生物药剂学的研究内容(精)
- 格式:ppt
- 大小:2.02 MB
- 文档页数:8
生物药剂学与药物动力学1. 引言生物药剂学与药物动力学是药学领域中的两个重要分支。
生物药剂学研究的是生物药物的制备、质量控制、稳定性和分散度等方面的知识,而药物动力学则研究的是药物在体内的吸收、分布、代谢和排泄等过程。
本文将重点介绍生物药剂学与药物动力学的定义、研究内容以及在药物研发和临床应用中的重要性。
2. 生物药剂学2.1 定义生物药剂学是研究生物药物在制剂中的制备、物理化学特性、质量控制和稳定性等方面的学科。
生物药物是利用生物技术制备的药物,包括蛋白质药物、基因治疗药物、细胞治疗药物等。
2.2 研究内容生物药剂学的研究内容主要包括:•制剂方案:研发适合生物药物的制剂方案,确保药物的稳定性和有效性。
•质量控制:建立合适的质量控制方法,确保制剂的质量符合规定标准。
•稳定性研究:评估药物制剂的物理化学稳定性,寻找最佳的保存条件。
•分散度研究:研究药物在制剂中的分散度,以及分散度对药物吸收和药效的影响。
2.3 在药物研发中的重要性生物药剂学在药物研发中起着重要的作用。
正确的制剂方案可以提高药物的稳定性和储存性,延长药物的有效期。
合适的质量控制方法可以保证制剂的质量符合标准,提高药物的安全性和有效性。
稳定性研究可以评估药物的物理化学性质,为药物制剂的改进提供依据。
分散度研究可以优化药物的溶解度和吸收性,提高药物的生物利用度。
3. 药物动力学3.1 定义药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。
药物动力学可以帮助我们了解药物在人体内的作用机制和药效学特性。
3.2 研究内容药物动力学的研究内容主要包括:•药物吸收:药物通过不同的给药途径进入体内的过程,包括口服、注射、吸入等。
•药物分布:药物在体内的分布情况,受到药物的蛋白结合率、血流动力学等因素的影响。
•药物代谢:药物在体内发生的代谢反应,包括酶促反应和非酶促反应。
•药物排泄:药物从体内排除的过程,包括肾脏排泄、肝排泄、肠道排泄等。
生物药剂学:是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
生物药剂学的研究内容与目的:研究药物的礼花性质与体内转运的关系;研究剂型、制剂工艺对药物体内过程的影响;根据机体的生理功能设计缓控释制剂;研究微粒给药系统在血液循环的命运,为靶向给药系统设计奠定基础;研究新的给药途径与给药方法. 研究中药制剂的溶出度和生物利用度;研究生物药剂学的研究方法。
分布:药物进入循环后向各组织、器官或者体液转运的过程。
代谢:药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。
又叫生物转化。
吸收:是药物从用药部位进入人体循环的过程。
排泄:药物或其代谢产物排出体外的过程.转运:药物的吸收、分布和排泄过程统称转运.处置:分布、代谢和排泄的过程。
清除:代谢与排泄过程药物被清除,合称为清除。
细胞膜主要由膜脂、蛋白质和少量糖类组成。
膜脂主要包括磷脂、糖脂和胆固醇三种类型。
细胞膜性质:膜的流动性、膜结构的不对称性、膜结构的半透性。
药物转运的机制有被动转运(单纯扩散、膜孔转运)、载体媒介转运(促进扩散、主动转运)、膜动转运(胞饮、吞噬).被动转运的特点是:⑴药物从高浓度侧向低浓度的顺浓度梯度转运;⑵不需要载体,膜对药物无特殊选择性;⑶不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;⑷不存在转运饱和现象和同类竞争抑制现象。
