二、分数1.分数的概念与表示2.分数的读法和写法3.通分与异分之间的转换4.分数的比较与排序5.分数的加法和减法6.分数的乘法和除法7.分数与整数的综合运用三、百分数1.百分数的概念和表示法2.百分数与分数、整数的相互转化3.百分数的加法、减法、乘法和除法4.百分法在解决实际问题中的应用四、倍数与约数1.倍数的概念与求法2.倍数的运算(加法、减法和乘法)3.有关倍数的问题的解决4.约数的概念与求法5.约数的运算(加法、减法和乘法)6.有关约数的问题的解决五、整数1.整数的概念和数轴的应用2.整数的加法和减法(同号相加、异号相减)3.整数运算的混合运用六、平方与平方根1.正整数的平方2.非负数的平方根3.平方与平方根的解决实际问题中的应用七、尺度与单位换算1.长度、质量和容量的换算(公制单位和市制单位的换算)2.时间的换算3.速度的换算与运用八、图形1.点、线段、射线、直线和角的概念与性质2.直角、钝角和锐角的区别3.平行线、垂线、相交线与角的关系4.四边形的概念和性质(矩形、正方形、长方形、平行四边形和任意四边形)5.三角形的概念和性质(直角三角形、等腰三角形、等边三角形)6.圆的概念和性质(半径、直径、弧)7.图形的放大和缩小九、数据统计1.数据的收集和整理2.数据的描述和分析3.数据的表示和解读(表格、柱状图和折线图)以上是小学六年级数学的重要知识点梳理,希望对你的学习有所帮助。
祝你学业进步!。
六年级数学必背知识点小学六年级数学内容多, 是小学阶段所学数学学问的综合。
以下是我整理的六年级数学必背学问点【三篇】, 欢迎阅读与保藏。
【篇1】六年级数学必背学问点一、分数除法的意义:分数除法是分数乘法的逆运算, 已知两个数的积与其中一个因数, 求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外), 等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时, 被除数肯定不能变, “÷”变成“×”, 除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的改变规律:①除以大于1的数, 商小于被除数:a÷b=c当b>1时, c②除以小于1的数, 商大于被除数:a÷b=c当ba(a≠0b≠0)③除以等于1的数, 商等于被除数:a÷b=c当b=1时, c=a三、分数除法混合运算1、混合运算用梯等式计算, 等号写在第一个数字的左下角。
2、运算依次:①连除:同级运算, 根据从左往右的依次进行计算;或者先把全部除法转化成乘法再计算;或者依据“除以几个数, 等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算, 乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减, 有括号的先算括号里面, 再算括号外面。
(a±b)÷c=a÷c±b÷c【篇2】六年级数学必背学问点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同, 就是求几个相同加数的和的简便运算。
“分数乘整数”指的是其次个因数必需是整数, 不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是其次个因数必需是分数, 不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘, 分母不变。
小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
六年级数学知识点归纳最全版目录•整数•分数•小数•比例与比例关系•代数式•方程与不等式•图形的认识•计算与应用整数正整数和负整数整数由正整数、负整数和零组成。
正整数是大于零的整数,负整数是小于零的整数,零是自身。
例如:正整数有1、2、3等,负整数有-1、-2、-3等,零为0。
整数的加减法整数的加法和减法可以通过数轴来表示。
当两个整数同号时,将它们的绝对值相加,符号保持不变;当两个整数异号时,用大的数减去小的数,结果的符号与绝对值较大的整数的符号一致。
例如:2 + 3 = 5,-4 + 6 = 2,-3 + (-7) = -10,2 - 4 = -2整数的乘法和除法整数的乘法和除法符合相反数的规则。
即两个整数相乘,如果符号相同,则积为正数;如果符号不同,则积为负数。
两个整数相除,如果符号相同,则商为正数;如果符号不同,则商为负数。
例如:2 × 3 = 6,-4 × 6 = -24,-3 ÷ (-2) = 1.5,4 ÷ (-2) = -2分数分数的基本概念分数是一个整体被等分成若干份,每份称为一份。
分子表示等分后的份数,分母表示等分成的总份数。
分数还可以写作小数形式,小数形式是以小数点形式表示的分数。
