蔗糖酶的提取及活力
- 格式:doc
- 大小:260.80 KB
- 文档页数:16
一、背景介绍酵母蔗糖酶是一种重要的酶类,它在葡萄糖代谢途径中起着关键作用。
酵母蔗糖酶的提取纯化及酶活测定是生物化学与分子生物学研究中常见的实验操作。
在这个过程中,酵母蔗糖酶的纯化程度和酶活测定的准确性直接影响着后续的实验结果。
二、传统提取纯化及酶活测定方法存在的问题1. 低纯度:传统的提取纯化方法往往不能够完全去除其他蛋白质或杂质,导致提取的酵母蔗糖酶纯度较低。
2. 酶活测定不精准:常见的酶活测定方法对于活性较低的酶样本测定效果较差,难以得到准确的酶活性数据。
3. 操作繁琐:传统方法需要多次离心、沉淀和洗涤等步骤,耗时且操作繁琐。
三、改进方法鉴于传统方法存在的问题,我们提出了一种改进的酵母蔗糖酶提取纯化及酶活测定方法,主要包括以下几个关键步骤:1. 酵母蔗糖酶提取(1)酵母细胞破碎:采用超声波破碎或高压破碎技术,将酵母细胞有效破碎,释放出蔗糖酶。
(2)蛋白质沉淀:利用差速离心法或特定沉淀剂沉淀出目标蛋白质,提高酶的纯度。
2. 酶活测定(1)比色法测定:采用改良的Folin-Phenol比色法,提高对酶活性的测定准确性。
(2)酶活性计算:采用新的酶活性计算公式,更准确地反映酶的活性水平。
四、结果与讨论我们采用改进方法对酵母蔗糖酶进行提取纯化及酶活测定,得到的结果表明,与传统方法相比,改进方法在以下几个方面有了显著改善:1. 提取纯化效果显著:采用改进方法提取的酵母蔗糖酶纯度明显提高,杂质含量大幅降低。
2. 酶活测定更准确:采用改进方法测定的酶活性数据更为准确可靠,对活性较低的酶样本也能够进行精准测定。
3. 操作简便高效:改进方法简化了提取纯化的操作步骤,减少了操作时间,提高了实验效率。
五、结论我们的改进方法在酵母蔗糖酶提取纯化及酶活测定中取得了良好的效果,显著提高了酶的纯度和活性测定的准确性,为相关领域的研究提供了重要的实验技术支持。
该方法的推广应用将有助于推动相关研究领域的发展,促进酵母蔗糖酶的深入研究和应用。
蔗糖酶的提取及活力、含量和相对分子质量测定摘要:本学期共做了六次生化实验。
.第一次是提取及纯化蔗糖酶,以为后续实验提供样品。
实验主要目的是要求学生掌握高速离心机的使用。
实验共得到不同纯化度的三种提取液,标记为A、B、C。
将三种提取液分别放入冰箱保存,做为后续实验样品。
也因此做此实验时必须保证各个操作无误,及准确,以免影响后续实验的结果。
第二次是有关蔗糖酶的柱层析法,主要目的是要求同学掌握离子交换层析的原理及柱层析的操作技术及紫外吸收的分析方法。
此次实验通过柱层析及紫外吸收法得到2~3管的活力最大的分离液合并为分离液D,放入冰箱作为后续实验样品。
第三次实验为蔗糖酶的活力测定,目的为掌握酶的活力测定方法,了解各个酶的纯化情况。
利用分光度计测出各个样品的OD值,再对照葡萄糖的标准曲线来得出剩余葡萄糖的含量,从而获得各个酶的活力大小,了解各个酶的纯化情况。
并得出结论酶的纯化度越高,活力越小。
第四次实验为蔗糖酶蛋白质的含量测定,目的为掌握学习Folin-酚测定蛋白质含量的原理及方法,制备标准曲线测定未知样品中蛋白质含量。
同样利用与标准曲线对照来得到试样的蛋白质含量,并测出酶的比活力。
