变压器差动保护
- 格式:doc
- 大小:425.00 KB
- 文档页数:14
变压器差动保护原理
变压器差动保护是一种常用于高压变压器保护的电气保护装置。
其原理是通过比较变压器两侧电流的差值,来识别是否存在故障或异常情况。
具体工作流程如下:
1. 变压器差动保护系统由一台差动继电器和多个电流互感器组成。
电流互感器分别连接到变压器两侧的主绕组,将电流信号传递给差动继电器。
2. 差动继电器内部设有比较电路,用于比较两侧电流的差值。
如果变压器正常运行,两侧电流应该保持平衡。
3. 如果存在故障,比如主绕组中出现短路或地故障,将导致两侧电流不平衡。
差动继电器将通过比较电路检测到这种差异,从而触发保护动作。
4. 差动继电器的动作可以通过断开变压器的断路器或刀闸来切断故障电流,保护变压器和其他设备免受损坏。
5. 为了提高差动保护的可靠性,通常还会配置差动保护的备用继电器和互感器,并采用冗余的电源供电系统。
综上所述,变压器差动保护通过比较变压器两侧电流的差值来识别故障,并触发保护动作,从而保护变压器和其他设备的安全运行。
完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。
为了确保差动保护能够可靠地工作,需要对其进行调试和验证。
下面将详细介绍完整的变压器差动保护调试和验证方法。
一、调试方法:1.检查保护装置的接线是否正确。
检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。
2.对CT进行检定。
使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。
3.调整差动保护装置的参数。
根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。
4.模拟故障事件进行测试。
通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。
同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。
二、验证方法:1.进行整套装置的一次性测试。
通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。
2.进行稳态和动态特性测试。
测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。
同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。
3.进行电流差动特性测试。
通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。
4.进行接地故障测试。
在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。
5.进行保护可靠性测试。
通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。
同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。
总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。
变压器差动保护一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A,I1’:流过变压器高压侧的一次电流;I”:流过变压器低压侧的一次电流;I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流;I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;p:比率制动斜线上的任一点;e:p点的纵坐标;b:p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。
变压器差动保护范围
1.概述
变压器是电网输配电系统中最常见的设备之一,也是最关键的元件之一。
变压器差动保护是变压器保护的核心部分之一。
差动保护是指在变压器两侧测量电流,将测量值相减后得到的差值与保护设备中的设置值进行比较,一旦差值超出限值则启动保护动作。
2.差动保护的失效原因
差动保护通常是由高速继电器实现的,而高速继电器在实际运行中会出现很多问题,比如脉冲干扰、系统阶跃响应、误信号等等,这些都可能导致差动保护的失效。
3.差动保护范围
差动保护范围包括了变压器、变压器引出线以及其它相关元件。
其中变压器通常由两个侧面构成,变压器差动保护作用于两侧。
4.差动保护的应用
差动保护主要应用于大型变压器,但对于不同规格的变压器我们也需要选择相应的差动保护元器件,并注意相关设置值的调节。
5.总结
差动保护是保护大型变压器的首选方案,但其实现可能存在各种问题。
因此,在实际应用中需要根据不同情况灵活选择差动保护元器件和设置相关参数,以使得差动保护起到预期的保护效果。
变压器差动保护保护范围嘿,朋友们!今天咱就来唠唠变压器差动保护的保护范围。
咱就把变压器想象成一个大宝贝,而差动保护呢,就像是这个大宝贝的超级保镖。
它的任务就是时刻守护着变压器,确保它的安全。
那这个保镖的保护范围到底有多大呢?简单来说,它主要保护的就是变压器的绕组啦。
就好像是保镖要紧紧护住大宝贝的核心部位一样。
变压器的绕组可是非常重要的呀,要是这里出了问题,那可就麻烦大啦!比如说,要是有什么故障电流偷偷摸摸地想从绕组这里搞破坏,差动保护这个厉害的保镖就能第一时间发现,然后迅速行动,把危险扼杀在摇篮里。
这多厉害呀!你们想想看,要是没有这个差动保护,那变压器得多危险呀!就像一个人在外面闯荡,没有一个靠谱的保护者,那随时都可能遇到危险呢。
而且哦,这个保护范围可不仅仅局限于绕组本身呢。
它还包括了变压器和其他设备连接的那部分线路。
这就好比保镖不仅要保护大宝贝自身,还要留意周围有没有可能威胁到大宝贝安全的因素。
要是这部分线路出了问题,比如说有短路啥的,差动保护也能马上察觉到,然后采取措施。
这就像是一个警惕性超高的保镖,任何风吹草动都逃不过它的眼睛。