例如:1/2是一个分数,表示将一个整体等分成两份,每份为1/2;0.5是小数形式的1/2。
分数的加减法分数的加减法需要先找到他们的公共分母,然后对分子进行加减。
最后将结果化简为最简分数形式。
例如:1/2 + 1/3 = 5/6,4/5 - 1/5 = 3/5,7/10 + 3/5 = 9/10分数的乘法和除法分数的乘法通过分子相乘,分母相乘得到结果。
分数的除法可以转化为乘法,即将除法转化为乘法的倒数。
例如:2/3 × 3/4 = 6/12,2/3 ÷ 3/4 = 8/9小数小数的基本概念小数是有限小数和无限循环小数两种形式。
有限小数是小数部分有限位数的小数,无限循环小数是小数部分有无限循环的小数。
一、数与代数1.整数:正整数、负整数、零、绝对值、相反数、数轴等概念。
2.分数:分数的意义、分数的大小比较、分数的加减乘除等基本运算。
3.小数:小数的读法与写法、小数的大小比较、小数的加减乘除等基本运算。
4.百分数:百分数的意义、百分数的读法与写法、百分数的换算与应用等。
5.用字母表示数:用字母表示数的含义、字母与实际问题之间的转化。
二、数的运算与应用1.加法与减法:两位或多位整数的加减法、带有括号的加减法、应用问题的解决。
2.乘法与除法:两位或多位整数的乘除法、小数的乘除法、应用问题的解决。
3.整数运算:加减法与乘除法有关的整数运算、应用问题的解决。
4.分数的四则运算:分数的加减乘除、分数的化为整数、分数的运算综合应用。
5.小数的四则运算:小数的加减乘除、小数与分数之间的运算、小数的运算综合应用。
6.百分数的应用:百分数的加减乘除、百分数与分数、百分数与小数之间的运算。
三、图形与几何1.平面图形:正方形、长方形、三角形、圆的性质和计算等。
2.空间图形:立方体、正方体、圆柱体、圆锥体、圆球等的性质和计算。
3.图形的变换:图形的平移、旋转、翻转等。
4.图形的分类和比较:根据性质和特征对图形进行分类和比较。
5.图形的计算:图形面积与图形周长的计算、应用问题的解决。
四、数据的处理1.图表的读取与解读:条形图、折线图、饼图等数据图形的读取与应用。
2.平均数:平均数的意义、平均数的计算、平均数的应用。
3.数字的估算:对数字进行近似估算、对计算结果进行估算。
五、应用题解决能力1.实际问题的模型构建和解决:将实际问题转化为数学模型,并运用相应方法进行解答。
2.问题的分析和提炼:将复杂问题进行分析和提炼,从中找出解决问题的关键点。
1.数的认识和比较
-十进制和整数概念
-数的读法和写法
-数的大小比较
-数轴的使用
2.四则运算
-加法和减法运算
-乘法和除法运算
-运算法则和顺序
3.分数
-分数的概念和表示方法-分数的比较和排序
-分数的加减乘除运算
4.百分数
-百分数的概念和表示方法-百分数的换算
-百分数的应用
5.小数
-小数的概念和表示方法
-小数的大小比较
-小数的加减乘除运算
6.几何图形
-平面图形的认识和分类
-三角形、正方形、长方形、圆的性质-单位面积的认识和换算
7.算术代数
-变量的引入和运算
-代数表达式的简化和计算
8.数据统计
-统计图表的读和解释
-平均数、中位数和众数的计算
-数据分析和应用
9.基础应用题
-模型推理和解决问题
-实际问题的分析和解决
-数学应用题的设计和答题技巧
以上是小学六年级必掌握的数学知识点总结。
在学习过程中,学生需要注重掌握概念的理解、运算规则的应用和问题解决的能力。
同时,学生还应通过不断的练习和复习来巩固和强化所学的知识点。
一、四则运算1.加法:加法的计算方法、加法的交换律和结合律、进位法。
2.减法:减法的计算方法、减法的借位法。
3.乘法:乘法的计算方法、乘法的交换律和结合律、乘法的九九乘法表、零的性质,几个零相乘等于零。
4.除法:除法的计算方法、除法的余数、除法的约分、除法的整除性质。
二、小数与分数1.小数的意义和读法,小数的大小比较,小数的四则运算法则,小数的运算与整数的运算关系。
2.分数的表示方法,分数的大小比较,分数的约分、通分和化简,分数的四则运算法则。
三、进位制1.十进位制的认识,数的读法、书写、大小比较。
2.一、十、百、千加法与减法。
3.十进位制的简便计算,添零法、去零法。
4.综合计算题中的进位制问题。
四、比例与类比1.比例与比例的概念,比例的大小比较。
2.比例的运算法则:比例的平均数、和差的性质,已知部分求整体。
五、倍数与约数1.倍数的概念与判定、倍数与因数。
2.倍数之间的运算:统一化简,综合计算题中的倍数问题。
六、面积与体积1.二维图形面积的认识:矩形、正方形、三角形等的面积计算法则。
2.三维图形体积的认识:长方体、正方体等的体积计算法则。
七、几何图形1.搜集各种几何图形与其名称、特征和性质。
2.直线、线段、射线、角度的认识与测量。
八、数的理解与运用1.分布数的理解:各类图表的读表与解题。