测量蛋白质的方法有多种,我们必须根据所做实验的具体选择合适的方法来测定蛋白质。
第五次的实验是微量凯氏定氮测总蛋白。
目的是要求同学掌握凯氏定氮法测定蛋白质含量的原理及方法。
本实验除利用了凯氏定氮法外还加上了酸式滴定法最后得出了毫克级别的总蛋白含量。
其结果与上一实验所测得的总蛋白质含量有所不同,正证明了不同的方法测量蛋白质造成的误差不同,致所得结果不同。
最后一次实验为SDS-PAGE测定蛋白质分子质量,目的为掌握SDS-聚丙烯酰胺凝胶电泳和测定蛋白质分子量技术。
此实验操作复杂,需先制作凝胶再结果染色脱色,最后还要制作标准蛋白分子质量曲线图来进行试样对照。
最后得到蔗糖酶的分子量在5万左右及9万左右。
关键字:实验;提取液;比活;蛋白质;SDS-PAGE;OD正文:1,蔗糖酶的提取及提纯1.1,文献综述:蔗糖酶的分离利用的是细胞破壁法。
第1篇一、实验目的1. 理解蔗糖酶的催化原理和特性。
2. 掌握蔗糖酶的提取、纯化方法。
3. 学习通过不同方法测定蔗糖酶的活力。
4. 分析影响蔗糖酶活性的因素。
二、实验原理蔗糖酶是一种能够将蔗糖分解为葡萄糖和果糖的酶。
本实验旨在通过提取、纯化蔗糖酶,并测定其活力,了解蔗糖酶的特性。
三、实验材料与试剂1. 材料:- 酵母细胞- 淀粉- 蔗糖- 还原糖试剂(如班氏试剂)2. 试剂:- 磷酸氢二钠溶液- 磷酸二氢钠溶液- 硫酸铵溶液- 硫酸铜溶液- 酒精- 氢氧化钠溶液- 丙酮- 酶提取缓冲液1. 蔗糖酶的提取:- 将酵母细胞用磷酸缓冲液洗涤,并悬浮于磷酸缓冲液中。
- 使用匀浆机破碎细胞,收集匀浆液。
- 将匀浆液离心,收集上清液即为蔗糖酶粗提液。
2. 蔗糖酶的纯化:- 将蔗糖酶粗提液用硫酸铵溶液进行盐析,收集沉淀。
- 将沉淀用磷酸缓冲液溶解,并使用凝胶过滤柱进行纯化。
3. 蔗糖酶活力的测定:- 将纯化后的蔗糖酶与蔗糖溶液混合,在适宜的温度下反应。
- 加入还原糖试剂,观察颜色变化,根据颜色变化判断蔗糖酶的活力。
五、实验结果与分析1. 蔗糖酶的提取:- 通过匀浆和离心,成功提取出酵母细胞中的蔗糖酶。
2. 蔗糖酶的纯化:- 通过盐析和凝胶过滤柱,成功纯化出蔗糖酶。
3. 蔗糖酶活力的测定:- 在适宜的温度下,蔗糖酶能够将蔗糖分解为葡萄糖和果糖。
- 加入还原糖试剂后,溶液颜色发生变化,表明蔗糖酶具有活力。
4. 影响蔗糖酶活性的因素:- 温度:在一定范围内,温度升高,蔗糖酶的活力增加。
- pH值:在一定范围内,pH值升高,蔗糖酶的活力增加。
- 抑制剂:某些物质(如重金属离子)可以抑制蔗糖酶的活力。
1. 本实验成功提取和纯化了蔗糖酶,并测定了其活力。
2. 实验结果表明,温度和pH值是影响蔗糖酶活性的重要因素。
3. 在实际应用中,需要根据具体情况进行酶活性的调控,以获得最佳催化效果。
七、实验结论1. 蔗糖酶是一种能够将蔗糖分解为葡萄糖和果糖的酶。
1. 掌握从酵母中提取蔗糖酶的基本方法。
2. 了解酶的提取、纯化及活力测定的原理和操作。
3. 掌握酶活性测定的方法。
二、实验原理蔗糖酶(Invertase)是一种能够催化蔗糖水解成葡萄糖和果糖的酶。
本实验采用酵母作为原料,通过破碎细胞、离心、沉淀、透析等步骤提取蔗糖酶,并对其进行活力测定。
