燃料电池研究现状与未来发展
- 格式:doc
- 大小:19.50 KB
- 文档页数:7
微生物燃料电池的发展现状及未来趋势一、引言随着能源资源的紧缺和环境污染的加剧,寻求替代能源和清洁能源的研究日益受到关注。
微生物燃料电池作为一项新兴技术,被认为具有巨大潜力,可以转化废弃物为清洁能源。
本文将探讨微生物燃料电池的发展现状及未来趋势。
二、微生物燃料电池的原理微生物燃料电池是一种利用微生物催化底物氧化反应并直接将化学能转化为电能的技术。
它以微生物作为催化剂,将底物(如有机废弃物)氧化为电子和质子,并通过电化学反应转变为电能。
这种技术具有可持续性和高效能的特点,因此备受瞩目。
三、微生物燃料电池的应用领域1.废水处理微生物燃料电池可以应用于废水处理领域,通过将微生物直接放置在废水中进行催化反应,实现废水的净化并产生电能。
这种技术可以将废水处理和能源回收结合,减轻环境污染的同时获得经济利益。
2.生物传感器微生物燃料电池还可以应用于生物传感器领域,利用微生物对特定环境参数的敏感性,通过监测微生物燃料电池的输出电流变化来实现环境监测和生物检测。
这种技术具有实时性和高灵敏度,可以在环境监测、医学诊断等方面发挥重要作用。
四、微生物燃料电池的发展现状目前,微生物燃料电池的开发已经取得了一定的进展。
研究人员已经成功地利用不同类型的微生物,如厌氧细菌、藻类和真菌,来催化底物的氧化反应。
同时,改进了电极材料和设计,提高了微生物燃料电池的输出电流和效率。
许多实验室已经实现了小规模的微生物燃料电池系统,并取得了良好的效果。
五、微生物燃料电池的未来趋势尽管微生物燃料电池在废水处理和生物传感器等领域已经初步应用,但仍存在一些挑战和限制。
首先,微生物燃料电池的输出电流和效率仍然较低,需要进一步提高。
其次,微生物的选择和培养条件对整个系统的性能有重要影响,需要更深入的研究和优化。
此外,微生物燃料电池的商业化应用面临着技术成本和市场需求等问题。
未来,微生物燃料电池的发展方向主要包括以下几个方面。
首先,通过细菌基因工程的技术手段,优化微生物的催化性能,提高其氧化底物的效率。
碱性燃料电池技术发展现状及未来趋势分析引言:碱性燃料电池(Alkaline Fuel Cells,简称AFC)是一种利用氢气和氧气反应而产生电能的能源转换装置。
与其他类型的燃料电池相比,碱性燃料电池具有高效率、高能量密度和低成本等优点,因此被视为推动清洁能源技术发展的重要途径。
本文将对碱性燃料电池技术的发展现状进行分析,并探讨其未来的发展趋势。
一、碱性燃料电池技术的发展现状1.技术原理:碱性燃料电池的工作原理基于氢气和氧气通过阴极和阳极之间的氧化还原反应产生电能。
在碱性燃料电池中,水溶液中的饱和的碱金属氢氧化物被用作电解质,氢气在阴极上氧化成水,而氧气在阳极上还原成水。
碱性燃料电池采用可再生的金属氢氧化物溶液,可以实现高效的反应,并通过排除排放无害的水蒸汽。
2.实际应用:碱性燃料电池的实际应用领域众多,包括航空航天、交通运输、储能系统和移动电源等。
特别是在航空航天领域,碱性燃料电池得到了广泛应用,比如宇航员的生活保障和航天飞机的动力系统等。
3.技术进展:碱性燃料电池技术在过去几十年取得了显著的进展。
随着科学技术的不断发展和日益完善的研究方法,碱性燃料电池的效率得到了显著提高。
创新的材料、催化剂和设计思路推动了碱性燃料电池的发展,实现了更高的效能和更低的成本。
4.存在的挑战:然而,碱性燃料电池仍然面临着一些挑战。
首先,氢气的存储和传输成为制约其应用的一个问题,尚未找到高效而简便的解决方案。
其次,碱性燃料电池的运行温度较高,需要较长的启动时间。
此外,金属氢氧化物溶液的浓度限制了电池的功率密度和能量密度。
二、碱性燃料电池技术的未来趋势1.提高效率:未来碱性燃料电池技术的发展将主要集中在提高电池的能量转化效率。
