chap4 整数规划
- 格式:ppt
- 大小:1.54 MB
- 文档页数:46
整数规划解法与实际案例分析整数规划是运筹学中的一个重要分支,它在实际问题中有着广泛的应用。
整数规划问题是指决策变量被限制为整数的线性规划问题,通常用于需要做出离散决策的情况。
在本文中,我们将介绍整数规划的基本概念和解法,并结合一个实际案例进行分析,以帮助读者更好地理解整数规划的应用。
### 整数规划的基本概念整数规划是一种特殊的线性规划问题,其决策变量被限制为整数。
一般来说,整数规划可以分为纯整数规划和混合整数规划两种情况。
纯整数规划要求所有的决策变量都是整数,而混合整数规划则允许部分决策变量为整数,部分为连续变量。
整数规划可以用数学模型来描述,通常形式如下:$$\begin{aligned}\text{Maximize} \quad & c^Tx \\\text{Subject to} \quad & Ax \leq b \\& x \in \mathbb{Z}^n\end{aligned}$$其中,$c$、$x$、$b$ 分别为目标函数系数向量、决策变量向量和约束条件右端常数向量,$A$ 为约束条件系数矩阵,$x \in\mathbb{Z}^n$ 表示 $x$ 是一个整数向量。
### 整数规划的解法整数规划问题的求解相对复杂,因为整数约束使得问题的解空间不再是连续的,而是离散的。
针对整数规划问题,通常有以下几种解法:1. **穷举法**:穷举法是最直接的方法,即枚举所有可能的整数解,然后逐一计算目标函数值,找出最优解。
然而,穷举法在问题规模较大时会变得非常低效。
2. **分支定界法**:分支定界法是一种常用的整数规划求解方法。
它通过不断将整数规划问题分解为子问题,并对子问题进行求解,直到找到最优解为止。
3. **割平面法**:割平面法是一种基于线性规划的整数规划求解方法。
它通过不断添加线性不等式约束(割平面)来逼近整数解,直到找到最优解为止。
4. **分支定价法**:分支定价法是一种高级的整数规划求解方法,通常用于解决混合整数规划问题。
整数规划求解题技巧整数规划(Integer Programming,IP)是线性规划(Linear Programming,LP)的扩展,它要求所有变量的取值必须是整数。
整数规划常用于求解实际问题中的最优决策,具有广泛的应用领域,如运输、生产、资源分配等。
下面我将介绍一些整数规划求解题的技巧。
1. 转化为纯整数规划:将实际问题转化为纯整数规划问题可以简化模型。
纯整数规划要求所有变量的取值都必须是整数,没有连续变量的限制。
通过建立合适的约束条件和目标函数,可以将问题转化为纯整数规划问题进行求解。
2. 松弛约束:对于某些约束条件,如果将其从等式形式变为不等式形式且松弛一些限制,可以增加问题的可行解空间。
这样可以使得模型具有更多的可行解,从而提高求解效率。
3. 分枝定界法:分枝定界法是一种常用的求解整数规划问题的方法。
它将整数规划问题划分为多个子问题,通过不断划分和求解这些子问题,逐步逼近最优解。
分枝定界法通常包括两个步骤:分枝和定界。
分枝是指将问题分解为多个子问题,每个子问题都是原问题的一个可能解。
定界是指通过对子问题的求解,确定上界和下界,从而缩小搜索范围。
4. 启发式算法:启发式算法是一种常用的求解整数规划问题的方法,它通过启发式规则和策略来指导搜索过程。
启发式算法不保证找到最优解,但可以在较短时间内找到近似最优解。
常见的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
5. 接近最优策略:在实际问题中,有时求解整数规划问题的时间复杂度非常高,甚至是NP-hard难题。
面对这种情况,可以采取接近最优的策略。
即对于一个相对较大的整数规划问题,先求解一个近似最优解,然后逐步优化,以此来降低问题的复杂度。
6. 问题分解:对于大规模的整数规划问题,可以将问题分解成多个较小的子问题。
通过对这些子问题的求解,可以逐步逼近整体问题的最优解。
问题分解可以提高求解效率,同时可以充分利用问题的结构特点。
7. 约束松弛法:约束松弛法是一种将整数规划问题转化为线性规划问题进行求解的方法。
1. 整数规划的基本概念1. 在某些线性规划问题中,变量只有取整数值才有意义,这时约束条件中还需要添加上变量取整数值的限制,这就是整数规划问题。
2. 在整数规划中,如果所有的变量都为非负整数,则称为纯整数规划问题;如果有一部分变量为非负整数,则称之为混合整数规划问题。
在整数规划中,如果变量的取值只限于0和1,这样的变量我们称之为0-1变量。
在纯整数规划和混合整数规划问题中,如果所有的变量都为0-1变量,则称之为0-1规划。
3. 求整数解的线性规划问题,不是用四舍五入法或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法(分枝定界法与割平面法)加以解决。
