换热器选型详解
- 格式:doc
- 大小:361.50 KB
- 文档页数:11
板式热交换器的选型介绍一、板换选型计算的影响因素在板换的选型计算中,应向厂家提供如下参数:换热量、介质名称、冷热介质进出口温度、压力等参数,特殊介质还需要提供密度、比热容、粘度、导热系数等参数。
其中压力降直接影响到板式换热器的大小,如果有较大的允许压力降,则可能减少换热器的成本,但会损失泵的功率,增加运行费用。
在水-水换热情况下,允许压力降一般在20∽100KPa是可以接受的。
所以板式换热器选型必须兼顾传热和压降。
二、板式换热器的板型选择1、对流量大允许压降小的情况,应选用阻力小的板型。
反之选用阻力大的板型;2、根据流体压力和温度的情况,确定选择可拆卸式还是全焊式;3、确定板型时不易选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。
三、板式换热器流程和流道的选择常见的板式换热器通道有以下五种形式: 全为H通道、全为M 通道、全为L通道、H通道与M通道组合、M通道与L通道组合,后两种通道形式的热工计算称为热混计算。
流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。
一般情况下,将若干个流道按并联或串联的方式连接起来,以形成冷、热介质通道的不同组合。
流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。
尽量使冷、热水流道内的对流换热系数相等或接近,从而得到较佳的传热效果。
因为在传热表面两侧对流换热系统相等或接近时传热系统获得较大值。
虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。
由于“U”形单流程的接管都固定在压紧板上,拆装方便。
板式换热器的压降校核实验,在板式换热器的设计选型时,一般对压降有一定的要求,所以应对其进行校核。
如果校核压降超过允许压降,需要重新进行设计选型计算,直到满足工艺要求为止。
四、选型计算公式(1)热负荷计算公式:Q=qv1p1Cp1(T1−T2)/3.6=qv2p2CP2(t2−t1)/3.6Q 为热负荷;qv1为热介质流量; qv2为冷介质流量;p1为热介质密度;p2为冷介质密度;CP1为热介质比热容;CP2为冷介质比热容;T1为热介质进口温度;T2为热介质出口温度;t1为冷介质进口温度;t2为冷介质出口温度。
换热器的选型和设计指南全
1.温度和压力要求:在进行换热器选型和设计之前,需要明确设备所
需的温度和压力要求。
根据这些要求,可以选择合适的材料和换热器类型。
2.热交换面积计算:根据需要传递的热量和温度差,可以计算得到所
需的热交换面积。
热交换面积的计算是选择换热器类型和尺寸的基础。
3.材料选择:换热器的材料选择要考虑到介质的化学性质、腐蚀性以
及温度和压力要求。
常用的材料包括不锈钢、铜合金、钛合金等。
4.流体流动方式:流体可以采用并行流、逆流或交叉流方式通过换热器。
在选择流体流动方式时,需要考虑换热效率和压降等因素。
5.清洁程度要求:根据介质的清洁程度,可以选择适当的换热器类型。
尽量选择结构简单、易于清洁的换热器,以保证长期稳定的换热效果。
6.管束和散热面积:根据热量传递的需要,可以选择合适的管束形式
和散热面积。
管束的选择要考虑到介质的流速和传热系数等因素。
7.防堵塞设计:在换热器设计中要考虑到防止堵塞的问题。
可以采用
增加管道直径、添加过滤装置等措施来减少堵塞的风险。
8.设备布局和管道设计:在进行换热器的设计时,需要考虑到设备的
布局和管道的连接。
合理布局可以减少管道阻力和热量损失。
9.热媒选择:热媒的选择要根据介质的性质以及工艺流程的要求来进行。
常用的热媒有水、蒸汽、有机液体等。
10.清洗和维护考虑:在进行换热器设计时,要考虑到清洗和维护的
便捷性。
合理的设计可以降低维护成本和停机时间。
换热器的选型和设计指南
热交换器选型与设计指南
一、热换器的选型
1、热换器类型
根据热换器工作的原理和结构特征,热换器可以分为流体直接交换器(Direct-Fluid Exchangers)、保温热换器(Heat-Preserving Exchangers)、热管(Heat Pipes)和热泵(Heat Pump)。
