2016年全国高中数学联赛江苏赛区初赛试题+答案(word打印版)
- 格式:docx
- 大小:800.21 KB
- 文档页数:9
全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
全国高中数学联赛江苏赛区初赛试卷 一、选择题(本题满分36分,每小题6分)1. 已知函数2sin y x =,则 答:[ ] (A )有最小正周期2π (B )有最小正周期π (C )有最小正周期2π(D )无最小周期 2. 关于x 的不等式22200x ax a --<任意两个解的差不超过9,则a 的最大值与最小值 的和是 答:[ ] (A ) 2 (B ) 1 (C ) 0 (D ) 1-3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线的 三点是 答:[ ] (A ) A 、B 、D (B ) A 、B 、C (C ) B 、C 、D (D ) A 、C 、D4. 设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是 答:[ ] (A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为 答:[ ](A )60个 (B )70个 (C )90个 (D )120个 6. 已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ),且2(32)(1),f a a f a -+=- 则a 的值有 答:[ ] (A )2个 (B )3个 (C )4个 (D )无数个 二、填空题(本题满分54分,每小题9分)7. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 .8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点 (28),,则a b +等于 .9. 已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 .10.30x y -+=的离心率是 .11. 在ABC ∆中,已知tan B =sin C =,AC =ABC ∆的面积为 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 . 三、解答题(本题满分60分,共4小题,每题各15分) 13. 设不等式组 00x y x y +>⎧⎨-<⎩,表示的平面区域为D . 区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线l 与 曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率. 14. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.15. 已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a . 16. 已知平面上10个圆,任意两个都相交. 是否存在直线l ,与每个圆都有公共点?证明你的结论.高中数学联赛初赛试题参考答案及评分标准 一、选择题(本题满分36分,每小题6分) 1.已知函数2sin y x =,则(B ).(A )有最小正周期为π2(B )有最小正周期为π (C )有最小正周期为2π(D )无最小正周期 解:)2cos 1(21sin 2x x y -==,则最小正周期π=T .故选(B ). 2.关于x 的不等式02022<--a ax x 任意两个解的差不超过9,则a 的最大值与最小值的和是( C ).(A ) 2 (B ) 1 (C ) 0 (D )1-解:方程02022=--a ax x 的两根是14x a =-,25x a =,则由关于x 的不等式B 1BA 1C 1AC22200x ax a --<任意两个解的差不超过9,得9|9|||21≤=-a x x ,即11≤≤-a . 故选(C ).3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线 的三点是( A ).(A )A 、B 、D (B )A 、B 、C (C )B 、C 、D (D )A 、C 、D解:2BD BC CD =+=a 4+b 2AB =,所以A 、B 、D 三点共线. 故选(A ). 4.设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是( D ). (A )αβ⊥,n αβ=,m n ⊥(B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥(D )n α⊥,n β⊥,m α⊥解:(A )选项缺少条件m α⊂;(B )选项当//αβ,βγ⊥时,//m β;(C )选项当α、β、γ两两垂直(看着你现在所在房间的天花板上的墙角),m βγ=时,m β⊂;(D )选项同时垂直于同一条直线的两个平面平行.本选项为真命题.故选(D ). 5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( C )(A )60个(B )70个(C )90个(D )120个解:由6514233=+=+=+及题设知,个位数字的选择有5种.因为321=+=7610=+-,故(1)由321=+知,首位数字的可能选择有2510⨯=种;(2)由37610=+-及54123=+=+知,首位数字的可能选择有248⨯=种. 于是,符合题设的不同点的个数为5(108)90⨯+=种. 故选(C ). 6.已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ),且2(32)(1),f a a f a -+=-则a 的值有( D ). (A )2个(B )3个(C )4个(D )无数个解:由题设知()f x 为偶函数,则考虑在11≤≤-x 时,恒有()2(1232007)20082007f x =⨯++++=⨯.所以当21321a a -≤-+≤,且111a -≤-≤时,恒有2(32)(1)f a a f a -+=-.由于不等式21321a a -≤-+≤a ≤≤ 111≤-≤-a 的解集为20≤≤a .因此当2253≤≤-a 时,恒有 2(32)(1)f a a f a -+=-. 故选(D ).二、填空题(本题满分54分,每小题9分)7.设n S 为等差数列{}n a 的前n 项和,若105=S ,510-=S ,则公差为1-=d . 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于4.解:由题设知log (2)1log (8)2a a b b +=⎧⎨+=⎩,,化简得2(2)(8).b a b a +=⎧⎨+=⎩,解之得1131a b =⎧⎨=⎩,;2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4. 9.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为[21)x ∈-,.解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<.于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为[21)x ∈-,.10.圆锥曲线0|3|102622=+--+-++y x y x y x的离心率是2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2. 11.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=.解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=±.故sin 2ABC AC ABS A ∆⋅== 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>.