一次函数与正比例函数图像的几种位置关系
- 格式:pdf
- 大小:210.74 KB
- 文档页数:3
《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.2、正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx 经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程;(3)解方程,求出待定系数k;(4)将求得的待定系数的值代回解析式.4、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象(1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.(2)一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.6、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).7、直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0,b>0 经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大k<0 b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K,0,b=0经过第二、四象限k<0 图象从左到右下降,y随x的增大而减小8、直线y1=kx+b与y2=kx图象的位置关系:(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.(2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.9、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定:当k1≠k2时,l1与l2相交,交点是(0,b).10、直线y=kx+b(k≠0)与坐标轴的交点.(1)直线y=kx与x轴、y轴的交点都是(0,0);(2)直线y=kx+b与x轴交点坐标为( ,0)与y轴交点坐标为(0,b).函数性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)形、取、象、交、减。
【知识梳理】1、一次函数:形如y=kx+b (k ≠0, k, b 为常数)的函数。
注意:(1)k ≠0,否则自变量x 的最高次项的系数不为1; (2)当b=0时,y=kx ,y 叫x 的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y 轴交于(0,b );与x 轴交于(kb,0) (2)由图象可以知道,直线y=kx+b 与直线y=kx 平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x 平行。
3、性质:(1)图象的位置:(2)增减性:k>0时,y 随x 增大而增大 k<0时,y 随x 增大而减小 4.求一次函数解析式的方法: 求函数解析式的方法主要有三种: (1)由已知函数推导或推证;(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式:“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义: 构造方程组。
②利用一次函数y=kx+b 中常数项b 恰为函数图象与y 轴交点的纵坐标,即由b 来定点;直线y=kx+b 平行于y=kx , 即由k 来定方向 。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程 。
【例题讲解】题型一、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型二、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数知识点一:一次函数图像的特点两点确定一条直线,根据这个特点,我们在画一次函数的图像时,可以确定两个点,再过这两个点做直线就行了,而且,为了简单,我们常选过点(0,b )和)0,(kb-作直线。
由观察可知:(1) 正比例函数的图像时一条直线,并经过两个象限。
(2) 当k>0,其图像经过第一、三象限,当k<0时,其图像经过第二、四象限。
知识点二:一次函数及图像的性质 (1) 增减性: 对于一次函数y=kx+b当k>0,y 的值随x 的增大而增大; 当k<0,y 的值随x 的增大而减小; (2) 图像所在的象限:当k>0,b>0,图像位于第一、二、三象限; 当k>0,b<0,图像位于第一、三、四象限; 当k<0,b>0,图像位于第一、二、四象限; 当k<0,b<0,图像位于第二、三、四象限;(3) 两直线的位置关系:直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 知识点三:正比例函数图像与一次函数图像的关系一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)一次函数的解题技巧一次函数是初中数学最重要的内容之一,它的知识结构体系非常丰富,在具体的解题过程中会运用到许多重要的思想方法:如数形结合思想,函数思想,转化和化归的思想,综合运用思想等,掌握一次函数的解题技巧,可以提高同学们的学习效率,下面举例说明:例题例1 如图,直线y=ax+b 经过点A (-1,-2)和B (-2,0),直线y=2x 过点A ,则不等式02≤+<b kx x 的解集是为:( )A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0分析:根据不等式2x <kx+b <0体现的几何意义得到:直线y=kx+b 上,点在点A 与点B 之间的横坐标的范围. 解答:解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点,显然,这些点在点A 与点B 之间. 故选B . 点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 二:函数思想通过学习函数使我们逐步用函数的观点,方法去思考问题,将已知条件或所给数量关系进行转化,借助函数的图像或性质去解决问题。
正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
万方数据
万方数据
一次函数与正比例函数图像的几种位置关系
作者:钟荣洲
作者单位:江西省赣州州经济开发区潭口镇坞埠初中,江西,赣州,341401
刊名:
读写算(教育教学研究)
英文刊名:DUYUXIE
年,卷(期):2010(7)
1.王德林巧平移妙化归[期刊论文]-中学数学研究2010(8)
2.沈宝民反比例函数的图象和性质教学案例与反思[期刊论文]-中国科教创新导刊2010(12)
3.李敏一次函数的五个"易忽视"[期刊论文]-中学生数理化(八年级数学北师大版)2009(10)
4.喻俊鹏一次函数单元检测题[期刊论文]-中学生数理化(初中版初二使用)2005(9)
5.郭才华与一次函数相关的竞赛题[期刊论文]-初中生2006(5)
6.孟坤.徐士龙一次函数考查方式展现[期刊论文]-中学数学杂志(初中版)2009(1)
7.张宏政教学设计时,我们进行了这样的思考[期刊论文]-中学数学杂志(初中版)2009(2)
8.于秀坤反比例函数题型考点分析[期刊论文]-读写算(中考版)2009(1)
9.车海兰浅议函数图像的平移[期刊论文]-青海教育2008(6)
引用本文格式:钟荣洲一次函数与正比例函数图像的几种位置关系[期刊论文]-读写算(教育教学研究) 2010(7)。