2. 整数规划的应用1. 生产与销售计划问题例1. 某公司用两种原油(A 和B )混合加工成两种汽油(甲和乙),甲、乙两种汽油含原油A 的最低比例分别为50%和60%,每吨售价分别为4800元和5600,该公司现有原油A 和B 的库存量分别为500吨和1000吨,还可以从市场上买到不超过1500吨的原油A ,不超过500吨时单价为10000元/吨;超过500吨时,超过的部分单价为8000元/吨;超过1000吨时超过的部分单价为6000元/吨。
该公司应如何安排原油的采购和加工。
分析:问题中需要决定如何安排采购:决定原油A 的采购数量 (可设为变量x)如何安排加工:决定原油A 分别用于生产甲、乙产品的数量(可设为变量x11、x12) 决定原油B 分别用于生产甲、乙产品的数量(可设为变量x21、x22); 共有5个决策变量。
则:x11+x21为甲产品的产量, x12+x22为乙产品的产量。
约束条件资源限制:()()210001 50022211211≤++≤+x x x x x 比例要求:()()4 6.03 5.0221212211111≥+≥+x x x x x x变量非负:x ,x11,x12,x21,x22≥0 目标函数假设目标为利润最大利润=收入-成本,用Z 表示利润额:Z=4800 (x11+x21)+5600 (x12+x22) -C(x) 其中: C(x)为采购原油A 的支出 C(x)的具体形式?()()()⎪⎩⎪⎨⎧≤<-+≤<-+≤=15001000 ,1000600090000001000500 ,50080005000000500,10000x x x x x x x C整理得:()⎪⎩⎪⎨⎧≤<+≤<+≤=15001000 ,600030000001000500 ,80001000000500 ,10000x x x x x x x C建立模型:model :max =4.8*x11+4.8*x21+5.6*x12+5.6*x22-c; x11+x12<x+500; x21+x22<1000; x<1500;0.5*x11-0.5*x21>0; 0.4*x12-0.6*x22>0;c=@if (x#le#500,10*x,@if (x#le#1000,1000+8*x,3000+6*x)); end运用lingo 求解得:Objective value: 5000.000Variable Value Reduced CostX11 0.000000 0.000000 X21 0.000000 1.600000 X12 1500.000 0.000000 X22 1000.000 0.000000 C 9000.000 0.000000 X 1000.000 0.000000第二种解法:模型中的问题约束(1)左端含变量,(3)、(4)不是线性函数,转化为:5001211≤-+x x x06.04.005.05.022122111≥-≥-x x x x目标函数为分段函数,如何处理? 目标函数的转换将x 分解为三个量x1、x2、x3,分别表示以价格10000/吨、8000/吨、6000/吨购买的原油A 的数量,且 x=x1+x2+x3,则目标函数变为 Z=4800 (x11+x21)+5600 (x12+x22)-(10000x1+8000x2+6000x3) 此时约束条件应增加: (x1-500) ·x2=0,(x2-500) ·x3=0 0≤ x1,x2,x3 ≤500目标函数虽已化为线性函数,但约束条件含非线性等式,如何解决这一问题? 引入0-1变量 y1、y2、y3⎩⎨⎧=>=0 ,00 ,11x x y ,⎩⎨⎧≤>=500 ,0500 ,12x x y ,⎩⎨⎧≤>=1000 ,01000 ,13x x y则:112500500y x y ≤≤,223500500y x y ≤≤,33500y x ≤综合可得问题的数学模型()()321221221116000800010000 56004800min x x x x x x x Z ---+++=⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥≤≤≤≤≤≥-≥-≤+≤---+1,0,,0,,,,,,50050050050050006.04.005.05.0100050032132122211211332231122212211122213211211y y y x x x x x x x y x yx y y x y x x x x x x x x x x xmodel :max =4.8*x11+4.8*x21+5.6*x12+5.6*x22-10*x1-8*x2-6*x3; x11+x12-x<500; x21+x22<1000; 0.5*x11-0.5*x21>0; 0.4*x12-0.6*x22>0; x-x1-x2-x3=0; x1-500*y1<0; x2-500*y2<0; x3-500*y3<0; x1-500*y2>0; x2-500*y3>0; @BIN (y1); @BIN (y2); @BIN (y3); endObjective value: 5000.000 Variable Value Reduced CostX11 0.000000 0.000000 X21 0.000000 1.400000 X12 1500.000 0.000000 X22 1000.000 0.000000 X1 500.0000 0.000000X3 0.000000 0.000000X 1000.000 0.000000Y1 1.000000 0.000000Y2 1.000000 2000.000Y3 1.000000 1000.000第三种解法:记x轴上的分点为b1=0, b2=500, b3=1000, b4=1500. 当x属于第1个小区间[b1,b2]时,记x=z1b1+z2b2, z1+z2=1, z1,z2≥0, 因为c(x)在[b1,b2]上是线性函数,所以c(x)= z1c(b1)+z2c(b2)。
求解整数规划问题的分支定界法整数规划问题是运筹学和数学中非常重要的一个分支,它本身又有着非常广泛的应用,例如资源分配、制造流程规划等等。
但是,由于整数规划问题的复杂性,导致绝大部分问题都是NP困难问题,即使运用最先进的算法,也很难找到一个高效的解决方案。
然而,分支定界法就是其中一种能够求解整数规划问题的有效方法。
一、什么是整数规划整数规划是指在线性规划(LP)问题的基础上,需要将变量的取值限制为整数类型(不是实数类型),其数学描述如下所示:$$\begin{aligned} \max \ \ & c^Tx \\s.t. \ \ & Ax \leq b\\& x_i\in\mathbb{Z} \ \ (i=1,2,...,n)\end{aligned}$$其中$c,x, b$以及 $A$分别是问题中的参数,表示目标函数的系数、变量向量、约束条件以及约束矩阵。
二、什么是分支定界法分支定界法,又被称为分支剪枝法,是求解整数规划问题的一个常用方法。
它的核心思想在于,将整数规划问题分解为多个子问题,并通过将问题空间不断地分割,不断缩小问题的范围,从而找到最优解。
分支定界法大致分为以下几个步骤:(1)确定目标函数与约束条件,即整数规划问题的数学模型;(2)运用松弛法将整数规划问题转化为线性规划问题,从而求解该线性规划问题及其最优解;(3)根据最优解的情况,判断该最优解是否为整数解,如果不是,则选择其中一个变量进行分支(通常是将其约束为下取整和上取整);(4)根据变量的分支,得到两个新的整数规划问题,需要分别对其进行求解;(5)执行步骤(3)和(4),直到分支出的所有问题均已求解完毕,即得到原问题的最优解。
三、分支定界法的优缺点分支定界法虽然是一种有效的求解整数规划问题的方法,但是也有其优点和缺点。
优点:(1)能够精确求解整数规划问题。
(2)适用于各种规模的整数规划问题,虽然时间复杂度大,但是运作效率相对较高。
求解整数规划的方法整数规划是一种最优化问题,其解决方案限制了决策变量必须取整数值。
整数规划的应用非常广泛,涉及到许多实际问题,如制造业生产调度、物流优化、资源分配等。
在本文中,我们将介绍几种常用的整数规划方法。
一、分支定界法分支定界法是一种常用的整数规划求解方法,它通过不断将解空间分割为子问题并求解这些子问题,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则选择一个变量将其分割为两个子问题,并分别求解这两个子问题。
4. 对每个子问题,递归地应用上述步骤,直到找到一个整数解或者确定当前子问题的上界小于当前最优解。
5. 最终,得到整数规划的最优解。
分支定界法的优点是能够保证找到最优解,但其缺点是计算复杂度较高,特别是在问题规模较大时,会导致计算时间过长。
二、整数规划的近似算法当整数规划问题规模较大时,找到精确解的计算复杂度可能变得非常高,此时可以考虑使用近似算法来求解。
近似算法的思想是通过放松整数约束条件,将整数规划问题转化为一个线性规划问题,并对线性规划问题进行求解。
然后,根据线性规划问题的解,对整数规划问题进行修正,得到整数规划问题的一个近似解。
三、割平面法割平面法是一种常用的整数规划求解方法,它通过添加一系列线性不等式(割平面)来逐步减小可行解空间,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则根据当前松弛解所对应的目标函数值,添加一系列线性不等式(割平面)来限制可行解空间。
4. 对添加了割平面约束的线性规划问题,继续求解,并更新最优解。
5. 重复以上步骤,直到找到一个整数解或者确定当前问题的上界小于当前最优解。
整数规划知识点总结一、整数规划基本概念整数规划是指决策变量的取值受到整数限制的线性规划问题。
数学形式可以表示为:\[\min c^Tx\]\[ s.t. Ax \leq b\]\[x\geq0 \]\[x_i \in \{0, 1, 2, ...\}\]其中,c为目标函数系数,x是决策变量,A是约束系数矩阵,b是约束条件的右端向量,决策变量x是整数。