三、实验材料与仪器材料:1. 酵母(安琪酵母粉)2. 蔗糖3. 葡萄糖4. 果糖5. 磷酸盐缓冲液(pH6.0)6. 3,5-二硝基水杨酸(DNS)仪器:1. 电子天平2. 离心机3. 恒温水浴锅4. 分光光度计5. 试管6. 烧杯7. 移液器1. 酵母细胞的制备:- 称取1g酵母粉,加入10ml磷酸盐缓冲液(pH 6.0),搅拌均匀,置于37℃恒温水浴锅中保温30分钟。
- 将保温后的酵母悬液以3000r/min离心10分钟,收集上清液。
2. 酶液的提取:- 向上清液中加入等体积的50%饱和硫酸铵溶液,搅拌均匀,置于4℃冰箱中过夜。
- 将沉淀物以3000r/min离心10分钟,收集上清液即为粗酶液。
3. 酶液的透析:- 将粗酶液置于透析袋中,置于磷酸盐缓冲液(pH 6.0)中透析过夜,以去除硫酸铵等小分子杂质。
4. 酶液的活力测定:- 取1ml蔗糖溶液(2%蔗糖溶液),加入1ml透析后的酶液,置于37℃恒温水浴锅中保温30分钟。
- 取0.5ml反应液,加入2ml DNS试剂,沸水浴5分钟。
- 取出后,加入4ml蒸馏水,在540nm波长下测定吸光度。
五、实验结果与分析1. 酶液活力测定结果:- 通过DNS试剂显色,根据吸光度计算出酶的活力。
2. 结果分析:- 通过对比不同处理条件下的酶活力,分析提取、纯化过程中酶活力的影响因素。
六、实验结论1. 通过本实验,成功从酵母中提取了蔗糖酶。
2. 酶的提取、纯化过程中,酶活力受到pH、温度、离子强度等因素的影响。
3. 透析法是一种有效的酶纯化方法,可以去除小分子杂质,提高酶的纯度。
蔗糖酶的提取、分离、纯化及活性检测摘要随着分子生物学的发展,不论对酶分子本身作用机制的研究还是其他研究,越来越需要纯度更高的酶制剂,这就要求我们熟悉酶提纯的一般操作步骤及酶的提纯及活力测定等重要的生物实验技术。
本次实验主要通过提取啤酒酵母中的蔗糖酶并经过两次纯化测定其活力与Km。
在实验过程中用乙醇分级分离法,DEAE-Cellulose柱层析,分子筛(凝胶过滤)层析提取纯化蔗糖酶。
在实验过程中,虽然我们很努力,但由于我们对实验的程序不熟悉,因此在实验的一些过程中有一些明显的操作失误,使得实验的最后测定结果与理论值有一定出入。
关键词啤酒酵母蔗糖酶乙醇分级分离 DEAE-Cellulose柱层析分子筛层析Km前言生物体内所发生的一切化学反应,几乎都是在专一性酶的催化下进行的,因此酶的研究对了解生命活动的规律以及生命本质的阐述具有十分重要的意义。
随着分子生物学的发展,不论对酶分子本身作用机制的研究以及分子生物学其他重要课题的研究都越来越多地需要使用作用专一,纯度高的酶制剂。
这就要求人们建立各种方法,以便从各种生物来源的材料中分离提纯酶。
由于酶本身也是蛋白质,因此酶分离提存的方法大体上与蛋白质纯化方法相同,一般来说,没有一种固定的方法,而往往根据实验者所要分离提纯酶的取材以及酶本身的物理﹑化学及生物学性质来确定分离提纯方法。
各种酶的纯化通常有五个阶段:①材料的选择与预处理;②细胞破碎;③抽提;④纯化;⑤浓缩﹑干燥及保存。
酶分离纯化成功与否的重要标志:一是要有较高的收率;二是达到所要求的纯度,这两个指标通常是矛盾的,可根据需要来有所侧重,一般来说,好的方法与步骤应该是简单易行,最终的酶制剂有较高的收率和纯度。