2.逻辑数的理解:数的序列、数的推理,数据的统计与处理。
九、解方程运用1.解一元一次方程的方法。
2.运用方程解题:综合计算题中的方程问题。
以上是小学六年级数学的重要知识点梳理,掌握这些知识点可以帮助孩子在数学学习中取得良好的成绩。
一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
完整版)六年级数学总复习知识点归纳一、常用的数量关系式常用的数量关系式包括每份数×份数=总数、总数÷每份数=份数、总数÷份数=每份数等;1倍数×倍数=几倍数、几倍数÷1倍数=倍数、几倍数÷倍数=1倍数等;速度×时间=路程、路程÷速度=时间、路程÷时间=速度等;单价×数量=总价、总价÷单价=数量、总价÷数量=单价等;工作效率×工作时间=工作总量、工作总量÷工作效率=工作时间、工作总量÷工作时间=工作效率等;加数+加数=和、和-一个加数=另一个加数;被减数-减数=差、被减数-差=减数、差+减数=被减数;因数×因数=积、积÷一个因数=另一个因数、被除数÷除数=商、被除数÷商=除数、商×除数=被除数等。
二、小学数学图形计算公式小学数学图形计算公式包括正方形、正方体、长方形、长方体、三角形、平行四边形、梯形、圆形、圆柱体、圆锥体等。
其中,正方形的周长为边长×4,面积为边长×边长;正方体的表面积为棱长×棱长×6,体积为棱长×棱长×棱长;长方形的周长为(长+宽)×2,面积为长×宽;长方体的表面积为(长×宽+长×高+宽×高)×2,体积为长×宽×高;三角形的面积为底×高÷2;平行四边形的面积为底×高;梯形的面积为(上底+下底)×高÷2;圆形的周长为直径×π,面积为半径×半径×π;圆柱体的侧面积为底面周长×高,表面积为侧面积+底面积×2,体积为底面积×高;圆锥体的体积为底面积×高÷3.三、常用单位换算长度单位换算包括米、千米、分米、厘米、毫米等;重量单位换算包括千克、克、毫克等;时间单位换算包括年、月、日、小时、分钟、秒等;容量单位换算包括升、毫升、立方米等。
一、基础知识1.数的认识:整数、正数、负数、零的概念2.数的读法和写法3.顺序比较与排序4.数的正序、逆序、顺序相等5.十进制的认识与运算二、基本运算1.加法的概念与运算法则2.减法的概念与运算法则3.乘法的概念与运算法则4.除法的概念与运算法则5.加减法、乘除法的混合运算6.乘方与开方三、数的性质与运算1.数的位数与数位的认识2.偶数与奇数的判断3.求一个数的相反数4.数与数的加减法性质5.乘法的交换律、结合律和分配律6.乘法的一些特殊性质7.除法的性质与应用四、单位换算1. 长度的单位换算(mm、cm、dm、m、km)2.容量的单位换算(mL、L)3. 质量的单位换算(g、kg、t)五、数的应用1.问题解决能力的训练2.两步及以上的问题解决3.阶梯问题的解决4.包含数学思想的问题解决六、四则混合运算1.四则混合运算的顺序2.分数的加减乘除法七、图形的认识与性质1.直线、线段与射线的认识2.角的认识与性质3.三角形、四边形及其分类4.圆的分类与计算5.长方形、正方形与平行四边形的性质6.梯形与矩形的性质八、计量单位1. 长度的计量单位(mm、cm、dm、m、km)2.容量的计量单位(mL、L)3. 质量的计量单位(g、kg、t)4.时间的计量单位(秒、分钟、小时、天)九、简单方程1.简单方程的解法2.利用方程式解决问题3.推理解决方程问题十、时钟与时间1.时钟的读法与写法2.时间的计算与比较3.年、月、星期的认识4.时间的应用问题十一、小数的认识与运算1.小数的读法与写法2.小数与分数的转换3.小数的比较与排序4.小数的四则运算。
一、整数的加减法与混合运算
1.正整数和负整数的加减法;
2.整数的混合运算;
3.整数的加法和减法性质。
二、小数的加减法与混合运算
1.小数的加法与减法;
2.小数的混合运算;
3.小数的加法和减法性质。
三、直角坐标系
1.直角坐标系的引入和表示;
2.坐标轴的构建;
3.点在直角坐标系中的表示。
四、图形的排列、组合与对称
1.图案排列和组合;
2.图案的轴对称和旋转对称;
3.对称图形的性质。
五、面积的测量和计算
1.长方形的面积;
2.平行四边形的面积;
3.三角形的面积;
4.面积单位的换算。
六、容积的测量和计算
1.直方体的容积;
2.柱体的容积;
3.容积单位的换算。
七、比例与比例的运用
1.比例的基本概念和性质;
2.比例的四则运算;
3.比例的应用。
八、分数的概念与运算
1.分数的引入和表示;
2.分数的加减法;
3.分数的乘法;
4.分数的除法。
九、长度的度量和换算
1.公里、米、分米和厘米的关系;
2.长度单位的换算;
3.给定长度单位的换算。
十、时间的度量和换算
1.秒、分、时、日的关系;
2.时间单位的换算;
3.给定时间单位的换算。
十一、数据的收集、整理和分析
1.数据的收集和整理;
2.数据的处理和分析;
3.统计图的分析和读图。