命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是021≤<-a 或121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是021≤<-a 或121<≤a .三、解答题(本题满分60分,每小题15分)13. 设不等式组00x y x y +>⎧⎨-<⎩,表示的平面区域为D . 区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线 l 与曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率.解:由题意可知,平面区域D 如图阴影所示. 设动点为(,)P x y2=,即224x y -=.由P D ∈知0x y +>,x -y<0,即x2-y2<0.所以y2-x2=4(y >0),即曲线C 的方程为 y24-x24=1(y >0).设11(,)A x y ,22(,)B x y ,则以线段AB 为直径的圆的圆心为1212()22x x y y Q ++,. 因为以线段AB 为直径的圆L 与y 轴相切,所以半径12122x x r AB +==,即12AB x x =+. ①因为直线AB 过点F(22,0), 当AB x 轴时,不合题意.所以设直线AB 的方程为y =k(x -22). 代入双曲线方程y24-x24=1(y >0)得, k2(x -22)2-x2=4,即(k2-1)x2-42k2x +(8k2-4)=0. 因为直线与双曲线交于A ,B 两点, 所以k≠±1. 所以x1+x2=42k2k2-1,x1x2=8k2-4k2-1.所以|AB|=(x1-x2)2+(y1-y2)2=(1+k2)[(x1+x2)2-4x1x2] =(1+k2)[⎝ ⎛⎭⎪⎫42k2k2-12-4×8k2-4k2-1]=|x1+x2|=|42k2k2-1|, 化简得:k4+2k2-1=0, 解得k2=2-1(k2=-2-1不合题意,舍去).由△=(42k2)2-4(k2-1) (8k2-4) =3k2-1>0, 又由于y >0,所以-1<k<-33.所以k =-2-114. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离. 证:(1)设1AA 中点为D ,连C 、D .因为AB B A =1,所以1AA BD ⊥.因为面C C AA A ABB 1111⊥,所以⊥BD 面C C AA 11.又1ACC ∆为正三角形,111A C AC =,所以 11AA D C ⊥. 从而11AA BC ⊥.(2) 由(1),有1BD C D ⊥,11BC CC ⊥,1CC ⊥面1C DB .设1A 到面ABC 的(第14题) B 1BA 1C 1AC距离为h ,则1113ABC B CAC B CDC hS V V ∆--==. 因为11113C C DB C DB V CC S -∆=⨯, 所以1C DB ABCS h S ∆∆=.又 1C D BD =,且2211==⨯=∆BD BD D C S DB C 设ABC ∆的高为AE ,则2512312221212=+=+=+=BD CC BC BC , 8325411=⋅-=AE ,41583252=⋅=∆ABC S . 于是有 515153==h ,即1A 到平面ABC 的距离为515. ………………15分15.已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .解:由题设,22n n a a +≥+,则2007200520031222210032007a a a a ≥+≥+⨯≥≥+⨯=.由22n n a a +≥+,得22n n a a +≤-,则3223231(1)n n n n a a a a n +++≤+≤-+=+≥. 于是200720062005200219991123123212a a a a a ≤+≤+⨯≤++⨯≤+⨯+⨯136********a ≤≤+⨯+⨯=,所以a=.易知数列11a =,22a =,,n a n = 符合本题要求. 注意:猜得答案n a n =或20072007a =,给2分.16.已知平面上10个圆,任意两个都相交.是否存在直线l ,与每个圆都有公共点?证明你的结论.解:存在直线l ,与每个圆都有公共点. 证明如下:如图,先作直线0l ,设第i 个圆在直线0l 上的正投影是线段i i A B ,其中i A 、i B 分别是线段的左右端点.10个圆有10个投影线段,有10个左端点,有10个右端点.因为任意两个圆都相交,所以任意两条投影线段都有重叠的部分,设k A 是最右边的左端点,则所有右端点都在k A 的右边,否则必有两条投影线段无重叠部分,与对应的两个圆相交矛盾.A 1A k A 2B 1B 2 B m再设m B 是最左边的右端点,同理所有左端点都在m B 的左边.k A 与m B 不重合,线段k m A B 是任意一条投影线段的一部分,过线段k m A B 上某一点作直线0l 的垂线l ,则l 与10个圆都相交.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
全国高中数学联赛江苏赛区初赛试题(时间:4月20日上午8:00—10:00)一、选择题(本题满分30分,每小题6分)1. 如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx+ny 的最大值为 []A. 2b a +B. abC. 222ba + D. 222b a +2. 设)(x f y =为指数函数xa y =. 在P(1,1),Q(1,2),M(2,3),⎪⎭⎫ ⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是点 []A. PB. QC. MD. N3. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么z y x ++的值为答:[] A. 1 B. 2C. 3D. 44. 如果111C B A ∆的三个内角的余弦值分别是222C B A ∆的三个内角的正弦值,那么 []A. 111C B A ∆与222C B A ∆都是锐角三角形B. 111C B A ∆是锐角三角形,222C B A ∆是钝角三角形C. 111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D. 111C B A ∆与222C B A ∆都是钝角三角形5. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β[] A. 不存在 B. 有且只有一对 C. 有且只有两对 D. 有无数对二、填空题(本题满分50分,每小题10分)6. 设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则A B =___________________.7. 同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是P =__________(结果要求写成既约分数).8. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为____________. 9. 与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为________________________.10. 在ABC ∆中,若tanAtanB=tanAtanC+tanctanB ,则 222c b a +=______________.三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11. 已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.1 2 0.5 1 xyz12. A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