就单独的每种分离提纯的方法而言,有盐析法、有机溶剂分级法、调PH分级沉淀法、选择变性法、吸附法、层析法(纸层析、薄板层析、柱层析等)。
其中盐析法是用于蛋白质和酶分离提纯的最早而且最广泛的一种方法,该方法是根据蛋白质和酶在一定浓度的溶液中溶解度的降低程度的不同而达到彼此分离的方法盐析法常用的中性盐有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等,其中用得最多的是硫酸铵,因为它具有温度系数小而溶解度大的优点。
蔗糖酶的提取及活力测定啤酒酵母里蔗糖酶的提取和活力测定原理1、细胞破壁:就酶在生物体内的分布,可分为胞内酶和胞外酶,蔗糖酶系胞内酶。
提取胞内酶时,要破碎组织和细胞,然后用一定的溶液提取,得到的材料称为无细胞抽提液。
材料不同,破壁的方法也不同。
我们用的菌体(微生物)细胞破壁方法是:自溶法,即将菌体放在适当的pH值和温度下,利用组织细胞自身的酶系将细胞壁破坏,使细胞内的物质释放出来。
自溶时需加少量防腐剂,以防外界细菌污染。
自溶法的缺点是时间较长。
,5-二硝基水杨酸比色定糖的原理 2、3(1)DNS试剂+ D-葡萄糖氨基化合物(还原糖) (棕红色)(2)在一定范围内还原糖的量与反应液的颜色强度成一定比例关系(可用于比色测定),所以可用DNS比色法测定还原糖的含量。
(3)该方法是半微量定糖法,操作简便、快速、杂质干扰较少。
试剂与器材恒温水浴、自动部分收集器、恒温箱、梯度洗脱装置、冰箱、层析柱、分析天平、电磁搅拌器、秒表、离心机、可见分光光度计、冻干机、沸水浴等。
3,5二硝基水杨酸试剂(DNS)、5%的蔗糖溶液、1mol/L的 NaOH溶液、乙酸钠、0.2mol/L,pH4.6的醋酸缓冲液 6. 乙酸乙酯操作方法细胞破壁?抽提?两次乙醇分级?透析?装柱?洗涤?洗脱?收集酶活力峰?制冻干粉 ? 制作3,5—二硝基水杨酸比色定糖法的标准曲线并测定三种酶样品的活力 ? 测定三种酶样品的蛋白浓度计算各步酶样的比活力、提纯倍数和收率用双倒数作图法测定蔗糖酶的Km值关键步骤与注意事项乙醇分级时,注意低温、防止乙醇局部过浓,离心后要迅速溶解酶样 ? 装柱均匀,无截面、无气泡,床面平整,柱体垂直分离提纯的全过程中,防止酶失活并用测定酶活力的方法跟踪酶的去向 ? 在测定米氏常数时,将酶样溶解后一定要稀释到合适的浓度。
酶活力测定及作图一定要准确。
蔗糖酶的提取及活力、含量和相对分子质量测定摘要:本学期共做了六次生化实验。
.第一次是提取及纯化蔗糖酶,以为后续实验提供样品。
实验主要目的是要求学生掌握高速离心机的使用。
实验共得到不同纯化度的三种提取液,标记为A、B、C。
将三种提取液分别放入冰箱保存,做为后续实验样品。
也因此做此实验时必须保证各个操作无误,及准确,以免影响后续实验的结果。
第二次是有关蔗糖酶的柱层析法,主要目的是要求同学掌握离子交换层析的原理及柱层析的操作技术及紫外吸收的分析方法。
此次实验通过柱层析及紫外吸收法得到2~3管的活力最大的分离液合并为分离液D,放入冰箱作为后续实验样品。
第三次实验为蔗糖酶的活力测定,目的为掌握酶的活力测定方法,了解各个酶的纯化情况。
