混床与EDI的性能对比
- 格式:doc
- 大小:257.50 KB
- 文档页数:11
EDI在除盐水系统的应用及分析宋子维,张 琰,高贵蓉,冯 爽,魏广春(中国石油长庆石化公司,陕西省咸阳市712000)摘要:传统的除盐水系统基于反渗透加混床离子交换工艺,工艺复杂,出水水质较差,且混床再生过程中产生大量的含酸、含碱废水。
而反渗透加EDI(连续电除盐技术)系统的工艺废水排放量较少,运行维护简单,不产生含酸、含碱废水,产品水电导率降低至0.10μS/cm以下,钠、硅离子质量浓度控制在10μg/L以下,水质明显提升,是理想的除盐水系统工艺。
对EDI在除盐水系统中的应用进行详细介绍,并对比分析了EDI模块更新前后的能耗、节能减排、经济效益和运行操作方面的不同,与MK 2模块相比,产水电导率进一步降低至0.06μS/cm以下,且在节能减排和经济效益方面表现突出。
关键词:EDI 除盐水 混合离子交换 水质 节能 经济效益 除盐水系统工艺按除盐原理不同可以分为物理除盐、化学除盐及膜分离除盐[1]。
除盐技术经历了从高能耗、高成本、操作复杂、环境污染到低能耗、低成本、易操作、环境友好的发展过程[2]。
EDI(Electrodeionization)又称连续电除盐技术,科学地将电渗析技术和离子交换技术融为一体,通过阳、阴离子膜对阳、阴离子的选择透过作用以及离子交换树脂对水中离子的交换作用[3],在电场的作用下实现水中离子的定向迁移,从而达到水的深度净化除盐,并通过水电解产生的氢离子和氢氧根离子对装填树脂进行连续再生,从而生产超纯水[4]。
1 反渗透加EDI和反渗透加混床的工艺比较反渗透膜技术已广泛地应用到海水淡化、苦咸水除盐及城市污水深度处理等领域,如在电力行业应用的反渗透 混合离子交换除盐工艺、反渗透 EDI工艺,美国在21世纪对城市污水进行的深度处理就采用了反渗透膜技术[5]。
EDI技术自1997年后才进入中国,近几年在制药、电子、石化等行业快速发展,在研发方面也取得部分专利[6]。
中国石油长庆石化公司除盐水站现有两套除盐水系统,分别采用两种工艺:除盐水系统(一)采用反渗透加混合离子交换工艺,除盐水系统(二)采用两级反渗透加EDI工艺。
EDI与传统混床技术相比的优势存在点?辽宁莱特莱德公司电去离子(EDI)系统主要是在直流电场的作用下,通过隔板的水中电介质离子发生定向移动,利用交换膜对离子的选择透过作用来对水质进行提纯的一种科学的水处理技术。
电渗析器的一对电极之间,通常由阴膜,阳膜和隔板(甲、乙)多组交替排列,构成浓室和淡室(即阳离子可透过阳膜,阴离子可透过阴膜).淡室水中阳离子向负极迁移透过阳膜,被浓室中的阴膜截留;水中阴离子向正极方向迁移阴膜,被浓室中的阳膜截留,这样通过淡室的水中离子数逐渐减少,成为淡水,而浓室的水中,由于浓室的阴阳离子不断涌进,电介质离子浓度不断升高,而成为浓水,从而达到淡化,提纯,浓缩或精制的目的。
内蒙古化肥制造超纯水设备, 内蒙古精细化工行业超纯水设备, 内蒙古化妆品制造超纯水设备自来水中常含有钠、钙、镁、氯、硝酸盐、矽等溶解盐。
这些盐是由负电离子(负离子)和正电离子(正离子)组成。
反渗透可以除去其中超过99%的离子。
自来水也含有微量金属,溶解的气体(如CO2)和其他必须在工业处理中去除的弱离子化的化合物(如矽和硼)。
交换反应在模组的纯化学室进行,在那里阴离子交换树脂用它们的氢氧根据离子(OH)来交换溶解盐中的阴离了(如氯离子C1)。
相应地,阳离子交换树脂用它们的氢离子(H)来交换溶解盐中的阳离子(如Na)。
1、无化学污染持续的树脂电解再生使得无需腐蚀性很强的化学品;如果前级RO系统运作正常,则极少需要清洗。
如异常E-Cell的内部设计足以应付周期性的化学清洗;E-Cell消除了对腐蚀性化学品再生装备的资金投入。