全国高中数学联赛江苏赛区初赛试卷一.选择题(本题满分36分,每小题6分) 1.已知数列{}n a 的通项公式2245n a n n =-+,则{}n a 的最大项是( )()A 1a ()B 2a ()C 3a ()D 4a2.函数3log 3xy =的图象是( )()A ()B ()C ()D3.已知抛物线22y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有( )()A 0个()B 2个()C 4个()D 6个4.设()f x 是定义在R 上单调递减的奇函数.若120x x +>,230x x +>,310x x +>,则( )()A ()()()1230f x f x f x ++>()B ()()()1230f x f x f x ++< ()C ()()()1230f x f x f x ++=()D ()()()123f x f x f x +>5.过空间一定点P 的直线中,与长方体1111ABCD A B C D -的12条棱所在直线成等角的直线共有( )()A 0条()B 1条()C 4条()D 无数多条6.在△ABC 中,1tan 2A =,310cos B =.若△ABC 的最长边为1,则最短边的长为( )()A ()B ()C ()D 二.填空题(本题满分54分,每小题9分)7.集合{}3,,010A x x n n N n ==∈<<,{}5,,06B y y m m N m ==∈≤≤,则集合A B 的所有元素之和为. 8.设cos 2ϑ=,则44cos sin ϑϑ+的值是. 9.()323x x-的展开式中,5x 的系数为.10.已知030330y x y x y ≥⎧⎪-≥⎨⎪+-≤⎩,则22x y +的最大值是.11.等比数列{}n a 的首项为12020a =,公比12q =-.设()f n 表示这个数列的前n 项的积,则当n =时,()f n 有最大值.12.长方体1111ABCD A B C D -中,已知14AB =,13AD =,则对角线1AC 的取值范围是. 三.解答题(本题满分60分,第13题、第14题各12分,第15题16分,第16题20分) 13.设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B xx a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.14.椭圆22194x y +=的右焦点为F ,1224,,,P P P 为24个依逆时针顺序排列在椭圆上的点,其中1P 是椭圆的右顶点,并且122334241PFP P FP P FP P FP ∠=∠=∠==∠.若这24个点到右准线的距离的倒数和为S ,求2S 的值.15.△ABC 中,AB AC <,AD 、AE 分别是BC 边上的高和中线,且BAD EAC ∠=∠. 证明BAC ∠是直角.16.设p 是质数,且271p +的不同正因数的个数不超过10个.求p . 全国高中数学联赛江苏赛区初赛试卷【参考答案】1.B 2.A 3.B 4.B 5.C 6.D7.2258.11189.27 10.9 11.1212.()4,513.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由A B ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-;当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所说,()()1,00,3a ∈-.B14.解:椭圆中,3a =,2b =,故c =)F,e =设i FP 与x 轴正向的夹角为i ϑ,i d 为点i P 到右准线的距离.则()2cos 1i i a d e c cϑ+=-.即()21cos 1i i c e d b ϑ=+.同理()()1222121cos 1cos 1i i i c c e d b bϑϑ++=+=-+. 所以2121122i i c d d b ++==. 从而2411i id ==∑ 2180S =. 15.如图,取AB 中点I ,连ID 、IE .则IE 为中位线,所以//IE AC ,且IEA EAC ∠=∠.而BAD EAC ∠=∠,所以IEA BAD ∠=∠.…………①在直角△ADB 中,I 为斜边中点,所以ID IA =,从而BAD IDA ∠=∠.…………②联合①、②得A 、I 、D 、E 四点共圆.所以BAD IEB C ∠=∠=∠,∴90B C ∠+∠=︒,即90BAC ∠=︒.16.解:当2p =时,22717535p +==⨯,有()()11216++=个正因数; 当3p =时,24718025p +==⨯,有()()411110++=个正因数.所以2p =、3p =满足条件.当3p >时,()()2711172p p p +=-++.其中p 为奇质数,所以()1p -与()1p +是相邻的两个偶数,从而必然有一个2的倍数和4个倍数,还必然有一个3的倍数,从而()()11p p -+是24的倍数. 设23712423p m m +=⨯=⨯⨯,其中4m ≥.若m 中有不同于2、3的质因数,则271p +的正因数个数()()()31111110≥+++>;若m 中含有质因数3,则则271p +的正因数个数()()312110≥++>;BC若m 中仅有质因数2,则271p +的正因数个数()()511110≥++>.所以3p >不满足条件.综上所说,所求得的质数p 是2或3.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.(2)由(1)得,M(2,0),F(1,0),设点P(x ,y),则PM ,=(2-x ,-y),PF ,=(1-x ,-y),又点P 在抛物线y2=4x 上,所以PM ,·PF ,=(2-x)(1-x)+y2=x2-3x +2+4x =x2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q(-1,m),则|QS|=|QT|=m2+5,以Q 为圆心,m2+5为半径的圆的方程为(x +1)2+(y -m)2=m2+5,即x2+y2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y2=4,即x2+y2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝ ⎛⎭⎪⎫23,0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
2016年全国高中数学联赛江苏赛区初赛2016年全国高中数学联赛江苏赛区初赛考试时间:2016年5月8日(星期日) 上午8∶00-10∶00试题构成:解题建议:试题正文与答案:一、填空题(每小题7分,共70分)1.若关于x 的不等式x a b +<的解集为{}24x x <<,则ab 的值是. 解析 由题设0b >,不等式x a b +<等价于a b x a b --<<-+,从而24a b a b --=⎧⎨-+=⎩,解得31a b =-⎧⎨=⎩,所以3ab =-.故填3-.2.从1,2,3,4,5,6,7,8,9中任取两个不同的数,则取出的两数之和为偶数的概率是.解析 取出两数之和为偶数(两数均为奇数或均为偶数)的概率为225429C C 4C 9+=.故填49. 3.已知()f x 是周期为4的奇函数,且当()0,2x ∈时,()21660f x x x =-+,则(f 的值是.解析<,即67<,所以()80,2-,所以(()8f f =(836f =--=-.故填36-. 评注 因为()()284f x x =--或()()1660x f x x =-+.(()2888436f --=-=-+-或(()8886036f ⎡⎤--=---+=-⎣⎦.学会观察,选用合适的方法进行计算. 4.已知直线l 是函数()22ln f x x x =+图象的切线,当l 的斜率最小时,l 的方程是. 解析 由题意从而()224f x x x+'=…,当且仅当1x =时等号成立. 所以直线l 的斜率最小值为4,此时切点为()1,1,切线方程为430x y --=.故填430x y --=. 5.在平面直角坐标系xOy 中,如果直线l 将圆22240x y x y +--=平分,且不经过第四象限,那么l 的斜率的取值范围是.