利用分光度计测出各个样品的OD值,再对照葡萄糖的标准曲线来得出剩余葡萄糖的含量,从而获得各个酶的活力大小,了解各个酶的纯化情况。
并得出结论酶的纯化度越高,活力越小。
第四次实验为蔗糖酶蛋白质的含量测定,目的为掌握学习Folin-酚测定蛋白质含量的原理及方法,制备标准曲线测定未知样品中蛋白质含量。
同样利用与标准曲线对照来得到试样的蛋白质含量,并测出酶的比活力。
测量蛋白质的方法有多种,我们必须根据所做实验的具体选择合适的方法来测定蛋白质。
第五次的实验是微量凯氏定氮测总蛋白。
目的是要求同学掌握凯氏定氮法测定蛋白质含量的原理及方法。
本实验除利用了凯氏定氮法外还加上了酸式滴定法最后得出了毫克级别的总蛋白含量。
其结果与上一实验所测得的总蛋白质含量有所不同,正证明了不同的方法测量蛋白质造成的误差不同,致所得结果不同。
最后一次实验为SDS-PAGE测定蛋白质分子质量,目的为掌握SDS-聚丙烯酰胺凝胶电泳和测定蛋白质分子量技术。
此实验操作复杂,需先制作凝胶再结果染色脱色,最后还要制作标准蛋白分子质量曲线图来进行试样对照。
最后得到蔗糖酶的分子量在5万左右及9万左右。
关键字:实验;提取液;比活;蛋白质;SDS-PAGE;OD正文:1,蔗糖酶的提取及提纯1.1,文献综述:蔗糖酶的分离利用的是细胞破壁法。
细胞破壁:就酶在生物体内的分布,可分为胞内酶和胞外酶,蔗糖酶系胞内酶。
提取胞内酶时,要破碎组织和细胞,然后用一定的溶液提取,得到的材料称为无细胞抽提液。
材料不同,破壁也方法不同。
我们用的菌体(微生物)细胞破壁方法是:自溶法,即将菌体放在适当的pH值和温度下,利用组织细胞自身的酶系将细胞破坏,是细胞内物质释放出来。
自溶时需加少量防腐剂,以防外界细菌污染。
自溶法的缺点是时间较长。
本实验的自溶条件是:加乙酸钠保持弱碱性条件、35 ℃、加入乙酸乙脂代替防腐剂,0.5-1h。
自溶法的操作较简单方便,适合学生操作。
1.2,材料与方法1.2.1,材料:啤酒酵母;醋酸钠;甲苯;4mol/L醋酸;95%乙醇;0.5mol/Lris-HCl PH7.3缓冲液;锥形瓶;量筒;烧杯;具塞试管;吸球;培养箱;恒温水浴锅;磁力搅拌器;搅拌子;高速冷冻离心机;1.2.2,方法:1.2.2.1,酵母自溶:⏹250毫升锥形瓶,加入20克鲜酵母⏹加入醋酸钠1.6克,搅拌使团块的酵母液化⏹加1.5毫升甲苯,包扎好瓶口,摇动10分钟,使充分混匀⏹放入37℃培养箱,保温48-60小时,使酵母自溶1.2.2.2,初提液A制备.⏹在培养箱中取出装有已自溶酵母的三角瓶,加10毫升蒸馏水,摇匀,倒入离心管1中,平衡(互加平衡)。
⏹用高速冷冻离心机4℃,15000r/min离心10min。
⏹离心管中的悬浮液分三层,上层为浆状物(甲苯及其抽提物),下层为固体(细胞碎片沉淀),中间一层为液体(含酶)。
⏹小心仔细地取出中间层的液体,重新倒入离心管2中,4℃,15000r/min离心10min (互加平衡)。
⏹取上清液倒入⏹25毫升量筒⏹量体积记录VA⏹取出3ml保存⏹得初提液A1.2.2.3,热提取液B制备:⏹将初提液A(V A-3ml)倒入50毫升的三角瓶中,加4mol/L的醋酸3.2ml左右,使溶液的pH值约为4.5左右,摇匀⏹50℃恒温水浴中保温25min(注意温度绝对不能超过50℃),在保温过程中不断的摇动三角瓶⏹离心:4℃,15000rpm,10min⏹(H2O平衡)⏹仔细地倒出上层清液入10ml量筒测量体积,记为VB,此提取液为热提取液B。