科学家们正在研究新材料和催化剂,以提高反应速率和降低电池内部的能量损失。
此外,通过优化电池的结构和设计,减少电池内部阻抗,也是提高效率的重要途径。
2.降低成本:目前碱性燃料电池的成本仍然较高,限制了其商业化应用的推进。
燃料电池技术的发展现状与前景燃料电池是一种能够将氢气、甲醇等可再生燃料转化成电能的技术。
与传统的化石燃料相比,燃料电池具有能量利用率高、环境友好等优势,被认为是未来能源的重要发展方向之一。
本文将探讨燃料电池技术的发展现状与前景。
一、燃料电池技术的发展历程燃料电池作为一种新型能源技术,其研究始于19世纪末。
20世纪60年代,美国NASA将燃料电池投入太空航行,这是燃料电池应用的一次重要尝试。
之后,燃料电池得到了广泛的关注和研究,各国纷纷投入大量的资金和人力进行研发,燃料电池也得到了不断的升级和改进。
二、燃料电池技术的现状目前,燃料电池技术已经进入到了实用化阶段。
燃料电池的类型有很多,最为常见的是质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。
其中,PEMFC是轻质、高效、响应速度快的燃料电池类型,适用于汽车、船舶和便携式电子设备等领域。
SOFC则具有长寿命、高效率的特点,适用于能源电力系统和基础设施等领域。
此外,燃料电池在微型化、高温高压等方面也有了很大的发展。
三、燃料电池技术的前景燃料电池技术的前景非常广阔。
首先,燃料电池作为一种新型能源技术,具有能源利用效率高、减少环境污染等优势,将会成为未来能源的重要组成部分。
其次,燃料电池的应用领域非常广泛,包括汽车、船舶、飞机等交通工具,以及电力系统和基础设施等方面,将会为人类社会的发展做出重要贡献。
再次,随着燃料电池技术的不断发展和提高,其成本也将随之降低,逐渐进入到商业化阶段,成为一项可持续发展的能源技术。
总之,燃料电池技术的发展历程经历了漫长的研究过程,而现在已经进入到实用阶段。
未来,燃料电池技术将会成为重要的能源组成部分,成为推动人类社会持续发展的重要力量。
同时,燃料电池技术将会在成本和性能等方面得到更多的提高和改进,成为一项可持续发展的能源技术。
固体氧化物燃料电池的发展现状和前景1. 引言说到固体氧化物燃料电池(SOFC),有点像在讲一个刚出道的明星,虽然现在还不算大红大紫,但潜力可不小哦!想象一下,一个能安静地把化学能转化为电能的家伙,不用噪音、不用汽油,只要靠氢气或者天然气就能工作,真的是个环保小能手。
今天我们就来聊聊这个新星的发展现状以及未来前景,保证让你开开眼界,哈哈!2. 发展现状2.1 技术进步现在的SOFC技术可是越来越成熟,真是“金鸡报晓”的感觉!早期的燃料电池在效率和耐用性上都存在不少问题,但随着科技的进步,材料科学的飞速发展,这小家伙的性能也跟着水涨船高。
现在的固体氧化物燃料电池效率能达到60%甚至更高,简直可以和传统发电方式一较高下,毫不逊色。
研究人员用高温电解陶瓷材料替代了原来的金属材料,结果就像“柳暗花明又一村”,不仅降低了成本,还提高了电池的稳定性。
听起来是不是很让人期待?2.2 应用领域而且,SOFC的应用场景可真是不少,从小型设备到大型发电站,几乎无所不能,像个“万金油”。
比如在住宅区,SOFC可以直接为家庭供电、供暖,这样一来,不仅省电费,还能减少温室气体排放,真是一举两得!还有在一些偏远地区,尤其是没有电网的地方,SOFC也能大展拳脚,帮助人们解决用电难的问题,真是“雪中送炭”。
而且,它还可以与可再生能源结合,比如太阳能和风能,这样一来,SOFC就像“鱼和熊掌可以兼得”的美妙选择。
3. 前景展望3.1 市场潜力未来的SOFC市场可谓是“潜力无穷”,行业分析师预测,未来十年这个领域的市场规模将翻番,简直就像过年时的烟花,越放越亮。
随着各国对绿色能源的重视,很多地方都开始投入大量资金用于燃料电池技术的研发,相关部门支持、利好一波接一波,真是春风得意马蹄疾。
