光学教程第四版 姚启钧著 讲义第五章.5
- 格式:ppt
- 大小:2.22 MB
- 文档页数:106
《光学教程》(姚启钧)习题解答欧阳引擎(2021.01.01)第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
第一章 小结● 一、 光的电磁理论● ①光是某一波段的电磁波, 其速度就是电磁波的传播速度。
● ②光波中的振动矢量通常指的是电场强度。
● ③可见光在电磁波谱中只占很小的一部分,波长在 390 ~ 760 n m 的狭窄范围以内。
● ④光强(平均相对光强): I =A ^2 。
二、光的干涉:● ①干涉:满足一定条件的两列或两列以上的波在空间相遇时,相遇空间的光强从新分布:形成稳定的、非均匀的周期分布。
● ②相干条件:频率相同 、振动方向相同、相位差恒定。
●③干涉光强:)cos(2122122212ϕϕ-++=A A A A A 三、相位差和光程差真空中 均匀介质中nr =∆r n =∆=1ctr cnr ===∆υ光程:光程差: 12r r -=δ1122r n r n -=δ)t t (c r cr c121122-=-=υυδ相位差:()()121222r r k r r-=-==∆λπδλπϕ()1,21==n o o ϕϕ空间角频率或角波数--=λπ2k四、干涉的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧9.5311.17.1.b 1.109.18.1.a 25.14.11)分振动面干涉(、等倾干涉、、等厚干涉)分振幅干涉(、)分波面干涉(。
五、干涉图样的形成:(1)干涉相长()()2,1,0,22:222:1212±±==-⋅=-⋅=∆j j r r then j r r j if λπλππϕ则:(2)干涉相消:()()()()2,1,0,212:12212:1212±±=+=-+=-+=∆j j r r then j r r j if λπλππϕ则六、干涉条纹的可见度:七、⎪⎩⎪⎨⎧≥≈≈==+=条纹便可分辨一般情况模糊不清不可以分辨当清晰条纹反差最大时当,7.0V ,,0V ,I I ,1,V ,0I I I I -I V min max min minmax minmax212122121222121I I I I 2)A /A (1)A /A (2A A A 2A V +=+=+=七、半波损失的结论:当光从折射率小的光疏介质向折射率大的光密介质表面入射时,反射过程中反射光有半波损失。