主动转运的特点有:⑴逆浓度梯度转运;⑵需要消耗机体能量,能量来源主要由细胞代谢产生的ATP提供;⑶需要载体参与,载体物质通常与药物有高度的选择性;⑷主动转运的速率及转运量与载体的量及其活性有关,当药物浓度较低时,载体的量及活性相对较高,药物转运速度快,当药物浓度较高时,载体趋于饱和,药物转运速度减慢,甚至转运饱和;⑸结构类似物能产生竞争性抑制作用,相似物竞争载体结合位点,影响药物的转运和吸收;⑹受代谢抑制剂的影响;⑺有结构特异性和部位特异性.膜动转运的特点:摄取药物为溶解物或液体大分子的为胞饮,固体颗粒大分子的为吞噬.药物的主要吸收部位是小肠,因为小肠有皱折、绒毛与微绒毛,表面积非常大,与药物充分接触。
第一章生物药剂学概述1.掌握生物药剂学的定义与研究内容2.掌握剂型因素与生物因素的含义3.掌握药物体内过程与药物效应之间的作用第二章口服药物的吸收1.掌握生物膜的性质2.掌握药物通过生物膜的转运机制3.掌握影响药物胃肠道吸收的生理因素、药物因素和制剂因素1.熟悉胃肠道结构、功能和药物吸收的过程2.熟悉生物药剂学分类系统及其应用1.了解运用胃肠道药物吸收特征、设计和开发药物新制剂的基本方法第三章非口服给药途径药物的吸收1.掌握影响注射给药药物吸收的因素2.掌握影响药物经皮渗透的因素3.掌握影响药物口腔黏膜吸收、鼻腔黏膜吸收、肺部吸收的因素及吸收途径1.熟悉药物经皮肤的转运途径2.熟悉阴道吸收、直肠吸收及眼部吸收的因素及吸收途径3.熟悉非口服给药和首过效应的关系1.了解各种注射给药途径2.了解皮肤生理与解剖结构3.了解口腔及其黏膜、鼻腔及其黏膜、呼吸器官、阴道、直肠、眼的生理与解剖结构第四章药物分布1.掌握药物分布过程及其影响因素2.掌握表观分布容积的重要意义1.熟悉淋巴系统的基本结构2.熟悉药物从血液、组织间隙等向淋巴系统的转运过程,以及主要影响因素1.了解脑内转运、胎盘物质交换,红细胞内分布和脂肪组织内分布的主要影响因素2.了解微粒给药系统在体内的分布特征及其影响因素对心制剂设计的指导意义第五章药物的代谢1.掌握药物代谢的基本概念,及其对药物作用的影响2.掌握影响药物代谢的因素1.熟悉药物代谢酶系及其在体内的组织分布特点2.熟悉药物代谢反应的类型3.熟悉药物代谢在合理用药及新药研发中的应用1.了解药物代谢研究的体外方法及体内方法第六章药物排泄1.掌握药物排泄的三种机制,影响排泄的主要因素2.掌握肾清除率的意义及对药物作用的影响3.掌握药物胆汁排泄4.掌握肠肝循环概念及对药物作用的影响1.了解药物排泄的其他途径。
《生物药剂学》课程教学大纲(Biopahrmaceutics)一、课程基本信息课程编号:14234074课程类别:专业选修课适用专业:药学专业学分:1.5总学时:32其中理论学时:16, 实验学时:16先修课程:药剂学、药理学、药物治疗学后续课程:药物动力学选用教材:[1]刘建平主编,《生物药剂学与药物动力学》(第4版)[M].北京:人民卫生出版社,2013年8月.[2]刘建平主编,《生物药剂学实验与指导》((全国高等医药院校药学类实验双语教材,第1版)[M].北京:中国医药科技出版社,2007年10月.必读书目:[1]梁文权主编,《生物药剂学与药物动力学学习指导与习题集》[M].北京:人民卫生出版社,2007年9月.选读书目:[1]印晓星、杨帆主编,《生物药剂学与药物动力学》[M]. 北京:科学出版社,2009年12月.二、课程教学目标本课程是在药剂学、药理学、药物治疗学以及其他有关课程基础上开设的药学专业课,并安排了与理论学习相配合的实验,希望通过本课程的学习,学生应能够做到利用所学知识优选药物剂型、评价制剂内在质量、拟订给药方案指导合理用药等。
此外,在教学过程中安排研究性教学,使学生在学习知识的同时不断提高独立解决问题的能力,为今后走上工作岗位从事相关工作打下坚实的基三、教学内容和教学要求第一章生物药剂学概述(支撑课程教学目标1)教学目标:了解生物药剂学的定义与研究内容;理解剂型因素与生物因素的含义;掌握药物的体内过程。