解析 圆的标准方程为()()22125x y -+-=,由题设直线l 过点()1,2,其方程为()21y k x -=-,即2y kx k =+-,注意到l 不经过第四象限,则020k k ⎧⎨-⎩……,解得02k 剟.故填[]0,2. 6.已知等边ABC △的边长为2,若()13AP AB AC =+ ,12AQ AP BC =+,则APQ △的面积是.解析 由()13AP AB AC =+ 得点P 是等边三角形ABC的中心,所以AP =, 又由12AQ AP BC =+ 得12PQ BC = ,且AP PQ ⊥,因此APQ △的面积为3.故填3.2016年全国高中数学联赛江苏赛区初赛JC2016T06D评注 若找不到方向,此题也可以建系考查.7.已知正方体1111ABCD A B C D -的棱长为1,点P 在棱BC 上,点Q 为棱1CC 的中点.若过点,,A P Q 的平面截该正方体所得的截面为五边形,则BP 的取值范围为.解析 先作出基本图形如下图左所示,假设能构成五边形, 我们需要通过延长和连线的作图方法法得到相应的交点,如下图右所示,连接AP 与CD 的延长线交于点W ,连接WQ 并延长与11C D 交于R , 则R 是所截五边形的第三个顶点. (注:作图方法不唯一)JC2016T07D通过同样的方法,可以作出其余的点,如下图所示,JC2016T07D若存在这样的五边形,则每个顶点都存在, 设BP t =,通过相似可以得11tRC CW t-==, 从而只需01101t t t <<⎧⎪-⎨<<⎪⎩,解得112t <<.故填1,12⎛⎫ ⎪⎝⎭.BCQ PQ ABCDA 1B 1C 1D 1D 1C 1B 1A 1DC BAQ PR WWAA评注如下图所示,由于是正方体,也可采用极端思想,需要几何动态的观点.JC2016T07D当点为BC 中点时,有1PQ AD ∥,即12BP =时,截面为四边形1APQD ; 当P 移向C 时,W 远离C ,X 点向D 点靠拢,此时可形成五边形, 即当102BP <<时,截面为四边形;当112BP <<时,截面为五边形. 因此BP 的取值范围为1,12⎛⎫⎪⎝⎭.故填1,12⎛⎫⎪⎝⎭. 8.已知数列{}n a 的奇数项依次构成公差为1d 的等差数列,偶数项依次构成公差为2d 的等差数列,且对任意*n ∈N ,都有1n n a a +<. 若11a =,22a =,且数列{}n a 的前10项和1075S =,则8a =.解析 分析知()()10121251075S a a d d =+++=,即126d d +=, 从此点无法解决根本,按照题目的设想,可求出12,d d . 首先,可以得到该数列的奇偶项表达式(分段通项), 设*n ∈N ,则()21111n a n d -=+-,()2221n a n d =+-,其次,因为对任意*n ∈N ,都有1n n a a +<,即只需满足21221n n n a a a -+<<(或22122n n n a a a ++<<),因此()()()121112111n d n d n d +-+-++<<对*n ∈N 恒成立,分析左边,若需()()1211n d d --<,则必须满足120d d -…◆;分析右边,若需()()12111n d n d -->+,即()121215n d d d d ->--=-, 则必须满足120d d -… . 因此分析得12d d =.最后,123d d ==,822311a a d =+=.故填11.评注◆若不然,若120d d ->,则令()()1211n d d --=,解得1211n d d =+-,X ()D 1C 1B 1A 1DCB AQ PW2016年全国高中数学联赛江苏赛区初赛若令012111n d d ⎡⎤=++⎢⎥-⎣⎦,则有()()01211n d d -->与题意矛盾.的理由同 类似.事实上,在解决问题“不等式210ax ax ++…对x ∈R 恒成立,求实数a 的取值范围.”的时候,就没将问题讲清楚,而是直接根据主观论断,否定0a <的情形,本质上否定就是寻找一个0x ,使得20010ax x ++<,这跟函数的零点以及单调性有关.①当0a =时,10…恒成立,符合题意; ②当0a >时,只许满足2040a a a >⎧⎨∆=-⎩…,从而04a <…; ③当0a <时,易知240a a ∆=->,易知方程210ax ax ++=的两根为1x =2x =,又()21f x ax ax =++对称轴12x =-,所以在1,2⎛⎫-∞- ⎪⎝⎭上单调递增, 又1212x x <-<,()10f x =,所以01x x ∃<, 使()()2000110f x ax x f x +<+==,与题意矛盾.综上所述:实数a 的取值范围是[]0,4.这种思想与高考卷或模拟卷中找寻零点个数或极值点(变号零点)个数的思想是一致的. 9.已知正实数,x y 满足()()222216x y yx+++=,则x y +=.分析 ,x y 若不是以整体x y +的形式求出,则必定分别求出,这类问题涉及到对代数式变形. 解析 解法一:将题设条件式通分并整理,得()()2222160x x y y xy +++-=,整理得()()()2222280x x y y x y -+-+-=,因此2x y ==,所以4x y +=.故填4.解法二:因为为,x y 正实数,所以()()22228816x y x yyxy x++=++…816⋅=…, 等号成立的条件为2x y ==,所以4x y +=.故填4.解法三:因为()()()22222416x y x y yxx y++++=++…,所以()()()216816x y x y x y +++++…,即()240x y +-…,所以4x y +=.故填4.解法四:由()()2222x y yx+++224444x y x y yx y x y x ⎛⎫⎛⎫=+++++ ⎪ ⎪⎝⎭⎝⎭ 12244442416x y y x y x ⎛⎫⨯⋅⋅⋅+⨯= ⎪⎝⎭…,等号成立的条件是2x y ==,所以4x y +=.故填4.评注常见的不等式链“调和平均数n H …几何平均数n G …算术平均数n A …幂平均数n Q ”, 简记为调几算幂,设12,,,n a a a ⋅⋅⋅是n 个正实数,则1212111n nna a a n a a a ++⋅⋅⋅+++⋅⋅⋅+?. 10.设M 表示满足下列条件的正整数n 的和:n 整除22016,且2016整除2n ,那么M 的所有不同正因子的个数为.解析 因为22016n ,22016n ,所以n 与2016的素因子相同,而522016237⋅⋅=,故可设52237n =⋅⋅.这样我们由题设条件可得1042x y z ⎧⎪⎨⎪⎩………,且252221x y z ⎧⎪⎨⎪⎩………,从而有3101412x y z ⎧⎪⎨⎪⎩剟剟剟, 故()()()34102342222333377M =++⋅⋅⋅+⋅+++⋅+()3822134056=⋅-⋅⋅⋅333255132527=⋅⋅⋅⋅⋅⋅⋅922235717=⋅⋅⋅⋅,所以,M 的所有不同正因子的个数为()()()()()9121211111360+++++=.评注 算术基本定理:若不计素因数的次序,则每一个大于1的整数n 都可以唯一分解成素因数乘积的形式,即1212k knp p p ααα= ,其中12,,,k p p p 均为素数,12,,,k ααα 为自然数.有结论如下:(1)n 的约数个数为()()()()12111k f n ααα=++⋅⋅⋅+; (2)n 的所有约数之和为()()()12222111222111k k k k p pp p p p p p p ααα+++++++⋅⋅⋅+⋅⋅⋅++++ ; (3)欧拉(Euler )函数()n ϕ表示不大于n 且与n 互质的数的个数为()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ .2016年全国高中数学联赛江苏赛区初赛二、解答题(本大题共4小题,每小题20分,共80分)11.已知1135sin cos 12θθ+=,0,2θ⎛π⎫∈ ⎪⎝⎭,求tan θ. 解析 解法一:由题设知()12sin cos 35sin cos θθθθ+=,令sin cos t θθ+=,则(t ∈,且21sin cos 2t θθ-=,则2112352t t -=⨯,即23524350t t --=,解得75t =或57t =-(舍),即有7sin cos 5θθ+=,12sin cos 25θθ=. 