如:合金伐门、管道、水泵、化学药品储存设备等相关部件,省却了这些部分的安装、更新、维护的费用2、连续再生连续再生替代了间歇式再生,这就不再需要备用离子交换设备。
每个模块都可以独立进行化学清洗,剩余的模块可以承担短期的高流量。
3、启动/操作简单与混床的间歇式再生相比,不再需要再生操作;EDI操作简单,所需伐门少,同时也无须操作者花费很大精力;操作只需简单的分析和控制。
EDI系统与混合离子交换技术的区别有哪些
2020年1月7日
EDI系统与混合离子交换技术的区别有哪些?下面为大家详细介绍,帮助大家更好的选择适合自己的设备系统:
1、占地空间小,省掉了混床和再生设备。
2、产水稳定,出水质量高,而混床在树脂接近失效时水质会变差;EDI系统商品水水质稳定,电阻率一般为15MΩ·cm,较高时可达到18MΩ·cm,到达超纯水的指标。
混床离子交换设备的清水进程是连续式的,在刚刚被再生后,其商品水水质较高,而在下次再生之前,其商品水水质较差。
3、运转费用低,再生只耗电,不用酸碱,节省材料费用;EDI系统运转费用包括电耗、水耗、药剂费及设备折旧费等费用,省去了酸碱耗费、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI系统约0.5kWh/t水,混床技术约0.35kWh/t水,电耗的本钱在电厂来说是相比经济的,可以用电厂用电的报价核算。
在水耗方面,EDI系统产水率高,不用再生用水,因此在此方面运转费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运转费用中,混床运转本钱高于EDI设备。
因此,EDI设备的费用在几年内完全可以收回。
4、环保效益显著,增加了操作的安全性;EDI系统归于环保型技能,离子交换树脂不需酸、碱化学再生,节省很多酸、碱和清洁用水,大大降低了劳动强度。
更主要的是无废酸、废碱液排放,归于非化学式的水处理体系,它无需酸、碱的储存、处理及无废水的排放,因此它对新用户具有格外的吸引力。
医疗用超纯水混床与EDI技术对比一、前言在体外再生型凝结水处理系统中,树脂作为被转移的对象在混床及各再生设备间进行来回的输送。
当树脂从一设备向另一设备内输送时,如果输送得不彻底,将会造成混床间树脂量有的多有的少,并且会带来阳阴树脂的体积比失调、混床的出水水质变差等一系列不良后果。
医院超纯水设备根据树脂在设备间的输送情况,树脂的送出率主要与设备的内部结构、树脂本身的流动性能及操作方式等因素有关。
由于球形树脂颗粒在水溶液中并非是自由流动的,因而将树脂视为自由流体或忽视设备内部结构的布置,都将影响到树脂的输送效果。
二、树脂的流动性能对于树脂在水中的流动能力,可以用树脂颗粒在水中的休止角(Angle of repose)来表示,休止角的大小随测量方法的不同而稍有差异,一般情况下,当粒状物料的休止角小于30°时较易流动,大于30°时其流动能力将受到一定的限制。
在试验室条件下,可以采用容器倾斜法测试不同类型树脂的休止角,即在一装有除盐水的圆柱体中加入树脂样,使树脂完全沉浸于水中,然后逐渐地倾斜圆柱体,至树脂层表面有树脂颗粒流动为止,此时树脂层表面与水平面所形成的夹角称为树脂的休止角。
树脂休止角的大小与其密度、粒度、形状及阳阴树脂颗粒间的静电效应等因素有关,对于凝结水处理系统中应用的D001、D201普通型树脂,其休止角一般为23—27°;对于高速混床专用的D001MB、D201MB型树脂(粒度性能较好),其休止角通常在21—24°的范围内。
一般来说,阴树脂的流动性能较阳树脂好,混合树脂较阳、阴树脂的流动能力要差,粒度分布较均匀的D001MB、D201MB型树脂的流动性能较粒度分布较差的D001、D201型树脂要好。