教学内容:(1)生物药剂学的定义(2)生物药剂学研究内容(3)生物药剂学与相关学科的关系第二章口服药物的吸收(支撑课程教学目标2)教学目标:了解生物膜的结构、药物转运器;理解胃肠道的结构、功能,口服药物制剂作用快慢的主要原因;掌握药物通过生物膜的转运机制;影响药物消化道吸收的生理因素、药物因素和剂型因素。
教学内容:(1)生物膜的结构与性质(2)药物的跨膜转运机制(3)影响药物吸收的因素、BCS分类系统、剂型对药物吸收的影响和制剂设计。
生物药剂学生物药剂学是药学的一个重要分支学科。
生物药剂学研究的是利用生物制剂作为药物的特殊性质,包括生物来源、多样性、复杂性、不稳定性、高效性和高特异性,进一步研究生物药剂的制备、贮存和使用技术,以及药物的释放与传递机制等问题。
生物药剂学的研究成果对人类健康和经济发展具有重要意义。
一、生物药剂学的研究内容及意义生物药剂学的研究内容主要包括以下几个方面:1. 生物药剂的来源:生物药物的来源很广泛,包括从植物、动物、微生物等独特生物中提取的活性成分,如抗生素、植物活性成分、动物活性成分等。
2. 生物药剂的制备:生物药剂的制备是生物药剂学研究的重点,常用的制备方法包括发酵法、提取法、重组DNA技术等。
3. 生物药剂的贮存和使用技术:生物药剂的贮存和使用技术对于保证药物的有效性、安全性和稳定性至关重要,主要包括药品包装、储存条件、制剂配方等。
4. 药品的释放与传递机制:药品释放与传递机制是生物药剂学研究中的基础性问题,包括药物分子的药动学、药效学、生物利用度等方面的研究。
生物药剂学的研究意义在于:1. 增加生物药物的使用范围:生物药物因其来源广泛、结构多样而能满足医疗领域的多种需求,因此,生物药剂的研究有助于拓宽生物药物在医疗领域的使用范围,提高其医疗价值。
2. 保证生物药剂的有效性、安全性和稳定性:生物药剂技术的发展可以提高生物药物的配方设计和药品制剂质量控制,从而可保证生物药剂的有效性、安全性和稳定性。
3. 促进药物研究与开发进程:生物药剂学的研究可以发现新生物药物的作用机制和药物合成轨迹,为药物研究和开发提供新的思路和方法。
二、生物药剂的制备1. 发酵法的制备:生物药物的制备,尤其是复杂生物药物的制备,常用发酵法。
通过优化微生物菌株、培养基、发酵条件,掌握医药中所需的生物剂量的制备和高纯度提取。
2. 提取法的制备:提取法是另一种常见的生物药剂制备方法。
在这种方法中,生物源从动植物产物提取口粉或药效成分。
生物药剂学和药物动力学生物药剂学和药物动力学是药物科学中重要的两个分支,它们分别涉及生物制剂的研发与应用、药物在体内的吸收、分布、代谢和排泄等过程。
本文将从生物药剂学和药物动力学的基本概念入手,深入探讨它们的研究内容、重要性以及未来发展趋势。
生物药剂学介绍什么是生物药剂学?生物药剂学是研究生物制剂的制备、储存、输送和应用的科学,生物制剂是指由生物大分子(如蛋白质、核酸、多肽等)或其修饰物组成的药物。
相较于化学制剂,生物制剂具有较高的复杂性和特异性,因此在其生产、贮存和使用过程中有着独特的问题和挑战。
生物药剂学的研究内容1.生物制剂的制备:包括重组蛋白的表达、纯化和修饰、核酸的合成与修饰等技术。
2.生物制剂的质量控制:包括活性、纯度、稳定性等方面的检测与评价。
3.生物制剂的储存与输送:包括制剂的稳定性、保存条件、运输方式等方面的探讨。
4.生物制剂的应用:包括药物治疗、疫苗接种等方面的应用研究。
生物药剂学的重要性1.生物制剂是当今医药领域的热点之一,其应用范围广泛,包括癌症治疗、自身免疫病的治疗、传染病疫苗接种等,因此对生物制剂的研究具有非常重要的意义。
2.生物制剂的复杂性和特异性要求对其在制备、储存、输送和应用过程中进行严格的控制和管理,保证其安全性和有效性。
3.随着生物技术和制剂技术的不断进步,生物制剂领域的研究前景非常广阔,对生物药剂学的研究发展有着重要的促进作用。