(1)流体直接交换器
流体直接交换器是最普遍的热换器类型,它是由连接在同一个容器内两个不同流体进行直接交换的,可以分为板式热换器(Plate Heat Exchanger)、管式热换器(Tube Heat Exchanger)、管壳式热换器(Tube-shell Heat Exchanger)、换热器(Exchanger)、板管式换热器(Plate-Tube Exchanger)等几种。
(2)保温热换器
保温热换器是通过在热换器内部设置一层隔热材料,使得一个流体和另一个流体不能直接接触,而是通过隔热材料进行热量交换的热换器,它包括直管保温器(Straight-TubeHeatPreservingExchanger)、折管保温器(Folded-TubeHeatPreservingExchanger)以及缠绕管保温器(Coil-TubeHeatPreservingExchanger)等几种。
(3)热管
热管是一种将热能以流体的形式进行输送的装置,它是由一段密封的
金属管束和一段或多段的循环管组成,通常将其称为柔性热管
( Flexible Heat Pipes),也可以称为硬性热管(Rigid Heat Pipes)。
(4)热泵。
换热器的选型和设计指南换热器是一种常见的工业设备,用于传递热量。
在选型和设计换热器时,有几个关键因素需要考虑,包括换热器的类型、工作条件、热介质性质、热量传递要求以及材料选择等。
本文将探讨这些因素,并提供选型和设计换热器的指南。
1.换热器类型选择换热器的类型多种多样,包括壳管式换热器、板式换热器、管束式换热器等。
在选择换热器类型时,需要考虑以下几个方面:-热量传递效率:不同类型的换热器有不同的热量传递效率,需要根据具体的热量传递要求选择。
-空间限制:不同类型的换热器对空间的要求也不同,需要考虑设备安装的实际情况。
-清洁维护:不同类型的换热器在清洁和维护方面也不同,这也需要考虑到。
2.工作条件考虑换热器的工作条件包括温度、压力和流量。
这些条件会对选型和设计产生影响,并需要根据不同的工况选择合适的换热器。
对于高温、高压或高流量的情况,需要选择能够承受这些条件的换热器,并进行合理的设计。
3.热介质性质分析热介质的物理性质对换热器的选型和设计也有影响。
例如,不同的热介质对应不同的热导率、比热容和粘度等物理特性,这些特性会对换热器的热量传递效果产生影响。
需要根据热介质的性质选择合适的换热器和传热方式。
4.热量传递要求根据具体的热量传递要求,选择合适的热量交换方式。
换热器可以采用对流、辐射或传导等方式进行热量传递。
不同的传热方式在热量传递效率和能耗方面也有差异,需要根据具体要求进行选择。
5.材料选择换热器的材料选择对其性能和使用寿命起着重要作用。
一些常用的换热器材料包括不锈钢、铜、铝和钛等。
需要根据热介质的特性、工作条件和预算等因素选择合适的材料。
此外,还需要考虑材料的耐腐蚀性能、尺寸稳定性和可焊性等因素。
在设计换热器时-设计热传导面积:根据热量传递要求和热介质的特性,设计合适的热传导面积,确保达到所需的热传递效果。
-流体力学分析:对流动的流体进行流体力学分析,考虑流体的流速、压降以及流体在换热器中的流动模式等,以确保热量传递效果和系统的稳定性。
管壳式换热器设计选型
一、换热器选型的基础
在管壳式换热器结构形式中,设计和选型的主要因素有:换热器的负
荷率、传热效率、凝结物沉积、对管壳换热器热性能的影响因素、管壳型
号和规格、在换热器抗冲击性能的影响、铭牌设计性能和管壳强度要求等。
1.关于管壳式换热器的负荷率
在计算换热器的负荷率时,需要考虑换热器的负荷率与介质流量温度
有关,当流量温度越大,换热器的负荷率越大,但流量温度比较低时,换
热器的负荷率就较低。
在负荷率计算中,还需要考虑其他因素如液体的粘度、流体压力、换热面积、单位传热面积等。
2.关于管壳式换热器的传热效率
换热器的传热效率主要取决于换热器的几何结构,以及内、外管壳间
的接触面积大小,而内、外管壳间的接触面积的大小,又是由管壳结构型
号和规格参数决定的,所以,选择管壳型号和规格参数时,必须考虑到换
