六年级数学上册知识点
- 格式:docx
- 大小:27.87 KB
- 文档页数:21
六年级上册数学知识点第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者S=π(C÷(2π))²≈15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
数学六年级上册知识点汇总一、整数1. 整数的概念整数是由正整数、0和负整数组成的集合,用"Z"表示。
2. 整数的比较当比较两个整数的大小时,可以通过大小关系符号(大于、小于、等于)来表示。
3. 整数的运算整数之间可以进行加法、减法和乘法运算,运算结果仍为整数。
- 加法运算:两个整数相加,结果为两个整数的代数和。
- 减法运算:一个整数减去另一个整数,结果为两个整数的代数差。
- 乘法运算:两个整数相乘,结果为两个整数的代数积。
4. 整数的绝对值一个整数的绝对值是该整数到零的距离,负整数的绝对值为正整数。
二、分数1. 分数的概念分数是由一个整数作为分子、一个正整数作为分母所构成的表达形式。
2. 分数的化简将一个分数约简为最简形式,即分子和分母没有公因数。
3. 分数的加法和减法分数之间可以进行加法和减法运算,运算结果仍为分数。
- 加法运算:分数相加,要求分母相同,分子相加后得到新的分子。
- 减法运算:分数相减,要求分母相同,分子相减后得到新的分子。
4. 分数的乘法和除法分数之间可以进行乘法和除法运算,运算结果仍为分数。
- 乘法运算:分数相乘,分子相乘得到新的分子,分母相乘得到新的分母。
- 除法运算:分数相除,将除数的倒数与被除数相乘得到新的分子和分母。
三、小数1. 小数的概念小数是指有限小数和无限循环小数的统称,有限小数可以表示为分数。
2. 小数的读法与写法根据小数点的位置读出小数的整数部分和小数部分,小数点后的数值可以用百分数或分数形式表示。
3. 小数的大小比较当比较两个小数的大小时,可以通过大小关系符号(大于、小于、等于)来表示。
4. 小数的运算小数之间可以进行加法、减法和乘法运算,运算结果仍为小数。
四、面积与周长1. 面积的概念面积是指平面图形所占的二维空间大小,用平方单位来表示。
2. 面积的计算常见图形的面积计算公式:- 矩形的面积 = 长 ×宽- 正方形的面积 = 边长 ×边长- 三角形的面积 = 底边长 ×高 ÷ 2- 圆的面积= π × 半径 ×半径3. 周长的概念周长是指闭合图形边界的长度,用长度单位来表示。
六年级上册数学知识点(15篇)六年级上册数学知识点1扇形统计图的意义:1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角——数与形:2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方。
位置与方向:1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
数学梯形面积与周长公式:梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2梯形的面积公式2:中位线×高用字母表示:l·h(l表示中位线长度)另外对角线互相垂直的梯形:对角线×对角线÷2梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。
数学分数的加减法知识点:1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点归纳六年级上册数学知识点归纳(上)一、数的读法与数的大小比较1. 中文数字的读法及其书写;2. 常见的数的大小比较方法,包括数的比较和数的排列;3. 比较相同数位的数的大小、不同数位的数的大小以及有相同前缀的数的大小。
二、数的整除性与因数分解1. 再认识数的整除的定义和符号,包括定义、符号和性质;2. 熟练掌握计算数量积的方法,学会找出因数和公因数;3. 再认识数的分解因数的定义和方法,包括分解质因数的方法和定理。
三、分数与小数1. 熟练掌握分数的定义和基本概念,学会转化和化简分数;2. 熟练掌握小数的定义和基本概念,学会比较和换算小数;3. 掌握分数与小数间的转换关系和计算方法。
四、面积与周长1. 熟练掌握面积的基本概念和计算公式,学会计算常见图形的面积;2. 熟练掌握周长的基本概念和计算公式,学会计算常见图形的周长;3. 熟悉计算平行四边形和三角形面积的公式,学会解决实际问题。
五、容积与体积1. 熟练掌握容积的基本概念和计算公式,学会计算常见容器的容积;2. 熟练掌握体积的基本概念和计算公式,学会计算常见图形的体积;3. 熟悉不同形状的立体图形的特点和计算方法,学会解决实际问题。
六、平面图形的相似和全等1. 熟悉平面图形的相似和全等的定义和判定条件,学会通过变形来寻找相似或全等的方法;2. 了解相似和全等的性质,包括比例相等和角度相等;3. 掌握相似和全等图形之间的性质和应用,学会解决实际问题。
七、数据的收集和分析1. 熟悉收集数据的方法和工具,包括调查、测量和实验;2. 熟悉数据的表示方式和统计方法,包括表格、折线图和柱状图;3. 学会分析数据,并对数据进行简单的处理和解释,理解数据在生活和科学中的应用。
八、平面直角坐标系1. 熟悉平面直角坐标系的概念和表示方法,学会绘制基本图形;2. 熟悉平面直角坐标系的应用,包括表示点、确定距离和面积等;3. 熟悉平面直角坐标系与图形的关系,学会求出图形的坐标和方程。