药物动力学介绍什么是药物动力学?药物动力学是研究药物在体内吸收、分布、代谢和排泄的规律以及与时间、剂量等因素的关系的科学,它揭示了药物在体内的命运和作用过程。
药物动力学的研究成果对药物的合理使用和临床疗效评价具有重要意义。
药物动力学的研究内容1.药物的吸收:包括口服、注射、吸入等途径对药物吸收的影响,以及影响吸收的生理因素和药物本身的性质。
2.药物的分布:包括药物在体内组织器官中的分布规律,以及影响分布的因素和机制。
3.药物的代谢:包括药物在体内的代谢途径、代谢产物的生成规律,以及影响代谢的因素和机制。
生物药剂学:研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
生物药剂学的研究内容:1、研究药物的理化性质与体內转运的关系:溶解度、分配系数--渗透速率。
粒径、晶型、晶癖--溶出、释放。
稳定--代谢2、研究剂型、制剂处方和制剂工艺对药物体内过程影响3、根据机体的生理功能设计缓控释制剂4研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础5、研究新的给药途径与给药方法6、研究中药制剂的溶出度和生物利用度7、研究生物药剂学的研究方法. 目的:正确评价药剂质量,设计合理的剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳治疗作用。
简述药物通过肾脏排泄的方式以及各自的影响因素:1.肾小球滤过:药物与血浆蛋白结合、肾血流量(1)通透性①.肾小球毛细血管内皮极薄,其上分布着很多直径约为6~10nm的小孔,通透性较高②除血细胞和大分子蛋白质之外,血浆中的水和小分子物质均被滤入肾小囊③只有未结合的药物才可以从肾小球滤过(2)滤过压①滤过压与肾血流和肾小球毛细血管内的静压力密切相关②肾小球滤过是一种加压滤过③肾小球过滤的主要动力是肾小球毛细血管中的静水压(3)滤过率①直接测定GFR(困难)②由清除率计算肾小球滤过率。
2.肾小管重吸收:药物脂溶性、分子量、解离、药物相互作用①药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小②尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,肾清除率增加。
对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高③尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多。
3.肾小管主动分泌:药物相互作用①需载体参与②需要能量,可受ATP酶抑制剂二硝基酚抑制③由低浓度向高浓度逆浓度梯度转运④存在竞争抑制作用⑤有饱和现象⑥血浆蛋白结合率一般不影响肾小管分泌速度。
生物药剂学第一章生物药剂学概述1.生物药剂学(biopharmaceutics)是研究药物及其剂型在体内的吸收、分布、代与排泄过程,阐明药物的剂型因素、机体的生物因素与药物疗效之间的相互关系的科学。
2.药物的体内过程药物在体内转运和变化的基本过程包括吸收(Absorption)、分布(Distribution)、代谢(Metabolism)和排泄(Excretion),这一过程就称为药物的体内过程,也即ADME过程。
3.ADME过程Absorption:药物的吸收是指药物自给药部位进入体液循环的过程。
Distribution:药物进入体循环后向各组织、器官或者体液转运的过程称为分布;Metabolism:药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程称为代谢或生物转化(biotransformation);Excretion:药物或其代谢产物排出体外的过程称为排泄。
