遥感图像分类资料
- 格式:ppt
- 大小:1.32 MB
- 文档页数:77
遥感图像的分类和格式目录一遥感图像的分类 (1)1.监督分类的主要方法 (1)2.非监督分类的主要方法 (2)二遥感图像的格式 (3)1 TIFF图像格式 (3)2 GeoTIFF图像格式 (3)三结语 (4)一遥感图像的分类遥感图像分类是图像分析的一个重要内容,它是利用计算机通过对图像中不同地物的空间信息和光谱信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将图像中各个像元划归到子空间去.目前国内国际上对图像分类的研究主要集中在应用具体的物理的、数学的方法等对图像进行的分类研究方面[1 - 8 ] ,对于图像分类方法的研究,从不同的方面可以划分为不同的类型. 按照利用图像要素的不同,图像分类大体可以分为三种:一是基于图像灰度值的分类,二是基于图像纹理的分类,三是基于多源信息融合的分类[9 ] . 用计算机对图像进行分类应用的主要是模式识别技术,根据具体应用的数学方法不同又可分为:统计法(决策分类法) 、语言结构法(句法方法) 、模糊法以及神经网络法. 在图像分类过程中,根据是否已知训练样本的分类数据,图像分类方法又可以分为监督分类和非监督分类. 本文主要从分类原理、分类过程、分类方法等方面来探讨这两种分类方法的区别与联系.1.监督分类的主要方法最大似然判别法. 也称为贝叶斯(Bayes) 分类,是基于图像统计的监督分类法,也是典型的和应用最广的监督分类方法. 它建立在Bayes 准则的基础上,偏重于集群分布的统计特性,分类原理是假定训练样本数据在光谱空间的分布是服从高斯正态分布规律的,做出样本的概率密度等值线,确定分类,然后通过计算标本(像元) 属于各组(类) 的概率,将标本归属于概率最大的一组. 用最大似然法分类,具体分为三步:首先确定各类的训练样本,再根据训练样本计算各类的统计特征值,建立分类判别函数,最后逐点扫描图像各像元,将像元特征向量代入判别函数,求出其属于各类的概率,将待判断像元归属于最大判别函数值的一组. Bayes 判别分类是建立在Bayes 决策规则基础上的模式识别,它的分类错误最小精度最高,是一种最好的分类方法.但是传统的人工采样方法由于工作量大,效率低,加上人为误差的干扰,使得分类结果的精度较差. 利用GIS数据来辅助Bayes 分类,可以提高分类精度,再通过建立知识库,以知识来指导分类的进行,可以减少分类错误的发生[1 ] ,这正是Bayes 分类的发展趋势和提高其分类精度的有效途径.神经元网络分类法. 是最近发展起来的一种具有人工智能的分类方法,包括BP 神经网络、Kohonen 神经网络、径向基神经网络、模糊神经网络、小波神经网络等各种神经网络分类法.BP 神经网络模型(前馈网络模型) 是神经网络的重要模型之一,也是目前应用最广的神经网络模型,它由输入层、隐含层、输出层三部分组成,所采取的学习过程由正向传播过程和反向传播过程组成. 传统的BP 网络模型把一组样本的输入/ 输出问题作为一个非线性优化问题,它虽然比一般统计方法要好,但是却存在学习速度慢,不易收敛,效率不高等缺点. 采用动量法和学习率自适应调整的策略,可以提高学习效率并增加算法的可靠性[3 ] .模糊分类法. 由于现实世界中众多的自然或半自然现象很难明确划分种类,反映在遥感图像上,也存在一些混合像素问题,并有大量的同谱异物或者同物异谱现象发生,使得像元的类别难以明确确定. 模糊分类方法忽略了监督分类的训练过程所存在的模糊性,沿用传统的方法,假定训练样本由一组可明确定义、归类,并且具有代表性的目标(像素) 构成. 监督分类中的模糊分类可以利用神经元网络所具有的良好学习归纳机制、抗差能力和易于扩展成为动态系统等特点,设计一个基于神经元网络技术的模糊分类法来实现. 模糊神经网络模型由ART 发展到ARTMAP 再到FasART、简化的FasART 模型[4 ] ,使得模糊神经网络的监督分类功能不断完善、分类精确度不断增加.最小距离分类法和Fisher 判别分类法. 它们都是基于图像统计的常用的监督分类法,偏重于几何位置.最小距离分类法的原则是各像元点划归到距离它最近距离的类别中心所在的类, Fisher 判别分类采用Fisher 准则即“组间最大距离”的原则,要求组间距离最大而组内的离散性最小,也就是组间均值差异最大而组内离差平方和最小. 用这两种分类法进行分类,其分类精度取决于对已知地物类别的了解和训练统计的精度,也与训练样本数量有关. 