这个时候,如果你还是在犹豫是不是要投资相关行业,恐怕就要“吃亏在眼前”了。
3.2 挑战与机遇当然,事情也不是那么简单,SOFC虽然前景大好,但仍然面临一些挑战。
燃料电池的应用现状和未来发展方向燃料电池(Fuel cell)被认为是一种革命性的能源转换技术,可以直接将燃料(通常为氢气)和氧气在没有燃烧的情况下,通过化学反应产生电能,并且只产生水和热作为副产品。
由于其高能量密度、环保清洁和高效能等优势,燃料电池被广泛研究和应用于各个领域,包括交通运输、家庭能源、航空航天和移动通信等。
本文将介绍燃料电池的应用现状以及未来的发展方向。
一、燃料电池的应用现状1. 交通运输领域燃料电池在交通运输领域的应用是其最为重要的领域之一。
目前,燃料电池汽车已经进入商业化阶段,且持续发展。
例如,丰田汽车的Mirai、日产汽车的e-NV200 FCV和本田汽车的Clarity等燃料电池汽车已经在市场上销售。
这些汽车通过燃料电池将氢气转化为电能,驱动电动机工作,实现了零排放和长续航里程的特点。
此外,燃料电池也被应用于公交车、货车和火车等公共交通工具中,以实现环保清洁的运输方式。
2. 家庭能源领域随着能源危机的日益严重和环境意识的增强,人们对于可持续能源的需求不断增加。
燃料电池被看作是一种有效的家庭能源解决方案。
家用燃料电池系统可以将天然气等燃料转化为电能供家庭使用,同时还能提供热能用于供暖和热水。
这种系统不仅能够减少对传统能源的依赖,还能降低碳排放和室内空气污染。
3. 航空航天领域燃料电池在航空航天领域的应用也引起了广泛关注。
相比传统的燃油动力系统,燃料电池可以提供更高的能量密度和更低的重量,从而提高飞机的性能和航程。
燃料电池在无人机、卫星和宇航器上的应用已取得了一定的成果,为航空航天技术和探索提供了新的突破。
4. 移动通信领域移动通信设备的使用急剧增加,对于高能量密度和长续航时间的需求也越来越大。
燃料电池被广泛探索作为移动通信设备的电源解决方案。
例如,燃料电池可以用于手机、平板电脑和笔记本电脑等便携式设备,以延长电池的使用时间和提高使用体验。
燃料电池技术的不断发展为移动通信领域带来了更大的潜力。
2024年甲醇燃料电池市场发展现状甲醇燃料电池是一种以甲醇为燃料,在电化学反应中将其转化为电能的新型能源技术。
随着能源需求的增长和环境污染问题的日益严重,甲醇燃料电池作为一种高效、清洁的能源转化技术,在能源领域受到了广泛关注。
本文将介绍2024年甲醇燃料电池市场发展现状。
1. 甲醇燃料电池的基本原理甲醇燃料电池利用甲醇在阳极催化剂的作用下进行氧化反应产生电子,通过外部电路驱动负载,同时在阴极与氧气进行还原反应生成水。
其基本反应方程式如下:阳极反应:CH3OH + H2O -> CO2 + 6H+ + 6e^-阴极反应:3/2O2 + 6H+ + 6e^- -> 3H2O净反应:CH3OH + 3/2O2 -> CO2 + 2H2O2. 甲醇燃料电池的市场应用甲醇燃料电池作为一种高效、环保、可再生的能源技术,具有广泛的市场应用前景。
目前,甲醇燃料电池主要应用于以下领域:2.1 便携式电力甲醇燃料电池可以作为一种便携式电力来源,在户外野营、移动办公等场合提供电能支持。
其高能量密度和长时间供电特性,使其成为便携式设备的理想选择。
2.2 交通运输甲醇燃料电池在交通运输领域应用广泛。
它可以作为燃料源供应电动汽车,实现汽车的零排放运行。
同时,甲醇燃料电池具有快速加注、长续航里程等优点,有望成为未来交通运输领域的主流能源技术。
2.3 工业能源甲醇燃料电池在工业能源领域具有广阔的应用前景。
它可以作为一种清洁、高效的能源来源,为工业生产提供电力支持。
与传统燃烧方式相比,甲醇燃料电池能够减少大量的二氧化碳和有害气体的排放,有利于环境保护和可持续发展。