所以4sin 5θ=,3cos 5θ=或3sin 5θ=,4cos 5θ=,从而4tan 3θ=或34. 解法二:由题设可得222351112sin cos θθ⎛⎫=+ ⎪⎝⎭22112sin cos sin cos θθθθ=++()222222222sin cos sin cos sin cos sin cos sin cos θθθθθθθθθθ+++=++ ()222211tan 2tan tan tan θθθθ+=+++211tan 2tan tan tan θθθθ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭, 注意到tan 0θ>,解得125tan tan 12θθ+=(舍负),进一步解得4tan 3θ=或34. 12.如图,点P 在ABC △的边AB 上,且4AB AP =,过点P 的直线MN 与ABC △的外接圆交于点,M N ,且点A 是弧MN 的中点. 求证: (1)ABN ANP △△∽; (2)2BM BN MN +=.JC2016T10解析 (1)因为点A 是弧MN 的中点,所以AMN ANM ∠=∠, 又AMN ABN ∠=∠,所以ABN ANP ∠=∠,又因为BAN NAP ∠=∠,所以ABN ANP △△∽. (2)由(1)知,AB AN BNAN AP NP==,又4AB AP =, 所以2AN AP =,从而2BNNP=,即2BN NP =, 同理2BM MP =.所以2BM BN MN +=.13.在平面直角坐标系xOy 中,双曲线2222:1x y C a b-=的右焦点为F ,过点F 的直线l 与双曲线C交于,A B 两点. 若OF AB FA FB ⋅=⋅,求双曲线C 的离心率e .解析 解法一(参数方程法):因为双曲线C 的右焦点F 的坐标为(),0c ,设直线l 的倾斜角为α, 则直线l 的方程即为cos sin x c t y t αα=+⎧⎨=⎩(t 为参数).代入双曲线方程,并整理得()222224cos 2cos 0c atb c t b αα-+⋅+=,则有412222cos b t t c a α=-,12t t -=22222cos ab c a α=-, 因为OF AB FA FB ⋅=⋅,则有242222222cos cos ab c b c a c aαα=--, 从而22ac b =,即2210e e --=,因为1e >,故1e =解法二(普通计算法):①当AB 斜率不存在时,由OF AB FA FB ⋅=⋅得2222b b c a a ⎛⎫= ⎪⎝⎭, 故2222ac b c a ==-,因为1e >,故1e =+②当AB 斜率存在时,设斜率为k ,记()11,A x y ,()22,B x y ,则由OF AB FA FB⋅=⋅,得122x x x -=--,即()2121212c x x c x x x x -=-++.()222222y k x c b x a y a b⎧=-⎨-=⎩,消y 整理得()2222222222220b a k x a ck x a c k a b -+--=, 故()()()2222222222224a ckb a k ac k a b ∆=+-+()2222422244a b c k a b k a b =-+()242244a b k a b =+2016年全国高中数学联赛江苏赛区初赛且222221221222222222a ck a k a c k a x x b k x x b b a ⎧+=⎪⎪-⎨+⎪=⎪-⎩,由()2121212c x x c x x x x -=-++,得222c b a k=-,整理得= 从而2222ac b c a ==-,因为1e >,故1e =+14.已知凸九边形的任意5个内角的正弦与其余4个内角的余弦之和都等于某个常数值λ.若九个内角中有一个角等于120︒,试求常数λ的值.解析 九个内角中任选5个,记为12345,,,,x x x x x ,其余4个记为1234,,,y y y y , 由题意123451234sin sin sin sin sin cos cos cos cos x x x x x y y y y λ=++++++++, 且123451234sin sin sin sin sin cos cos cos cos y x x x x x y y y λ=++++++++, 所以1111sin cos sin cos x y y x +=+,即1111sin cos sin cos x x y y -=-,()()114545x y -︒=-︒,即11y x =或114545180y x -︒+-︒=︒,即有11y x =或11270y x =︒-.设1120y =︒,由内角的任意可交换性可知,九个角的度数只有两种:120︒和150︒. 设有k 个120︒,9k -个150︒,则由内角和公式知()()120915092180k k ⋅︒+-⋅︒=-⋅︒, 解得3k =.所以5sin150cos1503cos1201λ=︒+︒+︒=-.。
2016年全国高中数学联赛江苏赛区初赛一、填空题(每小题7分,共70分))1.关于x 的不等式b a x <+的解集为{}42<<x x ,则ab 的值是 -3。
2.从1, 2,3.4.5.6.7.8. 9中任取两个不同的数,则取出的两数之和为偶数的概率。
4/93.已知()x f 是周期为4的奇函数且当()2,0∈x 时()60162+-=x x x f ,则()102f 的值是。
-364.己知直线l 是函数()2ln 2x x x f +=图象的切线,当的斜率最小时l 的方程是。
034=--y x5.在平面直角坐标系XOY 中,如果直线l 将圆04222=--+y x y x 平分,且不经过第四象限,那么l 的斜率的取位范围是。
[]2,06.己知等边△ABC 的边长为2,若()BC AP AQ AC AB AP 21,31+=+=,则△APQ 面积是。
337.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 在棱BC 上,点Q 为棱CC1的中点.若过点A,P .Q的平面截该正方体所得的截面为五边形.则BP 的取值范围为。
⎪⎭⎫⎝⎛1,218.己知数列{}n a的奇数项依次构成公差为1d的等差数列,偶数项依次构成公差为2d的等差数列.且对任意,*∈Nn都有.1+<nnaa若,2,121==aa且数列{}n a的前10项和,7510=S则=8a11 9.己知正实数yx,满足()()162222=+++xyyx则=+yx。
410.设M表示满足下列条件的正整数n的和:n整除22016,且2016整除2n.那么M的所有不同正因子几的个数为。
360二、解答题(每小题20分,共80分))11.已知,2,0,1235cos1sin1⎪⎪⎭⎫⎝⎛∈=+πθθθ求θtan。
3/4或4/312.如图,点P 在△ABC 的边AB 上且 AB=4AP ,过点P 的直线MN 与△ABC 外接圆交于点M, N ,且点A 是弧M N 的中点.求证: (1)△ABN ≈△ANP 。
2016 年全国高中数学联赛江苏赛区初赛1、关于 x 的不等式 x a b 的解集为 x 2 x 4 ,则 ab 的值是2、从 1, 2, 3. 4. 5. 6. 7. 8. 9中任取两个不同的数,则取出的两数之和为偶数的概 率是 。
3、已知 f x 是周期为 4 的奇函数且当 x 0,2 时f x x 2 16x 60 ,则f 2 10的值是5、在平面直角坐标系 xOY 中,如果直线 l 将圆x 2 y 2 2x 4y 不经过第四象限,那么 l 的斜率的取位范围是6、己知等边△ ABC 的边长为 2,若AP 31 AB AC , AQ AP 21 BC,则△APQ面积是7、已知正方体 ABCD-A 1B 1C 1D 1 的棱长为 1,点 P 在棱 BC上, 点 Q 为棱 CC 1的中点 .若过点 A,P,Q 的平面截该正方体所得的 截面为五边形 .则 BP 的取值范围是 。