针对最小距离分类法受模式散布影响、分类精度不高的缺点,人们提出了一种自适应的最小距离分类法,在训练过程中,将各类样本集合自适应地分解为子集树,定义待分类点到子集树的距离作为分类依据[2 ] ,这种方法有效地提高了最小距离法的分类正确率和分类速度,效率较高. Fisher 判别分类也可以通过增加样本数量进行严密的统计分类来增加分类精度.2.非监督分类的主要方法动态聚类. 它是按某些原则选择一些代表点作为聚类的核心,然后将其余待分点按某种方法(判据准则)分到各类中去,完成初始分类,之后再重新计算各聚类中心,把各点按初始分类判据重新分到各类,完成第一次迭代. 然后修改聚类中心进行下一次迭代,对上次分类结果进行修改,如此反复直到满意为止. 动态聚类的方法是目前非监督分类中比较先进、也较为常用的方法. 典型的聚类过程包括以下几步:选定初始集群中心;用一判据准则进行分类;循环式的检查和修改;输出分类结果. 聚类的方法主要有基于最邻近规则的试探法、K- means 均值算法、迭代自组织的数据分析法( ISODATA) 等. 其中比较成熟的是K - means 和ISODATA算法,它们较之其他分类方法的优点是把分析判别的统计聚类算法和简单多光谱分类融合在一起,使聚类更准确、客观. 但这些传统的建立在统计方法之上的分类法存在着一定的缺点:很难确定初始化条件;很难确定全局最优分类中心和类别个数;很难融合地学专家知识. 基于尺度空间的分层聚类方法(SSHC) 是一种以热力学非线性动力机制为理论基础的新型聚类算法[10 ] ,它与传统聚类算法相比最大的优点是其样本空间可服从自由分布,可获取最优聚类中心点及类别,可在聚类过程中融合后验知识,有更多的灵活性和实用性.模糊聚类法. 模糊分类根据是否需要先验知识也可以分为监督分类和非监督分类. 事实上,由于遥感图像的复杂性和不精确性等特点,预先很难获得所有有代表性样本的各类别的精确含量,因此很多情况下用纯粹的监督方法作模糊分类并不现实. 模糊聚类属于非监督分类的一种,它根据样本间的统计量的相似程度作为模糊隶属度,在无预知类别的前提下对数据集中各点作含量划分. 模糊聚类算法有多种,如基于模糊等价关系的模糊聚类分析法、基于最大模糊支撑树的模糊聚类分析法等[11 ] ,最典型的模糊聚类法是模糊迭代自组织的数据分析法———Fussy - ISODATA. 但纯粹的非监督分类对图像一无所知的情况下进行所得到的结果往往与实际特征存在一定的差异,因此聚类结果的精度并不一定能够满足实际应用的要求,还需要地学知识的辅助,也就是部分监督的Fussy - ISODATA 聚类.系统聚类. 这种方法是将图像中每个像元各自看作一类,计算各类间均值的相关系数矩阵,从中选择最相关的两类进行合并形成新类,并重新计算各新类间的相关系数矩阵,再将最相关的两类合并,这样继续下去,按照逐步结合的方法进行类与类之间的合并. 直到各个新类间的相关系数小于某个给定的阈值为止.分裂法. 又称等混合距离分类法,它与系统聚类的方法相反,在开始时将所有像元看成一类,求出各变量的均值和均方差,按照一定公式计算分裂后两类的中心,再算出各像元到这两类中心的聚类,将像元归并到距离最近的那一类去,形成两个新类. 然后再对各个新类进行分类,只要有一个波段的均方差大于规定的阈值,新类就要分裂.二遥感图像的格式随着地理信息系统被广泛应用和遥感技术的日渐成熟。
实验四遥感图像分类一、背景知识图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。
常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。
非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。
使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。
由于人为干预较少,非监督分类过程的自动化程度较高。
非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。
监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。
在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。
对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。
监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。