实际上,树脂颗粒的流动能力还与树脂层的压实情况有关,例如将混匀的树脂层敲实后,可测得树脂对应的休止角约增大2—4°。
三、分离器内树脂分层后的送出在一些体外型再生系统中,对于分离器内反洗分离后的阴树脂及中间混脂层树脂的送出,一般采用由下往上的方式进行抽取,例如国产T塔型再生系统中,分离器内的阴树脂及混脂的送出装置均为支管与分配器连接的辐射形分布型式。
EDI超纯水装置与混床离子交换器优势对比传统的超纯水制备设备是电渗析、离子交换器(阳床、阴床、复床、混床)。
新型超纯水制备设备是EDI(连续电除盐技术)设备。
EDI是将电渗析技术和离子交换技术有机结合形成的一种新型除盐技术。
可以有效的去除水中几乎全部的阴阳离子,出水电阻率可稳定在15MΩ.CM以上,连续运行、无化学污染、水的利用率高,在超纯水制备工艺上有着强大的优势广阔的应用前景。
EDI超纯水设备的工作原理:1.经RO反渗透设备产出的纯水进入EDI装置,主要部分流入离子交换树脂/膜内部,而另一部分沿模板外侧流动,以洗去透出膜外的离子。
2.离子交换树脂截留水中的溶存离子。
3.被截留的阴阳离子在电极作用下,阴离子向正极方向运动,阳离子向负极方向运动。
4.阳离子透过阳离子膜,排出离子交换树脂/膜之外。
5.阴离子透过阴离子膜,排出离子交换树脂/膜之外。
6.浓缩了的含离子水(浓水)经废水流路中排出。
7.无离子水(超纯水)从离子交换树脂/膜内流出。
优势对比EDI超纯水设备是应用在RO反渗透系统之后,取代传统的混合离子交换技术(MB-DI)生产稳定的去离子水。
EDI技术与混合离子交换技术相比有如下优点:(1)EDI超纯水设备产水水质稳定;混床往往因为人工再生的不确定性和不准确而造成产水水质不合格。
(2)EDI超纯水设备容易实现全自动控制;混床实现全自动控制十分复杂,成本昂贵,几乎全为手动控制。
(3)EDI超纯水设备连续运行,不会因再生而停机;混床离子交换柱在用酸碱再生过程中不产水,想要连续产水需要至少一用一备。
(4)EDI模块中的离子交换树脂是用电解水中氢离子和氢氧根离子进行再生;混床离子交换柱中的阴树脂是用下行的氢氧化钠再生,阳树脂是用上行的盐酸再生,化学再生操作复杂,有很多的不安全生产因素。
(5)EDI超纯水设备运行费用低,只需要电,但是比电渗析需要的电量小很多;混床消耗的酸液和碱液的成本很大,树脂更换的费用也比较昂贵。
混床与EDI的性能对比混床与EDI的性能对比在生产超纯水方面,现在都推荐用EDI,而慢慢淘汰混床。
经常有客户问到EDI与混床有什么区别,为使您对混床与EDI的性能有一个较为具体的了解,现就混床与EDI进行运行、操作、成本等方面作如下对比分析:(一)混床与EDI的性能对比:1)EDI与混床运行对比混床混床在有效的交换周期内,出水水质稳定,其电阻率可达14MΩ,一旦到达失效终点,则电导率会急剧上升,出水水质也随之不稳定。
由于其交换周期受操作工的操作水平、再生剂质量、预处理水质以及树脂本身的质量等因素的影响,故存在有效周期时间长短不确定的因素。
所以,在反渗透+混床的系统中至少存在两个混床,一用一备,以减小混床突然失效带来的风险。
EDI又称连续电除盐(EDI,Electro deionization或CDI,continuous electrode ionization),是将两种已经成熟的水净化技术--电渗析和离子交换相结合,溶解的盐在低能耗的条件下被去除,在运行过程中不需要化学再生,并且其出水电阻率较混床出水还要高,可达10-18.2MΩ.CM,满足国家电子级水I 级标准。
EDI对一级反渗透出水电导率没有太高的要求,进水电导率在4-30us∕cm其都能够合格产水。
可能需增加软化装置,去除水中的钙、镁离子。
若电导率较高时只需调节运行电流的大小和加药量(氯化钠)的大小。