当所有的决策变量都是整数时,称为纯粹整数规划(Pure Integer Programming)。
当部分决策变量为整数,部分为连续变量时,称为混合整数规划(Mixed Integer Programming, MIP)。
二、整数规划解法整数规划问题的求解可以采用分支定界法、割平面法、隐枚举法等不同方法。
下面将对常用的整数规划解法进行简要介绍。
1.分支定界法分支定界法是一种求整数规划解的有效方法,它通过对决策变量进行分支,将整数规划问题不断分解为子问题,然后采用线性规划方法求解子问题。
具体步骤如下:1)求解线性规划松弛问题,得到一个整数解。
2)若解为整数,则成为可行解,否则确定需要分支的决策变量,分为两个子问题。
3)对子问题继续重复上述过程,直到无法再分或求解出整数解为止。
2.割平面法割平面法是在分支定界法的基础上进行改进,它在每一次迭代求解线性规划松弛问题后,引入一些额外的不等式(割平面)来改进松弛问题的界。
这些割平面是通过分析整数规划问题的特性产生的,可以有效提高整数规划问题求解的效率。
3.隐枚举法隐枚举法是一种通过隐藏对决策变量的枚举,将整数规划问题转化为线性规划问题进行求解的方法。
该方法可以高效地求解整数规划问题,是一种常用的整数规划求解算法。
以上是整数规划常用的三种求解方法,通过不同的算法可以解决不同种类的整数规划问题。
三、整数规划应用领域整数规划在实际决策问题中有着广泛的应用,如生产计划、运输调度、项目投资、资源配置等诸多领域。
下面将对整数规划在不同应用领域的具体案例进行介绍。
整数规划求解方法
整数规划是一种优化问题,其中决策变量被限制为整数。
求解整数规划问题的方法有以下几种:
1. 枚举法:对整数规划的决策变量进行枚举计算,找到满足约束条件的整数解并计算目标函数的值。
虽然这种方法可以保证找到最优解,但是在决策变量较多时计算复杂度非常高。
2. 列生成法/分支定界法:将整数规划转化为线性规划问题,然后利用线性规划求解方法求解。
通过不断添加新的决策变量,同时利用剪枝技术来减少搜索空间,从而求得整数规划的最优解。
3. 隐枚举法:通过将整数规划问题转化为混合整数规划问题,然后利用线性松弛来求解。
通过求解线性松弛问题的松弛变量,来判断是否满足整数约束条件,进而判断是否需要继续搜索。
4. 启发式方法/元启发式方法:基于某种特定的启发规则进行搜索,通过局部搜索和全局搜索相结合的方式来求解整数规划问题。
常见的启发式算法有遗传算法、粒子群算法等。
5. 对偶法/割平面法:通过对目标函数和约束条件进行线性组合,构建一个对偶问题,并求解对偶问题来间接求得原问题的最优解。
需要根据具体的整数规划问题来选择合适的求解方法。
有些方法适用于特定类型的整数规划问题,所以需要根据问题特点来选择合适的方法。
同时,对于大规模的整数规划问题,可能需要结合多种方法进行求解。
整数规划引言:整数规划是一类特殊的数学优化问题,其中一部份或者全部变量被限制为整数。
整数规划问题在许多领域都有广泛的应用,如物流、生产计划、金融投资等。
随着科技的不断发展,整数规划的应用场景和求解方法也在不断扩展和深化。
一、整数规划的定义与分类定义:整数规划是一种特殊的数学优化问题,其目标是最小化或者最大化一个数学表达式(目标函数),同时满足一系列约束条件,且一部份或者全部决策变量被限制为整数。
分类:根据问题的特性,整数规划可以分为以下几种类型:0-1背包问题:决策变量只能取0或者1。
彻底背包问题:决策变量可以取任意非负整数。
整数线性规划:线性规划的变种,要求部份或者全部决策变量为整数。
二次整数规划:目标函数或者约束条件包含二次项。
二、整数规划的应用场景生产计划:在创造业中,整数规划可以用于优化生产流程、物料需求计划等。
物流优化:通过整数规划可以解决货物配送路线、车辆调度等问题。
金融投资:整数规划在投资组合优化、风险管理等领域有广泛应用。
资源分配:整数规划可用于解决资源分配问题,如人员调度、设备配置等。
组合优化:如旅行商问题(TSP)、装箱问题等,都是整数规划的典型应用场景。
三、整数规划的求解算法穷举法:通过逐个测试所有可能的解来找到最优解,但只适合于小规模问题。
分支定界法:一种基于树结构的搜索算法,能够处理较大规模的问题。
遗传算法:摹拟生物进化过程的优化算法,适合处理大规模问题。
摹拟退火算法:借鉴物理中退火过程的优化算法,具有避免陷入局部最优解的能力。
蚁群算法:摹拟蚂蚁觅食行为的优化算法,适合于求解具有离散变量的优化问题。
元胞遗传算法:将遗传算法和元胞自动机结合,能够处理更复杂的问题。
粒子群算法:摹拟鸟群觅食行为的优化算法,具有简单易实现的特点。
深度学习算法:利用神经网络进行求解,特别在处理大规模、高维度的问题时表现出色。
四、整数规划软件介绍CPLEX:由IBM开辟的商业优化软件,支持整数规划、线性规划、混合整数规划等多种优化问题。