十二、解方程的初步探索
1.探索式子的变化规律;
2.探索简单线性方程的解法;
3.解简单线性方程。
一、整数1.整数的概念:包括正整数、零和负整数。
2.整数的比较:大于、小于和等于的判断。
3.整数的加减法:同号相加、异号相减。
4.整数的乘法:同号得正,异号得负。
5.整数的除法:同号得正,异号得负。
二、小数1.小数的读法和写法:如0.8读作"零点八"。
2.小数的大小比较:整数部分相等时,比较小数部分的大小。
3.小数的加减法:按位计算,注意进位和借位。
4.小数的乘法:先不考虑小数点,进行整数的乘法,最后确定小数点的位置。
5.小数的除法:先将除数和被除数都化为整数,然后进行整数的除法,最后确定小数点的位置。
三、分数1.分数的概念:包含真分数、假分数和整数。
2.分数的读法和写法:如2/3读作"二分之三"。
3.分数的大小比较:通分后比较分子的大小。
4.分数的加减法:通分后按位计算,注意约分。
5.分数的乘法:分子相乘,分母相乘。
6.分数的除法:被除数乘以倒数,然后进行分数的乘法。
四、百分数1.百分数的概念:表示百分之几,记作%。
2.百分数的转换:百分数转换为小数,除以100;小数转换为百分数,乘以100。
3.百分数的比较:转换为小数进行比较。
4.百分数的运算:加减法和乘除法同小数的运算。
五、几何图形1.平面图形的分类:包括三角形、四边形、多边形和圆等。
2.三角形的分类:包括等边三角形、等腰三角形、直角三角形和普通三角形等。
3.四边形的分类:包括矩形、正方形、菱形、长方形和梯形等。
4.图形的面积:根据图形的形状和尺寸,计算图形的面积。
5.图形的周长:计算图形边长的和。
6.图形的旋转和翻转:基本了解图形的旋转、翻转和对称性等。
六、代数方程1.方程的概念:等式中含有未知数的式子。
2.解方程:通过逆运算,求得方程的解。
3. 一元一次方程:形如ax+b=0的方程。
4.一元一次方程的应用问题:通过方程来解决实际问题。
七、数据统计1.数据的收集和整理:通过观察、实践和调查收集数据,并整理成表格或图表。
一、整数1.整数和自然数、零、负数的关系。
2.整数的大小比较和表示法。
3.整数的加法、减法,加减法的应用。
4.整数的乘法、除法,乘法和除法的应用。
二、分数1.分数和整数、自然数、零的关系。
2.分数的大小比较和表示法。
3.分数的加法、减法,加减法的应用。
4.分数的乘法、除法,乘法和除法的应用。
三、小数1.小数和整数、自然数、零的关系。
2.小数的大小比较和表示法。
3.小数的加法、减法,加减法的应用。
4.小数的乘法、除法,乘法和除法的应用。
四、百分数1.百分数的概念和意义。
2.百分数的表示法。
3.百分数的转化与应用。
五、四则运算1.四则运算的优先级和顺序。
2.含有括号的四则运算。
3.多位数的四则运算。
4.复合运算的应用。
六、几何图形1.点、线段、直线、射线、角的概念和性质。
2.三角形、四边形、多边形的概念和性质。
3.圆的概念和性质。
4.图形的相似与全等。
七、面积和体积1.平面图形的面积计算。
2.立体图形的体积计算。
八、数据统计1.图表的读取和理解。
2.图表的制作与分析。
3.平均数的计算和应用。
通过对这些数学知识点的学习,学生可以掌握整数、分数、小数和百分数的概念、运算技巧和应用能力。
同时,还能够理解几何图形的性质和计算面积、体积的方法。
数据统计部分的内容则培养了学生的数据分析和处理能力。
这些数学知识点是小学六年级学生在数学领域的基础,并为进一步学习更复杂的数学知识打下了坚实的基础。
在学习这些知识的过程中,学生应注重理论与实践相结合,通过做题和解决实际问题来加深对知识的理解和掌握。
同时,还可以通过游戏和趣味的数学活动来培养学生对数学的兴趣和创造力。
一、整数的运算1.整数的加法、减法、乘法、除法2.整数加减混合运算3.整数的相反数和绝对值4.解决实际问题时整数运算的应用二、小数的加减法1.小数的加法、减法2.小数加减混合运算3.解决实际问题时小数运算的应用三、数的整除性质1.整除定义及性质2.因数与倍数的概念3.素数、合数、质数等概念4.求最大公因数和最小公倍数5.解决整数运算问题时的应用四、分数的计算1.分数的概念及基本性质2.分数的相等与化简3.分数的加减法4.分数的乘法5.分数的除法6.分数运算的应用五、百分数的计算1.百分数的概念及基本性质2.分数与百分数的相互转换3.百分数的加减法4.百分数的乘除法5.百分数运算的应用六、几何图形的性质与计算1.平行线与平行四边形的性质2.直角三角形与直角三角形的性质3.等边三角形、等腰三角形和一般三角形的性质4.长方形、正方形、菱形、梯形、圆的性质5.通过给定的信息进行简单的计算、判断等七、时间的计算1.时、分、秒的换算2.时钟的读写与计算3.天、周、月、年的换算4.已知起始时间和经过时间求终止时间,已知起始时间和终止时间求经过时间5.解决实际问题时的应用八、长度、面积和体积的计算1.不同单位之间的换算2.直线和曲线的长度计算3.长方形、正方形、三角形和圆的面积计算4.立方体和长方体的体积计算5.解决实际问题时的应用九、数据的整理与分析1.数据整理和数据管理的方法2.棒形图、折线图、饼图的绘制和分析3.统计量的计算。