属于环保型技术,离子交换树脂不需酸、碱化学再生,节约大量酸、碱和清洗用水,大大降低了劳动强度。
更重要的是无废酸、废碱液排放,属于非化学式的水处理系统,它无需酸、碱的贮存、处理及无废水的排放。
2)EDI与混床操作对比混床混床再生时间比较长,再生中需耗用大量的RO水将混床冲洗合格。
混床的设备操作在纯化水系统中是比较复杂的,从一开始的配酸、碱到最后的再生结束最少需经过两个班、多人的配合,劳动强度较大,同时由于混床的交换有效周期的缩短带来了混床的频繁再生,进一步加大了再生时的劳动强度。
混床再生时操作工需与酸、碱进行接触,是一种危险性的操作,而且再生时虽然操作工穿戴有劳动保护用品,但仍使操作工的人身安全存在一定危险。
混床再生后的使用有效期与操作工的经验、工作责任心及再生用酸碱的质量有很大的关系,由于其操作大部分靠经验操作,难免会出现混床再生后在备用期内就失效,不能使用的事情。
这样就有可能会影响正常生产。
EDIEDI是由几个每小时产水量相同的模块组成,根据实际纯水的使用量开启或停止EDI模块,手动操作相对频繁,但操作比较简单,只需开启EDI进水阀门、极水阀门和浓水阀门,以及打开电源同时根据出水水质调节加药量(氯化钠)、电解电压和电流的大小即可,对操作工的责任心要求较高。
3)EDI与混床成本对比混床详见10m3/h反渗透+混床(10MΩ)纯水处理系统运行成本分析表。
全年一条10m3/h反渗透+混床(10MΩ)纯水处理系统运行成本在350400元左右。
EDI详见10m3/h反渗透+EDI(10MΩ)纯水处理系统运行成本分析表。
全年一条10m3/h反渗透+EDI(10MΩ)纯水处理系统运行成本在334400元左右。
4)EDI与混床对比分析A、EDI与混床优、缺点分析优点混床1、设备初期投入低2、出水水质稳定3、预处理要求简单4、水的利用率较高EDI1、设想周到的堆叠式设2、水质稳定3、无需酸碱再生,无危害性废液排放4、连续运行,简单操作5、运行费用低6、占地面积小7、便于安装及保养8、水的利用率高缺点混床1、树脂交换容量利用率低、损耗率大2、酸碱再生有危险性废液排放3、细菌易在床层中繁殖4、阀门较多,操作复杂5、运行重量高,占用面积大EDI1、初期投资较大2、对预处理要求高二、EDI与混床综合分析比较项目混床EDI性能★★★★★操作★★★运行费用★★★★环保★★★★综合一般优综上所述,对于高纯水系统,无论从产水质量、性能和操作等方面考虑,还是从运行费用和环保等方面考虑,反渗透+EDI工艺都是一个理想的选择。
EDI设备EDI技术的发展图2 混床与EDI模块运行状态的比较扩展阅读:EDI与混床的比较EDI相对与混床具有如下的优势:无需再生化学品的再生;不需要中和池及中和的酸碱;地面和高空作业能够极大地减少;所有的水处理系统操作都能够在控制室内完成–无需前往现场;减小了EHS风险;连续工作,不是间歇操作,长时间稳定的出水水质;没有废弃树脂污染排放的风险。
3.1无需再生化学品的再生无需化学品再生,意味着不需要相关化学品的运输,储存和使用(如图6),也避免了相关的ESH风险,并且大大降低了系统的运行费用。
图6 化学品的运输,储存和使用过程3.2 没有中和药剂的需要混床再生会生成酸/碱废液,需要用碱/酸对之进行中和处理。
相比之下,EDI无酸碱废液产生,因此也就不需要酸碱中和池。
此外,一般情况下,EDI的浓水可以完全回用;而且极水也可以在气液分离后回用。
EDI系统能很好的满足ISO14000的要求。
图7 EDI没有中和药剂的需要3.3 运行成本低EDI的运行的费用几乎全部为电耗,成本大幅往往低于混床。
以E-Cell MK-3为例,平均产水1吨,其运行所需的电耗仅为0.132~0.396KWhr;而且其运行过程中,几乎不需要人工操作,降低了人工费用。