其中吸收、分布、排泄等三个过程统称为药物转运(transport),而药物在体内依靠酶的作用发生化学变化成为新物质的过程称为转化或代谢(biotransformationor metabolism)。
两种变化往往结合进行,即药物在体内转运的同时发生转化。
药物的体内分布、代谢和排泄过程称为处置(disposition);代谢与排泄过程药物被清除,合称为消除(elimination)。
药物一经服用,则吸收即开始,一经吸收进入血液循环,则分布、代谢和排泄即开始。
4.生物药剂学研究的剂型因素①物的某些化学性质②药物的某些物理性质③制剂的剂型及用药方法④制剂处方组成⑤处方中药物的配伍及相互作用⑥制剂工艺过程、操作条件及贮存条件等。
5.生物药剂学研究的生物因素①种族差异如兔、鼠、猫、狗和人的差异,及同一生物如人的种族差异;②性别差异;③年龄差异;④遗传差异由遗传因素导致的个体差异;⑤生理与病理因素所引起的差异等。
6.生物药剂学的研究内容①研究药物的理化性质与体内转运的关系②研究剂型、制剂处方和制剂工艺对药物体内过程的影响③根据机体的生理功能设计控释制剂④研究微粒给药系统在血液循环中的命运⑤研究新的给药途径和给药方法⑥研究中药制剂的溶出度和生物利用度⑦研究生物药剂学的研究方法7.在新药开发中的作用①在新药的合成和筛选中,需要考虑体内的转运和转化因素②在新药的安全性评价中,药动学研究可以为毒性实验设计提供依据③在新药的制剂研究中,剂型设计的合理性需要生物药剂学研究进行评价④在新药临床前和临床试验中,需要进行动物或人体药动学研究第二章药物的口服吸收第一节药物的膜转运与胃肠道吸收一.生物膜的结构与性质物质通过生物膜(或细胞膜)的现象称为膜转运(membrane transport)口服药物的吸收再胃肠道粘膜的上皮细胞膜中进行。
生物药剂学
生物药剂学是一门研究生物制剂的制备、分析和应用的
学科,它涉及到生物制剂的来源、生产工艺、质量控制和临床应用等方面。
生物制剂是由生物原料制成的,包括蛋白质、多肽、抗体、核酸等。
与传统药物相比,生物制剂具有高度特异性和高效性的优点,能够更精准地作用于靶标,减少副作用,提高治疗效果。
生物药剂学的主要任务是研究生物制剂的制备工艺。
不
同的生物制剂具有不同的生产工艺,如蛋白质制剂可以通过基因工程技术在细胞中表达和分泌,多肽制剂可以通过化学合成或生物合成来制备。
生物药剂学需要深入研究不同生产工艺的优势、缺点和应用范围,从而选择最合适的制备工艺。
生物药剂学还研究生物制剂的质量控制。
由于生物制剂
具有高度复杂性,质量控制是确保其安全有效性的重要手段。
生物药剂学需要建立适合的检测方法和标准,进行生物制剂的纯度、含量、稳定性等方面的测试,以确保其符合规定的质量要求。
生物药剂学在临床应用上也起着重要作用。
由于生物制
剂具有高度特异性和高效性,它们在治疗方面有着巨大的潜力。
生物药剂学需要深入研究生物制剂的药理学、药代动力学和临床疗效,并与临床医学相结合,推动生物制剂在临床上的广泛应用。
生物药剂学是一门具有广阔前景的学科。
随着生物技术
的快速发展,生物制剂的研究和应用将得到进一步的推广和发
展。
生物药剂学将在药物研发、制造和临床应用中起到重要的作用,为人类健康事业做出重要贡献。
生物药剂学生物药剂学是研究生物药剂的制备、性质、质量及其在药物治疗中的应用的学科。
生物药剂是指采用生物技术制备的药物剂型,包括生物蛋白药物、基因工程药物、细胞疗法等。
生物药剂学的研究内容包括生物药剂的制备方法、递送系统、稳定性、制剂工艺及质量评价等。
生物药剂的制备方法是生物药剂学的核心研究内容之一。
生物蛋白药物的制备通常通过基因工程技术获得,包括重组DNA技术、融合蛋白的表达、细胞培养和分离纯化等步骤。
基因工程药物的制备流程复杂,需要严格控制各个环节的条件,确保制备出纯度高、活性好的药物。