热器的传热效率。
3.凝结物沉积
凝结物沉积是管壳式换热器热性能的一个重要因素,它包括水铁、水铝、水锡等,这些凝结物会影响换热器的传热效率,严重影响换热器的使
用寿命。
换热器选型计算
1. 工艺条件:确定换热器的工艺条件,包括流体的进出口温度、流量、压力等。
这些参数将影响换热器的类型、尺寸和材料选择。
2. 热负荷计算:计算换热器的热负荷,即需要传递的热量。
这可以通过能量平衡方程或热传递方程来确定。
3. 换热器类型选择:根据工艺条件和热负荷,选择适合的换热器类型,如管壳式换热器、板式换热器、螺旋板式换热器等。
不同类型的换热器具有不同的传热特性和适用范围。
4. 传热系数计算:根据换热器的类型和流体的物理性质,计算传热系数。
传热系数是衡量换热器换热性能的重要参数。
5. 对数平均温差(LMTD)计算:计算流体在换热器中的对数平均温差。
LMTD 是换热的驱动力,它影响换热器的换热效率。
6. 换热面积计算:根据热负荷、传热系数和 LMTD,计算所需的换热面积。
换热面积是选择换热器尺寸的关键因素之一。
7. 压降计算:计算流体在换热器内的压降,以确保在设计流量下的可接受压降范围内。
8. 材料选择:根据流体的腐蚀性、温度和压力等因素,选择适合的换热器材料,以确保设备的耐腐蚀性和可靠性。
9. 设备布局和尺寸:根据换热面积和换热器类型,确定换热器的设备布局和尺寸。
10. 设计验证和优化:进行设计验证,检查换热器是否满足工艺要求和性能指标。
如有需要,进行优化以提高换热效率或降低成本。
需要注意的是,换热器选型计算是一个复杂的过程,可能需要借助专业的工程软件和工具来进行。
此外,还应考虑安全因素、维护要求和可操作性等因素。
最好由经验丰富的工程师或技术团队来进行换热器的选型计算,以确保设备的性能和可靠性。
中国瑞林工程技术有限公司
换热器选型:
1、被预热介质种类
预热煤气或可燃气体应选用气密性好的列管式、整体式换热器
什么是列管式、什么是整体式
2、预热温度的高低。
预热温度低于500度一般采用金属换热器,高于今为500选用耐热金属换热器,高于800度采用非金属换热器
3、烟气温度
入换热器温度低于700度采用金属换热器,高于700度考虑先将高温烟气稀释到700度以后再进入换热器。
烟气温度高于1100度,一般选用非金属材料换热器
4、烟气成份及含尘量
5、流体压降
增加流速可提高换热器的总传热系数,缩小换热面积,但增大了压降损失,使输送动力增加导致运行费增加
6、换热效率
指换热器内冷流体的温升与热流体与冷流体入口温差之比,表示换热器实际换热量与最大换热量之比。
一般换热器的换热效率要求在0.9以上,最小不能低于0.8
7、流体压力及两流体压力差
8、充分考虑换热器的性价比,其性能应在满足工艺条件的前提下,体积较小造价较低。
使
用寿命必须满足工艺主体设备检修期的要求。
换热器的选型和设计指南换热器是一种用于传递热量的设备,广泛应用于各个行业和领域,包括化工、石油、电力、食品等。
换热器的选型和设计至关重要,直接影响设备的热效率和工作效果。
本文将从选型和设计的角度,提供一些指南和建议。
一、换热器的选型指南1.确定换热器的功能:在选择换热器之前,需要明确所需的热交换功能,例如加热、冷却、蒸发、凝结等。
同时还需考虑所需的传热方式,如对流传热、辐射传热等。
2.确定换热器的工作参数:根据具体的应用需求,确定换热器的工作参数,包括流体的温度、压力、流量等。
这些参数将直接影响换热器的尺寸、型号和材料选择。
3.选择适当的换热器类型:根据应用需求和流体性质,选择合适的换热器类型,包括壳管式换热器、板式换热器、管束式换热器等。
每种类型都有其适用的特点和限制,需要根据具体场景进行选择。
4.评估换热器的热性能:除了换热器类型,还需评估不同换热器的热性能,包括传热系数、压降、能耗等。
通过对不同类型和厂家的换热器性能进行比较,选择性能最佳的产品。
5.考虑维护和清洁:换热器在使用过程中需要进行维护和清洁,因此需要选择易于维护和清洁的换热器类型和结构。
同时还需考虑清洗液的使用、清洗方法等。
二、换热器的设计指南1.确定换热面积:根据流体的热交换需求和换热器的热传递特性,计算和确定所需的换热面积。