六年级数学知识点归纳大全一、数与代数。
1. 分数乘法。
- 分数乘整数,就像一群小伙伴一起分东西。
比如说,(2)/(3)乘以3,就相当于3个(2)/(3)相加,那结果就是2啦。
计算的时候,用分子乘整数的积作分子,分母不变哦。
- 分数乘分数呢,这就好比把一块蛋糕先切成几份,再把每一份又切成更小的几份。
计算方法就是分子乘分子,分母乘分母,比如(2)/(3)×(3)/(4),分子2乘3得6,分母3乘4得12,最后约分一下就是(1)/(2)啦。
2. 分数除法。
- 分数除法是分数乘法的逆运算。
除以一个分数,就等于乘以这个分数的倒数。
比如说,(2)/(3)÷(4)/(5),就等于(2)/(3)×(5)/(4),然后按照分数乘法的方法计算就好啦。
这就像是要把东西按照一定的比例分开,但是换了一种思考方式。
3. 百分数。
- 百分数表示一个数是另一个数的百分之几。
它就像一个穿着特殊衣服的分数,分母固定是100呢。
比如说50%,就是(50)/(100),化简就是(1)/(2)。
百分数在生活中可常见了,像商场打折啊,说八折,其实就是80%。
4. 比和比例。
- 比就像是两个数在比大小,不过是用一种特定的形式。
比如说3比2,可以写成3:2或者(3)/(2)。
比的前项和后项同时乘或除以相同的数(0除外),比值不变哦。
- 比例呢,是表示两个比相等的式子,像3:2 = 6:4。
在比例里,两个外项的积等于两个内项的积,这就像一个小秘密,可以用来解比例问题。
比如说,已知3:2 = x:4,那么2x = 3×4,x就等于6啦。
二、空间与图形。
1. 圆。
- 圆可是个很神奇的图形呢。
首先是圆心,它就像圆的心脏,所有的半径都从这里出发。
半径就是圆心到圆上任意一点的距离,用字母r表示。
直径呢,是通过圆心并且两端都在圆上的线段,它等于半径的2倍,也就是d = 2r。
- 圆的周长,想象一下用一根绳子绕着圆一圈,这根绳子的长度就是圆的周长啦。
六年级数学知识点归纳1. 数的认识- 整数:包括正整数、负整数和零,表示数量的多少。
- 分数:表示一个整体被平均分成若干份后,取其中一份或几份的数。
- 小数:表示将一个整体分成十份、百份、千份等,取其中一份或几份的数。
- 百分数:表示一个数是另一个数的百分之几。
2. 数的运算- 加法:将两个或多个数相加,得到它们的和。
- 减法:从一个数中减去另一个数,得到它们的差。
- 乘法:表示重复相加的过程,即一个数乘以另一个数,得到它们的积。
- 除法:将一个数分成若干份,每份的大小相等,求每份的大小。
- 四则混合运算:先进行乘除法,再进行加减法,按照运算顺序进行计算。
3. 几何图形- 平面图形:包括直线、射线、线段、角、三角形、四边形、圆等。
- 立体图形:包括长方体、正方体、圆柱、圆锥、球等。
- 图形的周长:围成封闭图形的线段的总长度。
- 图形的面积:封闭图形内部的平面大小。
- 图形的体积:立体图形所占空间的大小。
4. 度量单位- 长度单位:米、厘米、毫米等。
- 面积单位:平方米、平方厘米、平方毫米等。
- 体积单位:立方米、立方厘米、立方毫米等。
- 质量单位:千克、克等。
5. 数据的收集与处理- 数据的收集:通过观察、调查、实验等方法获取数据。
- 数据的整理:将收集到的数据进行分类、排序、制表等。
- 数据的分析:对数据进行分析,找出数据之间的关系和规律。
6. 应用题- 行程问题:涉及速度、时间和路程的关系。
- 工程问题:涉及工作效率、工作时间和工作量的关系。
- 经济问题:涉及价格、数量和总价的关系。
- 比例问题:涉及两个或多个量之间的比例关系。
7. 逻辑推理- 归纳推理:从个别事实中归纳出一般规律。
- 演绎推理:从一般规律推导出个别事实。
- 类比推理:通过比较两个或多个对象的相似性,推断它们在其他方面的相似性。
8. 数学思维- 抽象思维:从具体事物中抽象出数学概念和规律。
- 空间思维:对空间图形进行想象和推理。
小学六年级数学知识点归纳整理小学六年级数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数二、方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。
如:3x =ab+c三、分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的.分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