3. 2024年甲醇燃料电池市场发展现状目前,甲醇燃料电池市场正在快速发展。
随着技术的不断突破和成本的不断降低,甲醇燃料电池的商业化应用逐渐展开。
以下是2024年甲醇燃料电池市场发展现状的主要特点:3.1 技术创新在甲醇燃料电池技术领域,不断有新的科研成果和技术创新涌现。
燃料电池技术现状分析论文燃料电池技术作为可再生能源核心领域的重要组成部分,被誉为“能源革命”中的一大亮点,其应用逐渐扩大到重电力、交通运输甚至是移动电力等各个领域。
目前,全球燃料电池技术的开发和应用形势十分乐观,但燃料电池还面临一些技术难点和挑战,本文将从燃料电池技术现状分析出发,探讨燃料电池技术所面临的困境和未来发展方向。
一、燃料电池技术现状燃料电池技术是将化学能转化为电能的一种新型技术,它可以通过利用氢气、甲烷、乙醇、丙烷等气体或液体作为燃料,采用电化学反应将燃料和氧气直接转化为电能,每种燃料有不同的类型,包括氢气燃料电池、甲醇燃料电池和乙醇燃料电池等。
其中氢气燃料电池是目前燃料电池应用最为广泛的一种。
氢气燃料电池技术具有高能量密度、清洁环保、发电效率高等优势,在汽车、电力、航空航天、军事等领域具有广泛的应用前景。
当前,氢气燃料电池技术已经进入产业化阶段,主要厂商有丰田、本田、通用、福特、戴姆勒、大众等的汽车制造商和百万瓦级的电力公司。
随着燃料电池技术的发展和应用,业内普遍认为燃料电池技术的核心技术已经具备,但整个系统的成本、耐久性、系统复杂性和大规模生产的能力仍存在很大的挑战。
二、燃料电池技术所面临的困境1.成本燃料电池技术目前的成本仍然很高,构造成本和制造成本各占总成本的一半。
主要原因是燃料电池材料成本高,生产过程复杂,生产规模小,经济性不足。
此外,配套设施和基础设施的建设也需要大量的资金支持。
2.耐久性燃料电池的耐久性仍然是影响其商业化的关键因素,目前燃料电池的寿命约为3-5年,还无法满足商业应用的要求。
需要解决的问题主要是燃料电池寿命问题和高温高压环境下热失配的问题。
3.复杂性燃料电池的系统复杂度高,需要更多的控制系统和管理系统的支持,而这些系统和管理系统的开发成本高,需要更多的工程师参与。
因此,燃料电池技术的大规模推广和商业化需要大量的投入。
4.政策支持多个国家政府出台的燃料电池相关政策已经对燃料电池技术发展起到积极的推动和作用。
燃料电池技术的现状及发展趋势随着环境保护意识的增强以及可再生能源的不断发展,燃料电池技术也逐渐走进我们的视野。
燃料电池技术是指将化学能转化为电能的一种新能源技术。
相比传统燃油车,它具有零排放、高效、清洁等优势,可谓是一种环保型的高端科技。
那么,燃料电池技术的现状和发展趋势究竟是怎样的呢?本文将从技术现状、市场前景和未来发展三个方面进行剖析。
1. 技术现状目前,燃料电池技术已经有了较大的进展,主要体现在以下三个方面:(1)电化学反应的稳定性逐渐增强燃料电池的核心部件是电化学反应膜,它的稳定性直接决定着整个燃料电池的寿命。
随着科学家们对电化学反应机理的了解越来越深入,对反应膜材料的研究和改良也取得了不小的成果。
(2)燃料电池的存储技术得到提升燃料电池的燃料一般为氢气或者甲醇等,如何有效地储存这些燃料也是燃料电池技术所面临的难题。
目前,科学家们正在研究开发一些新型的储氢或储甲醇技术,如将氢气储存于固体材料中,或者将甲醇直接储存于燃料电池的反应膜中等。
(3)生产成本有所下降从一开始的高成本,到现在的生产工艺逐渐成熟,燃料电池技术的生产成本逐渐降低。
科学家们正在不断寻求降低材料成本,提高生产效率的方法。
2. 市场前景燃料电池技术市场前景广阔,这一点早已不是业内人士的秘密。
特别是在汽车领域,燃料电池车已经成为了各大汽车厂商争相研发的领域,而其中日系汽车厂商尤为突出。
燃料电池车的优点不仅在于环保,同时在功率、稳定性等方面也有所突破。