换热面积的大小将直接影响换热器的尺寸和材料成本。
2.确定流体流动方式:根据流体的性质和热交换需求,确定流体的流动方式,包括并流、逆流等。
不同的流动方式将影响换热器的传热效果和压降。
3.选择合适的材料:根据工作环境和流体的性质,选择合适的材料,包括换热管的材料、壳体材料等。
需要考虑材料的耐腐蚀性、强度和耐高温性能。
4.考虑换热器的安全性:换热器设计时需考虑安全因素,包括避免流体泄漏、冲击和爆炸等。
需要确保换热器的结构强度和密封性能,以及安装和使用过程中的安全措施。
5.优化换热器设计:通过计算和模拟,优化换热器的设计,包括优化流体流动路径、调整管束布置、增加换热面积等,以提高换热器的热效率和运行性能。
板式换热器设计选型计算方法和步骤板式换热器是一种常用的热交换设备,用于将热量从一个流体传递到另一个流体,常用于工业生产和暖通空调系统等领域。
在进行板式换热器设计的时候,需要进行选型计算,确保选用适合的设备。
以下是板式换热器设计选型计算的方法和步骤。
1.确定换热要求:在进行选型计算之前,首先需要明确换热器的换热要求。
需要确定的参数包括热量传递量、流体的流量及温度等。
根据实际应用需求,可以计算出所需要的传热面积。
2.确定流体性质:在进行选型计算之前,需要明确流体的物理性质,如密度、比热容、导热系数等。
这些参数将用于计算换热器的传热系数以及流体流量。
3.确定换热器类型:根据实际需求和换热要求,确定适合的换热器类型。
常见的板式换热器类型包括波纹板式换热器、平板式换热器和多馏分板式换热器等。
4.计算换热面积:根据给定的热量传递量和流体的物理性质,可以计算出所需的传热面积。
传热面积的计算公式为:A=Q/(U·ΔTm),其中Q 为热量传递量,U为整体传热系数,ΔTm为全平均温差。
5.确定流体侧压降:计算流体在板式换热器内的压降,确保流体正常流动。
可以使用经验公式或流体力学计算方法来进行压降的计算。
6.选择合适的传热板:根据流体的流动性质和换热要求,选择合适的传热板。
传热板的选择应考虑其传热效果、耐腐蚀性、结构强度等因素。
7.确定板片数量:根据计算得到的传热面积和板片的面积,可以计算出所需的板片数量。
板片数量的选择应根据实际运行要求来确定,以确保换热器具有足够的传热面积。
8.确定板片间距和通道宽度:根据流体的流量和换热要求,确定板片间的间距和通道的宽度。
这些参数将影响流体的流速、压降以及换热效果。
9.进行换热器的设计绘图:根据以上计算结果,进行换热器的设计绘图。
绘图应包括换热器的尺寸、管道连接方式、流体进出口位置等详细信息。
10.进行换热器的性能验证:进行换热器的性能验证和参数调整,确保设计的换热器符合实际使用要求。
换热器选型详解
各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。
换热器分类
按工艺功能分类
冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。
按传热方式和结构分类
间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。
从工艺功能选择换热器
冷却器
间壁式冷却器
☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。
☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。
☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。
☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。
直接接触式冷却器
☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。
加热器
高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。
中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。
分为液相和气相两种。