表示两个比相等的式子叫做比例,是比的意义。
比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
17.比和比例的区别(1)意义、项数、各部分名称不同。
比表示两个数相除;只有两个项:比的前项和后项。
如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
a:b=3:4 这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。
比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。
比例的性质用于解比例。
联系:比例是由两个相等的比组成。
18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
因此,比和比例的意义也有所不同。
而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:比和比例有着密切联系。
比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。
比例是由比组成的,如果没有两种量的比,比例就不会存在。
比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。
如果两个比相等,那么这两个比就可以组成比例。
成比例的两个比的比值一定相等。
20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
21.圆心:圆任意两条对称轴的交点为圆心。
注:圆心一般符号O表示22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
25.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
26.圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2;,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]229.百分数与分数的区别(1)意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数还可以表示两数之间的倍数关系.(2)应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
30.百分数应用百分数一般有三种情况:①100%以上,如:增长率、增产率等。
②100%以下,如:发芽率、成长率等。
③刚好100%,如:正确率,合格率等。
31.百分数的意义百分数只可以表示分率,而不能表示具体量,所以不能带单位。
百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。
32.日常应用每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。
20%、10%让人一目了然,既清楚又简练。
知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。
连接圆上任意两点的线段叫做弦。
圆中最长的弦为直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。
7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO<r。
8.百分数的由来200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。
如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。
而后,人们在分数的基础上又以100做基数,发明了百分数。
六年级下册知识点归纳总结1.负数:负数是数学术语,指小于0的实数,如−3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如−2,−5.33,−45,−0.6等。
2.正数:大于0的数叫正数(不包括0)若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。
也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G 旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch (注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。