以丰田的Mirai为例,它的最大功率达到了154马力,最大续航里程也能够达到了502公里,相比燃油车有了明显的提升。
而在价格上,基于国家对新能源的支持,燃料电池车也有了一定的降价幅度。
另外,燃料电池技术还具有广泛的适用性,可以用于移动电源、航空航天器、及家庭应用等领域。
燃料电池技术不仅可以涉足汽车领域,还可以延伸到各个领域,具有强大的市场竞争力。
3. 未来发展从技术趋势上看,燃料电池技术未来的发展方向将主要集中在以下几个方面:(1)提高燃料电池的功率密度目前,燃料电池的功率密度仍然较低,也就是说燃料电池发电效率有待进一步提升。
燃料电池技术的研究及应用前景燃料电池是指一种利用化学反应产生电能的电化学装置。
与传统锂电池、铅酸电池及镍氢电池等电池不同,燃料电池不需要充电,且可以持续输出电能。
燃料电池技术具有高能量密度、低污染、零排放、安全性高、易于集成等优点,被广泛认为是未来清洁能源的重要替代品,因此得到了世界各国的广泛关注。
一、燃料电池技术的基本原理燃料电池是以氢气为燃料、以空气或氧气为氧化剂,通过电化学反应将化学能转化为电能的装置。
燃料电池的基本原理是利用电子和离子的转移过程。
以氢燃料为例,当氢气分子进入燃料电池反应器内,经过阳极氧化剂的加氢,氢分子将裂解成为质子和电子,质子通过阳极电解质膜进入阴极区域,与空气中的氧分子相遇后形成水,电子在电极上产生电流。
这样就实现了化学能转化为电能的过程。
二、燃料电池技术的发展历程燃料电池技术的应用历史可以追溯到1839年,当时SirWilliam Grove博士发明了一种利用水分解法制造氢气,进而通过燃料电池产生电能的设备。
这种设备利用的燃料是氢气和氧气,因此它被命名为氢气电池。
到了20世纪60年代,NASA开始使用燃料电池作为宇宙飞船的电源,随着近几年可再生能源的大力发展,燃料电池技术开始获得广泛关注。
目前,燃料电池技术已经应用于汽车、城市发电、临时电源、电子设备等多个领域。
三、燃料电池技术的应用前景1.汽车行业作为代替传统汽车燃料的清洁能源,燃料电池车正在被各大汽车制造商所瞩目。
燃料电池车的排放只有纯水,相比传统燃油汽车,其具有安全、环保、经济、适用性广等优势。
目前,燃料电池车已经进入了大规模商业化应用的阶段。
2.电力行业燃料电池技术的应用在电力行业也非常广泛。
它可以作为城市峰值用电、高效率热电联产以及远离市区的电力供应等方面,为能源行业带来革命性的变革。
3.军事行业由于燃料电池的特殊优点,在军事领域也有广泛的应用。
燃料电池发电机不仅可以为战场提供电力支持,还可以给电子设备等提供持续的能源支持。
生物燃料电池行业现状分析报告及未来五至十年发展趋势一、引言生物燃料电池作为一种新兴的清洁能源技术,具有减少碳排放、无污染、高能效等优势,备受关注。
本文将对生物燃料电池行业的现状进行全面分析,并展望未来五至十年的发展趋势。
二、生物燃料电池行业现状分析1. 市场规模及发展态势生物燃料电池行业在过去几年实现了快速发展,市场规模不断扩大。
据统计,2019年全球生物燃料电池市场规模已达到XX亿美元,预计到2025年将增长至XX亿美元。
充分说明了生物燃料电池行业具有巨大的发展潜力。
2. 技术创新与进展生物燃料电池技术在过去几年也取得了重要突破。
目前,主流的生物燃料电池技术包括酶催化燃料电池、微生物燃料电池和光合作用燃料电池等。
这些技术的不断革新与进步,提高了生物燃料电池的能量转化效率和使用寿命,加速了其商业化进程。
3. 市场应用领域及商业化进展生物燃料电池在农业、交通、能源等领域具有广阔应用前景。
目前,生物燃料电池已在一些地区开始商业化应用。
例如,在农村地区,生物燃料电池被用于发电和供暖,解决了能源供应问题。
随着技术的进一步成熟和成本的降低,生物燃料电池的市场应用将进一步扩大。
4. 发展挑战与问题虽然生物燃料电池行业取得了一定的成就,但仍面临一些挑战。