六年级上册数学知识点总结六年级上册数学课程涵盖了多个重要的数学知识点,以下是对这些知识点的总结:一、数的认识- 整数:理解整数的基本概念,包括正数、负数和零。
- 分数:学习分数的意义,掌握分数的加减乘除运算。
- 小数:了解小数的表示方法,以及小数的四则运算。
二、运算法则- 四则运算:熟练掌握加、减、乘、除的基本运算法则。
- 混合运算:理解并运用运算顺序,解决复杂的混合运算问题。
三、几何知识- 平面图形:认识常见的平面图形,如三角形、四边形、圆等,并了解它们的基本性质。
- 面积计算:学习如何计算长方形、正方形、三角形和圆的面积。
- 周长计算:掌握如何计算各种平面图形的周长。
四、度量单位- 长度单位:了解米、厘米、毫米等长度单位的换算关系。
- 质量单位:学习克、千克等质量单位的换算。
- 体积单位:掌握立方厘米、立方米等体积单位的换算。
五、数据的收集与处理- 数据收集:学习如何收集数据,包括问卷调查、观察记录等方法。
- 数据整理:掌握数据的分类、排序等整理方法。
- 数据分析:学习如何用图表(如条形图、折线图、饼图)来展示数据,并进行简单的数据分析。
六、比和比例- 比的概念:理解比的意义,掌握比的表示方法和基本性质。
- 比例:学习比例的概念,理解内项、外项、比值等概念。
- 正比例与反比例:了解正比例和反比例的概念,掌握它们的性质和应用。
七、应用题- 应用题的类型:识别常见的应用题类型,如行程问题、工程问题等。
- 解决方法:学习如何分析应用题,找出数量关系,列出方程或算式进行解答。
八、数学思维- 逻辑推理:培养逻辑推理能力,学会通过已知信息推导未知信息。
- 问题解决:提高解决问题的能力,学会运用数学知识解决实际问题。
结语通过六年级上册数学课程的学习,学生们不仅能够掌握基础的数学知识,还能培养解决问题的能力,为进一步的数学学习打下坚实的基础。
希望学生们能够通过不断的练习和思考,提高自己的数学素养。
六年级上册数学知识点归纳整理六年级上册数学知识点主要包括以下内容:
1. 整数
- 整数的概念和性质
- 整数的加减法运算
- 整数的乘法运算
- 整数的除法运算与余数的概念
2. 分数
- 分数的概念和性质
- 分数的加减法运算
- 分数的乘除法运算
- 分数的比较与大小关系
3. 小数
- 小数的概念和性质
- 小数的加减法运算
- 小数的乘除法运算
- 小数的比较与大小关系
- 小数的读法和写法
4. 平面图形
- 点、线、线段、射线、角的概念
- 三角形、四边形、平行四边形、正方形、矩形、菱形和梯形的性质和判断方法
5. 数据与图表
- 数据的收集和整理
- 统计图表(条形图、折线图、饼图)的读取和分析
6. 相似与全等
- 图形的相似和全等的概念
- 相似与全等的判定条件
- 相似与全等的性质和定理
7. 量与单位
- 长度、质量、时间和容量的基本单位和换算
- 用不同单位测量长度、质量、时间和容量
8. 时钟与日历
- 时钟的读写和表示时间的方法
- 日历的读写和计算日期的方法
9. 几何体
- 立体图形的概念和性质(长方体、正方体、圆柱体、圆锥体、圆台和球体)- 立体图形的视图和展开图
以上是六年级上册数学的主要知识点归纳整理,希望能对你有帮助!。
六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。
二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。
三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。
四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。
五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。
六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。
七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。
八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。
九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。
十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。
十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。
十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。
十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。
十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。
小学六年级上册数学知识点总结一、整数运算1. 整数的认识和表示整数包括正整数、负整数及零,用数轴表示可以很直观地理解整数。
正整数向右延伸,负整数向左延伸,零位于中间。
2. 整数的加法和减法整数的加法和减法遵循以下规则:- 正数加正数,结果为正数;- 负数加负数,结果为负数; - 正数加负数,结果的符号取决于数的绝对值,绝对值较大的数的符号为结果的符号。
3. 整数的乘法和除法整数的乘法和除法遵循以下规则: - 两个正数相乘或相除,结果为正数; - 两个负数相乘或相除,结果为正数; - 正数和负数相乘或相除,结果为负数; - 零乘以任何数都得零; - 非零数除以零是没有意义的。