4、己知直线 l 是函数 fx2 ln xx 2 图象的切线, 当l 的斜率最小时 l 的方程0平分,但8、己知数列 {a n }的奇数项依次构成公差为 d 1的等差数列,偶数项依次构成公差10 项和 S 10=75,则 a 8=2 x 2 29、己知正实数 x ,y 满足 y10、设 M 表示满足下列条件的正整数 n 的和:n 整除20162,且 2016整除n 2 .那么 M 的所有不同正因子几的个数是为 d 2 的等差数列 .且对任意 n ∈N*, 都有 a n <a n+1, 若 a 1=1. a 2=2,.且数列 {a n }的前2216则 x y1 1 35 11、已知sin cos 12 0,2,求tan12、如图,点P在△ ABC的边AB上且AB=4AP,过点P的直线MN 与△ ABC外接圆交于点M, N,且点A是弧M N 的中点.求证:(1)△ ABN △ANP。
2)证明:BM+BN=2MN.22 xy13、在平面直角坐标系xOY中.双曲线C:与双曲线C: 2 2 1的右焦点为F,ab过点F的直线l交曲线C于 A.B两点.若OF.AB=FA.FB求,.双曲线C的离心率e.14、己知凸九边形的任意 5 个内角的正弦与其余 4 个内角的余弦之和都等于某个常数值.若九个内角中有一个角等于1200,试求常数的值.1.1 2016年全国高中数学联赛江苏赛区初赛(2O1G 年5 月 '日8: OO-IO: OO)一、填空題I本大题共KI小题•每小题7分満分7(1分)L . I > I H H ‘ 丨2・∙ WJnA答案-3.解lll⅛⅛. b A 0.不等代I」•十4 < 0祚价I -O 一 b V J・U —α十b.从而2.从L 2.3. L 5. 6, 7. & 9屮任取两卜不问的敷,Wl取出的两数2和为偶救的槪审足_______________答吗2解収出两数2和为偶数的概率为务G =3・Ll)SflHl) f[期为4 的,i .∣⅛. II l- 0,2) W,∕(ar) X2 1& <∙o. M ∕∣2∖1(i)的们是 ___________答案・3G.拆注忽到S 2、帀€(U.2>. |1|电总.綁/(2√Iδ)≡ /(2v^δ-8> -/(a-2√iθ) ≡ ι (8 2√iδ-M -SG.4・Ll⅛n⅜ I是Bfiet /(」•)2Inu f」2图象的切线.当?的斜率址小时./的方甩足___________ ・答案4J∙ - w — 3 = <).解甬故/(J∙)≡ 2hτ + X2的导函敌∕,(r) - → 2τ. 4- ≥0.从丽J r{jc}→ 2/ ≥ I. ,l∣ Ii 仅当*■]时僭号成立.所W,Γ[线/的斜率的最小值为•!,此时切点为(1J),切线方程为h∙ if 3 0.5.SrKI角坐标農Jou屮,帕采r俄I将岡/十『—2事一M=P平分,H不纠.彖限,那么I的斜率的取値范恫兄 ____________ .答案[0,21.解恻严+ y2 -O r- Vl= O的恻心坐标为l1.2). IlI^ i⅛. M线门止点(1. 2). H⅛W为“ 一2 h{,τ 1).即皆灯卜2九注盘到J不经过第闷象限•则Jb > O, Jl 2上A0,解O ≤ λ∙ C 2.6.C知徐边A.WL的边l<⅛ 2、若TP *罚十17*)帀IT i t:7F.则^APQ的l⅛l⅜l⅞答案#・1.1 2016年舍LE高F数学联赛江菽赛区初赛 3__ 1 __ _____ •)υ __ 解山存刖初+ Xr)妙点P足零边Δ4∕JC的中心所以AP于,只山吧AP + 得PQ = •且APIPy l因此UPQ的IflI 枳为罟.7.∣2知IE方体ABCD-A1Ii t C l D1的梭长为1,点P It技IiC h,点Q为楼CC l的屮点. 若过点/1 r.Qf⅛f-M该正方体所紂的戴而为Ti边形.则Br的取値范個为________________________________________________ .** (? 0 *图1.1.1:笫7题图解如图,当点P为BC屮点时PQfAD u此时故南为四边形APQDU从而.与BPV;时.截而为网边形.当J < ZIP <1 at戲啲为五边形.因此.BP的収值范岀为8. ______________ 己知效列{j}的奇数项依次构成公菱AJl的列•偶数项依次构成公绘为血的等淮數列.H对任慰∏e N∖都有«… < απ÷ι.若αι = L /I2 = 2. H数列{a n}的前IO项和510 ≡ 75.⅛,J cig ≡ ______________________ •看案11.解凶为对任迂n G N∙∙那仃4 < “卄i,故血≡心结台SIe)二75.得75 5 ÷ I(Mj + 10 + Kkij 15 •* 2(∣<∕ι => <∕∣遍 3 9 (Ig — UQ÷ :如2 H∙9.C知M实数丁•"満足土也•卜吐空=ι仃” W .y丁答案4.解一将世设条件式通分外整理•得I(J ÷ 2)2 + I)(I) + 2)2一l(kr" = 0=> JC(T - 2)2 + y(y - 2尸4 出J* - y)3 -= 0 ≡^x≡t∕=2=>r÷j∕ 4.解二丙为二"为iF实数•所以y4.Φ X)LG 年参脊审数学竟审速坟:•;可成立% IT 为/ = ” = 2.从 1何 r ÷ M = 4.10. S Mj 足下列条件的d 整数 •屮I : “整除2()16 \ 2016整除心那么吗的所仃不同正因子的个敌为 _______________ .答案36().解 E 为 n I mi/. 2Π1G I fl 2 W j 以 IU 与 2()IG 的肩Al ∕⅜∏同.而 201G 2*i • 32 • 7.故可设 ∏-r∙3≡r ∙π.这样我们由ISKt 条件可得J* ≤ 10.1/ ≤ 丄 2 W 2. JL 2丿 ≥ 5- 2/; ≥ 2. 22 ≥ 1・从而仃3≤ r ≤ :K). 1 ≤ J/ ≤ 4. L ≤ : ≤ 2,故3/ =(2a +24÷ •・ 4 2W )(3÷32 + 3Λ ÷ 34)(7÷ 72) = 29 护・ 5?・17. 所以Mf 的所fj 不同正因子的个数为(0+ 1)(2 I-1)(2 t 1)∙1 + 1)(1 1)34».二 解答题I 本大题共1小题每小题2()分満分SO 分)11∙己知.1 + ——: ■兽."e (。
全国高中数学联赛江苏赛区初赛试题集(2005年-2016年)姓名_________班级_________2017.3目录1、2005年全国高中数学联赛江苏赛区初赛试题....................1-3页2、2006年全国高中数学联赛江苏赛区初赛试题....................4-6页3、2007年全国高中数学联赛江苏赛区初赛试题....................7-9页4、2008年全国高中数学联赛江苏赛区初赛试题..................10-12页5、2009年全国高中数学联赛江苏赛区初赛试题..................13-15页6、2010年全国高中数学联赛江苏赛区初赛试题..................16-18页7、2011年全国高中数学联赛江苏赛区初赛试题..................19-21页8、2012年全国高中数学联赛江苏赛区初赛试题..................22-24页9、2013年全国高中数学联赛江苏赛区初赛试题..................25-28页10、2014年全国高中数学联赛江苏赛区初赛试题.................29-30页11、2015年全国高中数学联赛江苏赛区初赛试题.................31-33页12、2016年全国高中数学联赛江苏赛区初赛试题.................34-36页2005年全国高中数学联赛江苏赛区初赛试题一. 选择题:本大题共6小题,每小题6分,共36分。