细胞疗法制备的细胞治疗药物,往往需要经过细胞的分离、培养、扩增和质量控制等步骤。
生物药剂学的研究者通过优化制备方法,提高药物的制备效率和产量。
生物药剂的递送系统在药物治疗中起到关键作用。
生物蛋白药物的分子量较大,口服给药往往不易达到所需浓度,因此常常采用注射给药途径。
生物药剂学研究主要集中在改善药物的递送效果,例如通过制备缓控释剂型,延长药物在体内的存在时间;通过改变递送系统的性质,提高药物的稳定性和溶解度;通过改变递送系统的结构,增加药物对特定靶点的亲和力。
此外,生物药剂学还研究了药物递送系统对生物药剂生物利用度和毒性的影响。
生物药剂的稳定性是确保药物质量的重要因素之一。
生物药剂学研究人员通过研究药物在不同条件下的稳定性,确定药物在储存和使用过程中的最佳条件。
生物蛋白药物对温度、湿度、光照等因素比较敏感,容易发生降解。
因此,生物药剂学研究者通过改进药物包装材料、添加稳定剂等方式提高药物的稳定性。
此外,生物药剂学还研究了药物在体内的代谢和消除过程,为合理使用药物提供依据。
生物药剂的制剂工艺是确保药物质量的关键环节之一。
生物药剂学研究者通过研究药物的制剂工艺,确定最佳的生产条件和工艺步骤。
制剂工艺涉及药物的配方设计、溶解、过滤、灭菌等过程,需要严格控制每个步骤的条件和操作。
生物药剂的制剂工艺不仅要满足药品质量管理的要求,还要满足生产的规模化需求,确保药物的产量和一致性。
生物药剂学
生物药剂学是研究生物制剂和药剂的科学领域,它一直在医药领域引起了广泛
的关注。
随着科学技术的不断进步,生物药剂学领域的研究和应用变得越来越重要。
什么是生物药剂学
生物药剂学是以生物学和药剂学为基础的交叉学科,它主要研究生物制剂的制备、纯化、质量控制和临床应用等方面的科学问题。
生物制剂是利用生物技术手段生产的药物,例如基因工程制备的重组蛋白药物、单克隆抗体等。
生物药剂学的意义
生物药剂学的发展对医学和药物产业都具有重要的意义。
首先,生物药剂的研
发和生产不仅扩大了新药的种类,也提高了药物的疗效和安全性。
其次,生物药剂学的发展促进了生物技术产业的发展,推动了医药产业的创新和进步。
生物药剂学的研究内容
生物药剂学的研究内容非常广泛,主要包括以下几个方面:
1.生物制剂的制备和纯化:研究生物制剂的生产工艺和提纯技术,确
保生物制剂的纯度和效果。
2.质量控制:建立严格的质量控制标准,确保生物制剂的质量和稳定
性,提高生产工艺的可操作性。
3.临床应用:研究生物制剂在临床治疗中的应用效果和副作用,推动
生物制剂在医学领域的广泛应用。
4.安全性评估:评估生物制剂在人体内的安全性和毒性,为药物的临
床应用提供科学依据。
生物药剂学的未来发展
随着生物技术的不断进步和医药领域的需求不断增加,生物药剂学领域的研究
和应用前景非常广阔。
未来,生物药剂学将继续发展新的生产技术、改进质量控制标准,并探索更多生物制剂在医疗领域的应用前景。
总之,生物药剂学是一个充满活力和希望的学科,它将继续推动医药产业的发展,为人类健康事业作出更大的贡献。
1. 什么是生物药剂学?它的研究内容是什么?1.生物药剂学是研究药物极其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
研究内容:研究药物的理化性质与体内转运的关系;研究剂型、制剂处方和制剂工艺对药物体内过程影响;根据机体的生理功能设计缓控释制剂;研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础;研究新的给药途径与给药方法;研究中药制剂的溶出度和生物利用度。
2. 药物在体内的排泄、消除与处置指什么?3. 简述片剂口服后的体内过程?2. 药物或其代谢产排出体外的过程称排泄。
代谢与排泄过程药物被清除合称为消除。