⏹取出3ml于具塞试管保存,用于后续实验。
1.2.2.4,乙醇沉淀提取液C制备⏹将热提取液B (VB-3ml)倒入100ml的烧杯中,放入加有碎冰的大烧杯冰浴,置于磁力搅拌器上,缓慢加入体积(VB-3ml )-20℃95%乙醇。
整个过程不少于25min,结束后再继续搅拌5min⏹将烧杯内的液体全部移入离心管中,杯底白色固体保留待用,4℃,15000rpm,离心10min 加(95%÷2)乙醇平衡。
离心后弃去上清液⏹用5毫升tris HCL溶解烧杯中的白色固体,再倒入离心管中搅拌使管内的固体溶解,再次离心,4℃,15000rpm,10min,平衡用tris HCL溶液平衡⏹离心后取上层清液入10ml量筒⏹测量体积,记为VC⏹此提取液为乙醇沉淀提取液C⏹测量其体积为VC。
全部保存于具塞试管,用于后续实验。
1.3,结果与讨论实验得到ABC各三种不同程度纯化的蔗糖酶提取液,颜色各从深及浅,说明蔗1.4,结论实验中在将提取液A水浴时必须不断摇动锥形瓶,温度不能超过50℃,取出后迅速在水浴中冷却,之后所有的操作都必须在冰浴上。
而在提取液B放入乙醇时,必须要保证乙醇的速度缓慢,是乙醇混合均匀,析出最大量的沉淀使所需酶充分变性沉淀。
整个操作必须严谨细心,保证蔗糖酶得到了最优纯化。
提纯酶时可以充分利用蛋白质的变性、复兴的性质来得到纯化的酶液。
2,蔗糖酶的纯化Q Sepharose -柱层析法2.1文献综述:通过对不同离子交换层析方法的比较,进行酵母蔗糖酶纯化实验改进,采用Q Sepharose离子交换介质;流动相经 5 0 min由0 .0 5 MTris- HCLp H7.3缓冲液到1MNa CL的0 .0 5 MTris- HCL p H7.3缓冲液,进行梯度洗脱分离,分离效果最好,蔗糖酶与杂蛋白得到了有效的分离,回收率为93.2 %,是现有实验的3.17倍,浓缩倍数为 2 .91,是现有实验的 1.4 3倍,提高了实验效果。
2.2,材料与方法2.2.1,材料⏹试剂:0.05mol/LTris-HCl PH7.3缓冲液;1mol/LNaCl和0.05mol/LTris-HClPH7.3缓冲液; 0.5mol/LnaOH; Q Sepharose⏹器具:层析柱、梯度发生器及搅拌子、紫外分光光度计、点滴板等2.2,.2, 方法2.2.2.1,离子交换柱的填充⏹固定和清洗:层析冲洗。
下面留一点水。
柱子垂直固定,下端的橡皮管夹子夹紧、取下上部盖子,加水5毫升⏹凝胶装柱:高约5公分,上面填平,注意上部水面高于交换剂平面,放松夹子,使水流下,直到与表面相切,夹紧夹子。
2.2.2.2,缓冲液盐度梯度发生器的安装⏹连通:先加入水,两个旋钮朝一个方向可以连通,使液体进入,连接桥不可以有气泡。
然后使旋钮回到正中,加入相应的溶液。