在每小题给出的4个选项中,只有一项是符合题目要求的.1.函数y=f (x ) 的图像按a →=(4,2)平移后,得到的图像的解析式为y=sin(x +4)+2,那么y=f (x ) 的解析式为 ( )A . y=sin xB . y=cos xC .y=sin x +2D .y=cos x +42.如果二次方程x 2-px -q=0 (p ,q ∈N*)的正根小于3,那么这样的二次方程有 ( )A .5个B .6个C .7个D .8个3.设a >b >0,那么a 2+1b (a -b )的最小值是 ( )A . 2B . 3C .4D . 54.设四棱锥P -ABCD 的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α ( )A .不存在B .只有1个C .恰有4个D .有无数多个5.设数列{a n }:a 0=2, a 1=16,a n +2=16 a n +1-63 a n (n ∈N ),则a 2005被64除的余数为 ( )A . 0B .2C .16D .486.一条走廊宽2m 、长8m ,用6种颜色的11m 2的整块地砖来铺设(每块地砖都是单色的,每种颜色的地砖都足够多),要求相邻的两块地砖颜色不同,那么所有的不同拼色方案种数有( )A .308B .30257C .30207D .30217 二.填空题:本大题共6小题,每小题6分,共36分.7.设向量→OA 绕点O 逆时针旋转2得→OB ,且2→OA +→OB =(7,9),则向量→OB = .8.设无穷数列{a n }的各项都是正数,S n 是它的前n 项之和,对于任意正整数n ,a n 与2的等差中项等于S n 与2的等比中项,则该数列的通项公式为 .9.函数y=|cos x |+|cos2x | (x ∈R ) 的最小值是 .10.在长方体中ABCD -A 1B 1C 1D 1中,AB=2, AA 1=AD=1,点E 、F 、G 分别是棱AA 1、C 1D 1与BC 的中点,那么四面体B 1-EFG 的体积是 .11.由三个数字1,2,3组成的5位数中,1,2,3都至少出现1次,这样的5位数共有 个.12.已知平面上两个点集:M={(x ,y )| |x +y +1|≥2(x 2+y 2),x ,y ∈R },N={(x ,y )| |x -a |+|y -1|≤1,x ,y ∈R },若M ∩N ≠,则a 的取值范围为 .三、解答题:13. 已知点M 是ABC 的中线AD 上的一点,直线BM 交边AC 于点N ,且AB 是NBC 的外接圆的切线,设BNBC=λ,试求 BM MN (用λ表示).(15分)14.求所有使得下列命题成立的正整数n (n ≥2):对于任意实数x 1,x 2,…,x n ,当i=1∑n x i =0时,总有i=1∑nx i x i +1≤0 (其中x n +1=x 1).(15分)ABCDNM15.设椭圆的方程x 2a 2+y 2b2=1(a >b >0),线段PQ 是过左焦点F 且不与x 轴垂直的焦点弦,若在左准线上存在点R ,使△PQR 为正三角形,求离心率e 的取值范围,并用e 表示直线PQ 的斜率.(24分)16.⑴ 若n (n ∈N *) 个棱长为正整数的正方体的体积之和等于2005,求n 的最小值,并说明理由;( 12分)⑵ 若n (n ∈N*) 个棱长为正整数的正方体的体积之和等于20022005,求n 的最小值,并说明理由.( 24分)2006年全国高中数学联赛江苏赛区初赛试题一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的. 1.已知数列{a n }的通项公式a n =2n 2-4n +5,则{a n }的最大项是 ( )A .a 1B .a 2C .a 3D .a 4 2.函数y =3 |log 3x |的图象是 ( )A .B .C .D .3.已知抛物线y 2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个4.设f (x )是定义在R 上单调递减的奇函数,若x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则( ) A .f (x 1)+f (x 2)+f (x 3)>0 B .f (x 1)+f (x 2)+f (x 3)<0 C .f (x 1)+f (x 2)+f (x 3)=0 D .f (x 1)+f (x 2)>f (x 3)5.过空间一定点P 的直线中,与长方体ABCD -A 1B 1C 1D 1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条6.在△ABC 中,tan A =12,cos B =31010.若的最长边为1,则最短边的长为 ( )A .455B .355C .255D .55二、填空题(本题满分54分,每小题9分)7.集合A ={x |x =3n ,n ∈N ,0<n <10},B ={y |y =5m ,m ∈N ,0≤n ≤6}则集合A ∪B 的所有元素之和为__________________.8.设cos2θ=23,则cos 4θ+sin 4θ 的值是__________________. 9.(x -3x 2)3的展开式中,x 5的系数为__________________.10.已知⎩⎪⎨⎪⎧y ≥0,3x -y ≥0,x +3y -3≤0,则x 2+y 2的最大值是__________________.11.等比数列{a n }的首项为a 1=2020,公比q =-12,设f (n )表示这个数列的前n 项的积,则当n =_________________时,f (n )有最大值.12.长方体ABCD -A 1B 1C 1D 1中,已知AB 1=4,AD 1=3,则对角线AC 1的取值范围是______________________________.三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x |log 12(3-x )≥-2},B ={x |2ax -a ≥1},若A ∩B = ,求实数a 的取值范围.14.椭圆x 29+y 24=1的有焦点为F ,P 1,P 2,…,P 24为24个依逆时针顺序排列在椭圆上的点,其中P 1是椭圆的右顶点,并且∠P 1FP 2=∠P 2FP 3=∠P 3FP 4=…=∠P 24FP 1,若这24个点到右准线的距离的倒数和为S ,求S 的值.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EA C .证明是直角.16.设p是质数,且p2+71的不同正因数的个数不超过10个,求p.2007年全国高中数学联赛江苏赛区初赛试题一、选择题(本题满分36分,每小题6分).1.已知函数2siny x=,则()A.有最小正周期2πB.有最小正周期πC.有最小正周期2πD.无最小周期2.关于x的不等式22200x ax a--<任意两个解的差不超过9,则a的最大值与最小值的和是()A.2 B.1 C.0 D.-13.已知向量a、b,设AB=a2+b,5BC=-a6+b,7CD=a2-b,则一定共线的三点是()A.A、B、D B.A、B、C C.B、C、D D.A、C、D4.设α、β、γ为平面,m、n为直线,则mβ⊥的一个充分条件是()A.αβ⊥,nαβ=,m n⊥B.mαγ=,αγ⊥,βγ⊥C.αβ⊥,βγ⊥,mα⊥D.nα⊥,nβ⊥,mα⊥5.若m、{}22101010n x x a a a∈=⨯+⨯+,其中{}1234567ia∈,,,,,,,012i=,,,并且636m n+=,则实数对(,)m n表示平面上不同点的个数为()A.60个B.70个C.90个D.120个6.已知()122007122007f x x x x x x x=+++++++-+-++-(x∈R),且2(32)(1),f a a f a-+=-则a的值有()A.2个B.3个C.4个D.无数个二、填空题(本题满分54分,每小题9分)本题共有6小题.7.设nS为等差数列{}n a的前n项和,若510S=,105S=-,则公差为 .8.设()log()af x x b=+(0a>且1)a≠的图象经过点(21),,它的反函数的图象经过点(2,8),则a+b等于 .9.已知函数()y f x=的图象如图,则满足22221()(lg(620))021x xf f x xx x--⋅-+≤-+的x的取值范围为 .1030x y-+=的离心率是 .11.在ABC∆中,已知tan B=,sin3C=,AC=ABC∆的面积为.12.设命题P:2a a<,命题Q: 对任何x∈R,都有2410x ax++>. 命题P与Q中有且仅有一个成立,则实数a的取值范围是 .三、解答题(本题满分60分,共4小题,每题各15分)13.设不等式组 00x y x y +>⎧⎨-<⎩,表示的平面区域为D . 