药物的分布、代谢和排泄过程称为处置。
3. 简述片剂口服后的体内过程?3. 片剂口服后的体内过程包括片剂崩解、药物的溶出、吸收、分布、代谢和排泄。
一、填空题1. 生物膜具有、和特点。
2.药物的主要吸收部位是。
3. 膜孔转运有利于药物的吸收。
4. 根据H enderson-Hasselbalch方程式求出,碱性药物的p k a-pH= 。
5. 固体制剂溶出度参数可通过、和等拟合方程求算。
1. 流动性、不对称性、半透性2. 小肠3. 水溶性小分子4. ㏒(C i/C u)5.单指数模型、Higuchi方程、Ritger-Peppas模型1. 药物经肌内注射有吸收过程,一般药物通过毛细血管壁直接扩散,水溶性药物中分子量的可以穿过毛细血管内皮细胞膜上的孔隙快速扩散进入毛细血管,分子量的药物主要通过淋巴系统吸收。
2. 蛋白质多肽药物经黏膜吸收是近年研究的热点,主要给药途径包括、、等。
1. 脂溶性,小,很大2. 经肺部,经直肠,经鼻腔1. 肾小球滤过的结构基础是,肾小球滤过的动力是。
2. 肾单位由和两部分组成。
3. 药物的肾排泄是、、三者的综合结果。
4.除肾排泄外,药物也可通过、、、、排泄。
1. 膜过滤,有效滤过压2. 肾小球,肾小管3. 肾小球滤过,肾小管分泌,肾小管重吸收4.胆汁,肠,肺,乳腺,唾液腺,汗腺1. 药物在体内转运时,在体内瞬间达到分布平衡,且消除过程呈线性消除,则该药物属模型药物。
生物药剂学药代动力学研究方法摘要:气-质联用法综合了气相色谱和质谱的优点,得到了更广泛的应用。
生命科学前沿领域的技术也逐渐用于药学领域的研究,如Caco-2细胞模型、微透析技术等在生物药剂学及药物代谢动力学方面发挥了重要作用。
关键词:生物药剂学药物代谢动力学气-质联用法 Caco-2细胞模型微透析技术ABSTRACT:GC-MS chromatography and mass spectrometry advantages, has been more widely used. Front fields of life science technology is gradually used in pharmaceutical fields of study, such as a Caco-2 cell model, the microdialysis technique in biopharmaceutics and pharmacokinetics plays an important role in.Key words:Biologicalpharmacy GC-MS Caco-2 cellmodel Microdialysis前言生物药剂学是研究给药后药物从吸收到消除的整个体内过程,以及各种制剂因素和生物因素对这一过程和药效的影响。
1950年代初,人们普遍认为“化学结构决定药效”,药剂学只是为改善外观、掩盖不良嗅味而便于服用。
随着大量的临床实践证明,人们逐渐开始认识到机型和生物因素对药效的影响。
因此研究药物在代谢过程的各种机理和理论及各种剂型和生物因素对药效的影响,对控制药物之际的内在质量,确保最终药品的安全有效,提供新药开发和临床用药的严格评价,都具有重要的意义。
进年来, 生命科学前沿领域如基因组、蛋白质组、生物芯片、纳米技术、转基因生物、生命信息等高新技术大量用于药学研究, 新兴学科越来越多地深入到新药的发现和研究中, 化学、物理学理论和结构生物学、计算机学和信息科学等学科与药物研究的交叉、渗透与结合日益加强,使药学领域面貌一新,1、生物药剂学相关知识生物药剂学(biopharmaceutics)是上世纪60年代迅速发展起来的药剂学新分支,主要研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素、用药对象的生物因素与药效三者之间的关系。