低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。
再沸器
图1 四种再沸器类型
多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。
其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。
冷凝器
一般用于蒸馏塔塔顶蒸汽的冷凝以及反应气体的冷凝,对于蒸馏塔顶,一般选用管壳式、空冷器、螺旋板式、板翅式等换热器作为冷凝器,对于反应系统,一般选用管壳式、套管式或喷淋式等换热器作为冷凝器。
表2 冷凝器特性比较
常用换热器选用-管壳式换热器
工艺条件
温度:冷却水出口温度不宜高于60℃以免结垢严重,高温端的温差不应小于20℃,低温端的温差不应小于5℃。
当在两工艺物流之间进行换热时,低温端的温差不应小于20℃。
采用多管程单壳程换热器且用水做冷却剂时,冷却水出口温度不应高于工艺流体的温度。
冷却剂入口温度应高于工艺物流中易结冻组分的冰点。
当冷凝带有惰性气体的物料时,冷却剂出口温度应低于工艺物料的露点。
压力降:增大工艺物流的流速可以增加传热系数,使换热器结构紧凑,但是流速增加关系到换热器的压力降。
物流安排:☆为节省保温层和减少壳体厚度,高温物流一般走管程,有时候为了物料冷却也可使高温物流走壳程。
☆较高压力的物流走管程。
☆黏度较大的物流走壳程,在壳程可以得到较高的传热系数。
☆腐蚀性较强的物流走管程。
☆对压力降有特定要求的工艺物流走管程,因为管程的传热系数和压降计算误差小。
☆较脏和易结垢的物流走管程,便于清洗和控制结垢,若走壳程,应采用正方形的排管方式,并采用可拆式换热器。
☆流量较小的物流走壳程,易使物流形成湍流状态增加传热系数。
☆传热膜系数较小的物流走壳程,易于提高传热膜系数。
平滑管
☆管径:管径越小换热器越紧凑,越便宜,同时压降也越大。
常用的管径有19mm、25mm、32mm。
☆管长:无相变换热时,管子较长,传热系数增加,对于相同的换热面积,采用长管管程数少,压力降小,且传热面积比价低。
☆排布:主要有正方形和三角形两种配布形式,三角形的配布有利于壳程物流的湍流,正方形配布有利于壳程清洗。
管心距越小,设备越紧凑,但会引起管板增厚,清洁不便,壳程压降增大,一般选用1.25~1.5倍管外径的间距。
管程数及壳程形式
常用的有1、2管程或4管程,管程数增加,管内流速增加,但是管内流速要受到管程压力降的限制。
壳程形式分为单壳程、双分流式、双壳程和分流式。
折流板:折流板可以改变壳程流体的方向,使其垂直于管束流动,获
得较好的传热效果。
一般分为圆缺型折流板、环盘型折流板和孔式折流板。
折流板间距影响到壳程物流的流向和流速,从而影响到传热效率。
最小的折流板间距为壳体直径的1/5,不应小于50mm。
常用换热器选用-板式换热器
板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。
板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成。
板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。
☆传热效率高;
☆使用安全可靠;
☆占地小,易维护;
☆随机应变;
☆有利于低温热源的利用;☆阻力损失少;
☆冷却水量小;
☆在投资效率低
☆制冷
☆暖通空调
☆化学工业
☆冶金工业
☆机械工业
☆电力工业
☆造纸工业
☆纺织工业
☆食品工业
☆油脂工艺
☆集中供热
常用换热器选用-管式换热器
管式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。
☆固定管板式
☆浮头式
☆“U”型管式
☆一种工质由封头端的进口接管进入传热管内,其流程可根据工艺要求实现一管程、二管程和四管程结构。
☆另一种工质由壳体一端的进口接管进入壳体内并均匀地分布于传热管外,其流动状态可根据工艺要求在管束中设置不同型式和数量的折流板。
☆做为传热元件——换热管,可根据工艺要求采用黄铜管,铜翅片管和钢管,从而保证了不同物性、不同温度的工质在换热器内实现热量交换,达到冷却或加热的目的。
11。