3.4 水利用率高以E-Cell MK-3为例,相比于混床,由于没有化学再生的需要,其系统的水利用率为95~99%,这对于中大型系统、水资源紧缺地区的节水效益尤为明显3.5 极大地减少了地面和高空作业E-cell是EDI模块化设计技术的倡导者和领导者,现在E-cell模块化技术已经成为一种行业标准。
这种设计既使得EDI模块及其系统的安装十分简便,不同水量的系统就像搭积木一样方便。
图8为EDI系统示意图,对于一般的EDI系统而言,其高度在2.25米左右,因此,高空作业也就很少。
图8 EDI系统示意图3.4. 所有的水处理系统操作都能够在控制室内完成–无需前往现场图9 EDI系统控制示意图EDI 系统的自动化程度很高,以 E-cell 为例,GE 在欧美具有二十几年的 EDI 系统工程自动化经验,EDI系统所有的操作均可以在中空室完成。
这样平时操作,用户不再需要到现场,从而降低了劳动强度。
3.5. 连续工作,不是间歇操作,长时间稳定的出水水质如图10所示,混床运行过程为间歇运行过程,混床在运行一段时间后,树脂会被穿透,此时产水电阻率会下降,这时就需要对混床进行停机再生,再生后的混床将能继续提供高品质的产水,直到下一次再生。
如图11所示,EDI运行过程为连续过程,EDI 在运行过程中将能持续不断地提供 10~18Mohm•cm的产水,在运行过程中,几乎不需要人工干预,没有复杂的操作,并不需要化学药品的再生。
图12 实际运行的E-Cell 系统产水电阻率图图12为某实际运行的E-Cell 系统产水电阻率,当进水水质发生波动的时候,产水水质能很好的稳定在18Mohm •cm 左右。
当用户要求对二氧化硅,硼,钠等进行控制的时候,EDI 相对混床的优势就进一步体现出来。
比如,混床运行过程中,常会出现硅先于电阻率穿透的现象,即使产水电阻率合格,但硅已经超过控制标准,这就意味着混床需要更为频繁的再生。
而E-CellTM 率先对二氧化硅出水水质提供了担保,按照其进水中二氧化硅的含量可以提供<5ppb ,<10ppb ,<20ppb 的担保(具体数据清参照表2)表2 E-Cell TM 对于硅的保证值产水SiO2 Ppb 进水SiO2 Ppb 进水TEA ppm CaCO3 进水CO2 Ppm 温度 Deg. C 20 ppb <=500 20 7.5 10 10 ppb <=250 20 7.5 10 5 ppb <=150 15 5.0 10EDI 对于二氧化硅的去除率相当高,一般在94.6~99.4%之间,图13为实际运行的E-Cell 系统对于硅的去处效果。
图13 E-Cell系统对于二氧化硅的去除率3.6设备占地空间更小相对与混床及其附属设备而言,EDI系统的占地空间更小,下图为的单套17~120t/hr产水量的E-Cell 系统占地空间,而对于更大的系统,仅需将系统做相应的延伸或者增加套数即可。
表1标准E-CellTM系统的尺寸产水t/hr E-cell系统体积(长×宽×高)90-120 6.2m×2.2m×2.1m45-110 5.3m×2.2m×2.1m35-80 4.7m×2.0m×2.1m20-55 3.3m×1.3m×2.1m17-41 2.2m×1.3m×2.1m 由表1可见,E-CellTM系统所需要的空间很小,而且对厂房的要求不高。
此外,其运输和安装重量也较轻。
5.结论EDI作为一种经济实用型的环保超纯水处理解决方案,相对与混床具有如下优点: 无需再生化学品的再生,运行成本低;没有中和药剂的需要;水利用率高;地面和高空作业能够极大地减少;全自动操作;减小了EHS风险;连续工作,出水水质稳定等优势。
EDI技术是超纯水降低生产成本,提高生产效率,减少废水排放,将生产地的危险降至最低的有效手段EDI技术在超纯水生产将由于其突出的优势,将越来越多成为超纯水水处理的首选技术。