首先,生物燃料电池的成本较高,限制了其规模化应用。
其次,生物燃料电池技术仍存在一定的不稳定性和可持续性问题,需要进一步改进。
此外,在政策和法规方面,对生物燃料电池的支持力度还需加大。
三、未来五至十年发展趋势展望1. 技术创新与突破未来五至十年,生物燃料电池技术将持续创新与突破。
例如,通过改进材料、提高催化效率和稳定性,进一步提高生物燃料电池的性能。
此外,新型生物燃料电池技术的涌现也将推动生物燃料电池行业的发展。
2. 成本降低与商业化随着技术的进步和规模化生产,生物燃料电池的成本将逐渐降低。
这将使得生物燃料电池更具竞争力,进一步推动其商业化进程。
预计未来五至十年,生物燃料电池将在更多领域得到应用。
燃料电池研究现状与未来发展
香山科学会议第59次学术讨论会于1996年8月24~27日举行。
会议主题是“燃料电池研究现状与未来发展”。
会议执行主席路甬祥与王佛松院士主持了会议。
42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。
ﻫ
会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。
ﻫ一、燃料电池的技术评价
ﻫ燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。
电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。
自150余年前被发明以来,现已发展了6种形式。
它们分别为碱性(AF C)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。
概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。
而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。
ﻫ
现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。
其它方面
的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。
目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。
1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。
在各国对燃料电池的经费投入中,MCFC所占比例最大。
现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。
目前MCFC 研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。
ﻫ
2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。
其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。
目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。
2000一2010年间可实现商业化。
目前SOFC研究的重点在工程化和降低制作成本。
3.PEMFC以纯氢(CO<10ppm)为燃料,低温下运行,便于起动,结构简单,容易制作,无污染物排放,元腐蚀及电解流失问题,功率密度高达0.5—1.5W/cm2,适合作为移动电源,尤其用于汽车和潜艇的驱动电源目前最具吸引力。
美、德、加、日等国投入巨资进行此方面的研究。
降低成本主要从降低离子膜的成本和减少Pt的用量入手。
PEMDC的基础研究主要集中在离子膜、系统的水热平衡和燃料储存与处理上。
ﻫﻫ二、主要学术观点。