区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线l 与曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率.14.如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===. 求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.B 1BA 1C 1AC15.已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .16.已知平面上10个圆,任意两个都相交. 是否存在直线l ,与每个圆都有公共点?证明你的结论.2008年全国高中数学联赛江苏赛区初赛试题一、选择题(本题满分30分,每小题6分)1. 如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx +ny的最大值为 答:___A. 2b a +B. abC. 222b a +D. 222b a +2. 设)(x f y =为指数函数xa y =. 在P (1,1),Q (1,2),M (2,3),⎪⎭⎫⎝⎛41,21N 四点中,函数 )(x f y =与其反函数)(1x fy -=的图像的公共点只可能是点 答:___A. PB. QC. MD. N3. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比 数列,那么z y x ++的值为 答:___ A. 1 B. 2C. 3D. 44. 如果111C B A ∆222A. 111C B A ∆与222C B A ∆都是锐角三角形B. 111C B A ∆是锐角三角形,222C B A ∆是钝角三角形C. 111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D. 111C B A ∆与222C B A ∆都是钝角三角形5. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β 答:___ A. 不存在 B. 有且只有一对 C. 有且只有两对 D. 有无数对 二、填空题(本题满分50分,每小题10分)6. 设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则___AB =.7. 同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是___ (结果要求写成既约分数). 8. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为___.9. 与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为____________或_________.10. 在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222c b a +=______ .三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11. 已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.12. A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
试卷08 2016年江苏省高中数学联赛初赛试卷一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1. 若关于x 的不等式|x a | < b 的解集为{x | 2 < x < 4},则ab 的值是 .2. 从1,2,3,4,5,6,7,8,9中任取两个不同的数,则取出的两数之和为偶数的概率是 .3. 已知f (x )是周期为4的奇函数,且当(0,2)x 时,2()1660f x x x ,则f 的值是 .4. 已知直线l 是函数f (x ) 2ln x x 2图象的切线,当l 的斜率最小时,l 的方程是 .5. 在平面直角坐标系xOy 中,如果直线l 将圆x 2 y 2 2x 4y 0平分,且不经过第四象限,那么l 的斜率的取值范围是 .6. 已知等边△ABC 的边长为2,若1()3AP AB AC ,12AQ AP BC,则△APQ 的面积是 .7. 已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在棱BC 上,点Q 为棱CC 1的中点. 若过点A ,P ,Q 的平面截该正方体所得的截面为五边形,则BP 的取值范围为 .8. 已知数列{a n}的奇数项依次构成公差为d1的等差数列,偶数项依次构成公差为d2的等差数列,且对任意n∈N*,都有a n < a n 1. 若a1 1,a2 2,且数列{a n}的前10项和S10 75,则a8 .9. 已知正实数x,y满足22(2)(2)16x yy x,则x y .10. 设M表示满足下列条件的正整数n的和:n整除20162,且2016整除n2,那么M的所有不同正因子的个数为.二、解答题(本大题共4小题,每小题20分,共80分)11. 已知1135sin cos12,(0,)2,求tan .12. 如图,点P在△ABC的边AB上,且AB 4AP,过点P的直线MN与△ABC的外接圆交于点M,N,且点A是弧MN的中点. 求证:(1) △ABN∽△ANP;(2) BM BN 2MN.13. 在平面直角坐标系xOy中,双曲线C:22221x ya b的右焦点为F,过点F的直线l与双曲线C交于A,B两点. 若OF·AB FA·FB,求双曲线C的离心率e.14. 已知凸九边形的任意5个内角的正弦与其余4个内角的余弦之和都等于某个常数值 . 若九个内角中有一个角等于120°,试求常数 的值.。
2016年全国高中数学联赛江苏赛区初赛
1、关于x 的不等式b a x <+的解集为{}42<<x x ,则ab 的值是 。
2、从1, 2, 3. 4. 5. 6. 7. 8. 9中任取两个不同的数,则取出的两数之和为偶数的概率是 。
3、已知()x f 是周期为4的奇函数且当()2,0∈x 时()60162+-=x x x f ,则()
102f 的值是 。
4、己知直线l 是函数()2ln 2x x x f +=图象的切线,当
l 的斜率最小时l 的方程是 。
5、在平面直角坐标系xOY 中,如果直线l 将圆04222=--+y x y x 平分,但不经过第四象限,那么l 的斜率的取位范围是 。
6、己知等边△ABC 的边长为2,若()
BC AP AQ AC AB AP 21,31+=+=
,则△APQ 面积是 。
7、已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 在棱BC 上,点Q 为棱CC 1的中点.若过点A,P,Q 的平面截该正方体所得的截面为五边形.则BP 的取值范围是 。
8、己知数列{a n }的奇数项依次构成公差为d 1的等差数列,偶数项依次构成公差为d 2的等差数列.且对任意n ∈N*,都有 a n <a n+1,若a 1=1. a 2=2,.且数列{a n }的前10项和S 10=75,则a 8= 。
9、己知正实数x ,y 满足
()()162222=+++x y y x 则=+y x 。
10、设M 表示满足下列条件的正整数n 的和:n 整除22016,且2016整除2n .那么M 的所有不同正因子几的个数是 。
11、已知,2,0,1235cos 1sin 1⎪⎪⎭
⎫ ⎝⎛∈=+πθθθ求θtan 。
12、如图,点P 在△ABC 的边AB 上且 AB=4AP ,过点P 的直线MN 与△ABC 外接圆交于点M, N ,且点A 是弧M N 的中点.求证:
(1)△ABN ≈△ANP 。
(2)证明:BM+BN=2MN.
13、在平面直角坐标系xOY 中.双曲线C:与双曲线C :122
22=-b
y a x 的右焦点为F ,过点F 的直线l 交曲线C 于A.B 两点.若OF.AB=FA.FB,.求双曲线C 的离心率e.
14、己知凸九边形的任意5个内角的正弦与其余4个内角的余弦之和都等于某个常数值λ.若九个内角中有一个角等于1200,试求常数λ的值.。