由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。
二、实验目的理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。
能够针对不同情况,区别使用监督分类、非监督分类。
理解计算机分类的常用算法实现过程。
熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。
如何进行遥感图像的分类和特征提取遥感图像是指通过遥感技术获取到的地球表面的图像,这些图像具有广阔的覆盖范围和高空间分辨率的特点。
遥感图像的分类和特征提取是遥感技术中的重要任务,对于地理信息系统、环境监测、农业、城市规划等领域具有重要的应用价值。
一、遥感图像的分类遥感图像的分类是指将遥感图像中的目标或地物按照一定的规则和标准进行分类和分割的过程。
分类的目的是将图像中的像素或物体划分到不同的类别中,以便进行后续的分析和应用。
遥感图像的分类主要分为无监督分类和监督分类两种方法。
无监督分类是一种基于统计学原理的分类方法,它通过对图像中的像素进行聚类分析,将相似的像素划分到同一类别中。
无监督分类不需要事先提供训练样本,但需要人工对分类结果进行验证和调整,以保证分类的准确性。
监督分类是一种基于训练样本的分类方法,它需要提供事先标注好的样本集合,然后通过对样本的特征进行分析和学习,构建分类器模型,最后将模型应用到整个图像的分类中。
监督分类的准确性和鲁棒性较高,但需要大量标注样本和专业的专业知识支持。
二、遥感图像的特征提取遥感图像的特征提取是指从遥感图像中提取出有区别于其他类别的特征信息的过程。
特征提取的目的是为了能够准确地描述和区分地物或目标的特征,以便进行后续的分类、识别和分析。
遥感图像的特征提取可以基于人工设计的特征,也可以通过机器学习的方法自动学习特征。
常用的特征包括光谱特征、纹理特征、形状特征、结构特征等。
光谱特征是根据不同波段的反射率或辐射亮度来描述目标或地物的光谱响应。
通过分析目标在不同波段上的反射率差异,可以获取到目标的光谱特征,从而进行分类和分析。
纹理特征是用来描述目标或地物纹理的特征,纹理通常包括纹理方向、纹理密度、纹理粗糙度和纹理对比度等。
通过对图像进行纹理分析和特征提取,可以获取到目标的纹理特征,从而进行分类和分析。
形状特征是用来描述目标或地物的形状的特征。
形状特征可以通过目标的边界进行提取,常用的形状特征包括面积、周长、斜率、紧凑度等。
遥感图像分类遥感图像的分类就是通过对遥感图像中地物的光谱信息和空间信息进行分析,选择特征,将图像中每个象元按照某种规则或算法划分为不同的类别,然后获得遥感图像与实际地物的对应信息,从而实现遥感图像的分类。
一般的分类方法可分为两类:监督分类和非监督分类。
将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。
一、监督分类监督分类(supervised),又称训练分类法,即用被确认的样本象元去识别其他未知象元的过程。
已经被确认类别的样本象元是指那些位于训练区的象元。
在这种分类中,分析者在图像上对每一种类别选取一定数量的训练区,计算机计算每种训练样区的统计或其他信息,每个象元和训练样本作比较,按照不同规则将其划分到其最相似的样本类。
监督分类的算法主要有:平行算法、最小距离法、最大似然法等。
这里采用最大似然法作为监督分类的算法。
原理:最大似然法假设遥感图像的每个波段数据都是正态分布。
其基本思想是:地物类数据在空间中构成特定的点群;每一类的每一维数据都在自己的数轴上成正态分布,该类的多维数据就构成了一个多维正态分布;各类多维正态分布模型各有其分布特征。
根据各类已有的数据,可以构造出各类的多维正态分布模型,在此基础上,对于任何一个像素,可反过来求出它属于各类的概率,取最大概率对应的类为分类结果。
步奏:第一步:分析图像①打开图像,将图像以5、4、3波段合成RGB显示在#1中。
②通过目视分析,可以定义6类样本:水体、建筑、耕地、草地、荒地、其他。
第二步:选择训练样本①在主图像窗口选择Overlay-----Region of Interest,打开ROI Tool对话框。
②在ROI Tool对话框中设置相关样本的名称、颜色等。
③选择ROI_Type—Polygon,在window中选择image,在图像上绘制训练区。
④重复②、③步奏,最终完成以下结果:第三步:评价训练样本①在ROI Tool对话框中,选择Options——Compute ROI Separability,打开目标图像。