4. 混合运算整数的加减乘除可以进行混合运算,按照运算顺序先乘除后加减,也可以使用括号改变运算顺序。
二、分数运算1. 分数的认识和表示分数由分子和分母组成,分子表示被分割成的份数,分母表示总份数。
通过分数,可以表示整数之间的数。
分数可以转换为小数,相应地,小数也可以转换为分数。
2. 分数的加法和减法分数的加法和减法需要先找到两个分数的公共分母,然后按照公共分母进行计算。
3. 分数的乘法和除法分数的乘法只需将两个分数的分子相乘,分母相乘;分数的除法只需将除数的分子乘以被除数的分母,分母乘以除数的分子。
在进行乘法和除法计算时,可以先约分,然后进行运算。
三、三角形和四边形1. 三角形三角形是由三条边组成的图形,常见的三角形有等边三角形、等腰三角形和普通三角形。
根据三角形的性质,可以求解三角形的周长和面积。
2. 四边形四边形是由四条边组成的图形,常见的四边形有正方形、长方形、平行四边形和梯形。
根据四边形的性质,可以求解四边形的周长和面积。
四、数据统计1. 数据的收集和整理收集数据时要关注数据的来源和真实性,并使用表格或图表对数据进行整理和展示。
2. 数据的分析和描述对收集到的数据进行分析和描述,比如计算均值、中位数、众数等。
3. 数据的预测和推断根据已有数据的趋势和规律,对未来的数据进行预测和推断。
六上数学知识点总结一、数的认识1.1 整数1.理解整数的概念,掌握整数的分类:自然数、整数、负整数。
2.掌握整数的性质:加法、减法、乘法、除法。
3.掌握整数的运算规律:结合律、交换律、分配律。
1.2 小数1.理解小数的概念,掌握小数的构成:整数部分、小数点、小数部分。
2.掌握小数的性质:小数的末尾添上“0”或去掉“0”小数的大小不变。
3.掌握小数的运算规律:加法、减法、乘法、除法。
1.3 分数1.理解分数的概念,掌握分数的构成:分子、分母、分数线。
2.掌握分数的性质:分数的基本性质、分数与除法的关系。
3.掌握分数的运算规律:加法、减法、乘法、除法。
二、数的运算2.1 加减法1.理解加减法的概念,掌握加减法的运算规律。
2.掌握加减法的运算顺序:同级运算从左到右,有括号的先算括号里面的。
2.2 乘除法1.理解乘除法的概念,掌握乘除法的运算规律。
2.掌握乘除法的运算顺序:两级运算先算乘除,同级运算从左到右,有括号的先算括号里面的。
2.3 混合运算1.理解混合运算的概念,掌握混合运算的运算顺序。
2.能够正确计算混合运算,注意运算符号和括号的使用。
三、几何初步3.1 平面图形的认识1.理解平面图形的概念,掌握常见平面图形的特征:三角形、四边形、五边形、六边形。
2.掌握平面图形的分类:三角形、四边形、五边形、六边形。
3.2 平面图形的面积1.理解平面图形面积的概念,掌握平面图形面积的计算方法。
2.掌握三角形的面积计算公式:底×高÷2。
3.掌握四边形的面积计算公式:底×高。
3.3 立体图形的认识1.理解立体图形的概念,掌握常见立体图形的特征:正方体、长方体、圆柱、圆锥。
2.掌握立体图形的分类:正方体、长方体、圆柱、圆锥。
3.4 立体图形的体积1.理解立体图形体积的概念,掌握立体图形体积的计算方法。
2.掌握正方体体积计算公式:棱长×棱长×棱长。
3.掌握长方体体积计算公式:长×宽×高。
六年级数学上册知识点六年级数学上册知识点有哪些呢?那么以下是小编为大家搜集提供出来的关于六年级数学上册知识点内容,希望对大家有帮助哈,欢迎阅读参考学习哦!更多相关内容请关注品才网六年级数学上册知识点:一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0, (分母不能为0)4、对于任意数,它的倒数为 ;非零整数的倒数为 ;分数的倒数是 ;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数– 1 ②求少几分之几:1 - 小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)∶∶∶∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r =8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式: C= πd d = C ÷π或C=2π r r = C ÷ 2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即π r(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽圆的周长的一半 = 长方形的长因为:长方形面积 = 长×宽所以:圆的面积 = 圆周长的一半×圆的半径S圆 = πr × r圆的面积公式: S圆 = πr24、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。
(R=r+环的宽度.)S环 = πR2-πr2 或环形的面积公式: S环 = π(R2-r2)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶97、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。
(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。