⏹装入溶液:第一个杯子加入20毫升0.05摩尔/升Tris HCl pH 7.3 ,并加入磁力棒,第二个加入20毫升1摩尔/升NaCl2.2.2.3,柱的平衡⏹在小烧杯中加入15毫升Tris HCl⏹恒流泵进口插入烧杯液面下⏹恒流泵出水管一端连接柱子⏹放松夹子⏹打开恒流泵⏹用Tris HCl冲洗⏹直到缓冲液面与交换剂相切2.2.2.4,加样及洗穿透峰:⏹夹紧下端夹子, 在烧杯加入15毫升Tris HCl⏹从上部缓慢加入0.5ml提取液C,放松夹子⏹样品全部刚好进入交换剂内,相切,夹紧夹子⏹先打开恒流泵,再放开夹子⏹用量筒收集全部流出液体,每管收集3ml⏹直到液面相切2.2.2.5,氯离子梯度洗脱⏹将梯度发生器出口与恒流泵相连⏹恒流泵与柱相连⏹③打开搅拌器,打开连通器旋钮,打开恒流泵⏹④用20 毫升Tris HCl 缓冲液配制的⏹1摩尔/升NaCl20 毫升溶液⏹开始梯度洗脱⏹打开夹子⏹⑤用量筒收集3 毫升/管,⏹直到全部缓冲液流出2.2.2.6,离子交换剂的再生⏹烧杯加入15 毫升NaCl洗脱→不用收集→凝胶冲到小烧杯→全部凝胶回收⏹最后一个班用0. 5摩尔/升NaOH洗3CV,除去氯离子,不用回收洗脱液→最后凝胶回收,冲到烧杯里面2.2.2.7,用紫外分光光度计测每管的紫外吸光度OD值,并记录。
测定后样品回收!!2.2.2.8,酶活力测试⏹样品选取(老师指导下)⏹从洗穿透峰样品中选择1-2个蛋白质浓度较高的样品测定酶活力⏹从梯度洗脱样品中选取峰值附近的几个样品进行酶活力测定。
⏹酶活力测定:点滴板中滴2滴5%蔗糖→加2滴待测洗脱液→玻璃棒搅匀→放置5min→浸入葡萄糖试纸→1s(延长时间)取出→过60s比较颜色深浅→用“+”表示酶活力的大小⏹体积测定⏹将酶活力较高的2-3个样品合并测量体积(洗穿透峰样品不用合并),记为VD,用具塞试管保留,其他样品可以洗掉。
2.3,结果与讨论2.3.1结果酶活力测试:0.081 0.171 0.144 0.111 0.034 0.018 0.077 0.009 0.048 0.0500.139 0.181 0.220 0.283 0.525 0.6330.584 0.375 0.224 0.1540.206 0.309 0.291 0.180 0.06 0.025保存11,13管 V=5.3mlOD值分布图2.3.2分析此图有3个峰。
第一个峰用无盐的Tris-HCIpH7.3缓冲液,所以洗脱出来的是缓冲液无蔗糖酶。
第二个峰是线性洗脱,采用CI-带动蛋白质往下降,随着CI-浓度增加,蔗糖酶的浓度有一个最大值。
第三个峰是应为酶提取液C中3,蔗糖酶活力的测定a) 3.1,文献综述:在一定范围内还原糖的量与反应液的颜色强度成一定比例关系,可用于比色测定,可用DNS比色法测定还原糖的含量,可用DNS比色定糖法测定蔗糖酶的活力.。
3.2,材料与方法3.2.1,材料⏹试剂3、5-二硝基水杨酸;葡萄糖标准溶液0.2mg/ml;0.2mol/L醋酸钠缓冲液,pH4.6;5%蔗糖用0.2mol/L醋酸钠缓冲液,pH4.6配置;2mol/L NaOH⏹器材:电炉;恒温水浴锅;分光光度计;试管、移液管3.2.2,方法3.2.2.1,葡萄糖标准曲线制作⏹烧水,不要太多⏹于540波长处测OD值。
用0号做对照。
⏹测定要求:测定数据在(0.1-0.7A),波动可以到0.2-0.8,最小不能小于0.1,最大不能超过1.0。
⏹绘制葡萄糖标准曲线:以葡萄糖的毫克数为横坐标,OD值为纵坐标,画出葡萄糖标准曲线。