那要是超出了这个保护范围呢?嘿嘿,那差动保护可能就没办法那么及时有效地发挥作用啦。
所以呀,我们得清楚这个保护范围,就像知道自己家的边界一样清楚。
你们说,这变压器差动保护是不是特别重要呀?它就像是变压器的忠实守护者,默默地守护着变压器的安全。
有了它,我们才能安心地使用变压器,不用担心它会出什么大问题。
所以啊,我们一定要重视变压器差动保护的保护范围,可不能马虎大意哦!要让这个超级保镖一直好好地守护着我们的变压器大宝贝!。
变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。
想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。
可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。
这个保护的工作原理就像是在打扫卫生,保持一切井井有条。
变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。
比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。
这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。
就算是微小的电流差异,它也能立马检测出来。
你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。
这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。
有趣的是,这个过程其实是很迅速的,快得让人惊叹。
可以说,变压器在保护的帮助下,真的是“安全感爆棚”。
想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。
它的反应速度可以说是“飞一般的感觉”,不容小觑。
变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。
就像是调味品,盐放多了,菜就咸了,少了又没味儿。
合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。
这时候就需要专业人员仔细调试,确保一切都在“正轨”上。
而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。
搞定这些后,变压器的安全性就会大大提升。
毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。
变压器保护有三个:差流告警,比率差动,差动速断。
差流告警:顾名思义,差流告警就是差流大于一定值就会发出告警信号,不会跳闸出口动作。
定值小于差动启动电流。
为什么采用比率差动保护?存在外部故障时,防止穿越故障电流造成差动保护误动。
随着外部短路电流的增大,电流互感器就可能饱和,不平衡电流也随之增大,当电流超过保护电流时,差动保护就会误动。
为了防止误动作,我们可以引入一种继电器,它的动作 电流将随着不平衡电流的增大而按比例的增大,而且比不平衡电流增大的还要快,这样误动作就不会出现了。
因此,我们在差动保护中引入比率制动,它除了以差动电流作为动作电流外,还引入外部电流作为制动电流。
当外部短路电流增大时,制动电流也会随之增大,使得继电器的动作电流也相应增大,从而有效的防止了变压器区外故障发生时差动保护误动作。
总结:为了能够躲开外部故障的不平衡电流,提高变压器内部故障时的灵敏性,广泛采用具有制动特性的比率差动保护。
利用外部故障时的短路电流来实现制动,使差动继电器的动作电流随着制动电流的增大而增大,它能够可靠的躲开外部故障时的不平衡电流。
闭锁比率差动保护:励磁涌流和CT 断线变压器励磁涌流产生原因:变压器具有励磁支路,并且变压器的励磁电流仅流经变压器的某一侧,故该电流通过CT 反应到差动保护中不能被平衡。
变压器励磁电流是差动保护不平衡电流产生的原因之一。
产生情况:变压器励磁电流在正常情况与外部故障情况下对差动保护的影响往往忽略不计,但是当变压器空投或者外部故障切除后电压恢复时,可能出现数值很大的励磁涌流。
闭锁比率差动保护:由于上述情况励磁涌流幅值很大且仅流经变压器一侧,将引起差动保护产生很大的差动电流,导致保护误动作跳闸。
因此励磁涌流情况下必须闭锁差动保护。
变压器励磁涌流特点:1.励磁涌流往往含有大量的非周期分量,使涌流波形偏于时间轴一侧。
2.励磁涌流的频谱分析可知,涌流中包含大量的高次谐波,并且以二次谐波为主。
主变差动保护的保护范围
主变差动保护是一种用于保护变压器的保护装置,其保护范围主要包括以下几个方面:
1. 变压器绕组内部故障:主变差动保护可以检测到变压器绕组内部的短路故障,如匝间短路、相间短路等。
当发生这些故障时,差动电流会迅速增加,从而触发保护装置动作,快速切断变压器与电网的连接,避免故障进一步扩大。
2. 变压器套管故障:主变差动保护还可以保护变压器的套管。
当套管发生故障,如套管闪络、套管破裂等,也会导致差动电流的增加,从而触发保护动作。
3. 主变引出线故障:主变差动保护也能对主变引出线故障起到保护作用。
当主变引出线发生短路故障时,差动电流同样会增加,保护装置能够及时检测到并采取保护措施。
需要注意的是,主变差动保护的保护范围主要针对变压器内部故障和引出线故障,对于变压器外部故障,如母线故障、线路故障等,差动保护可能无法提供有效的保护。
在实际应用中,主变差动保护需要与其他保护装置相配合,以实现对变压器的全面保护。
同时,保护装置的设置和整定需要根据变压器的具体参数和运行情况进行合理配置,确保其在故障发生时能够快速、准确地动作,保障变压器的安全运行。
如果你需要更详细的信息,建议咨询专业的电力工程师或相关技术人员。
变压器保护整定中的差动保护的整定与校验方法在变压器保护装置中,差动保护是一种常见且重要的保护方式。
为了确保差动保护能够发挥其应有的保护作用,需要对差动保护进行整定和校验。
本文将从整定和校验两个方面介绍变压器差动保护的相关方法。
一、差动保护的整定方法差动保护的整定是为了确保在变压器正常运行时不发生误动作,同时能够在发生故障时能够准确可靠地动作。
以下是差动保护整定的一般步骤:1. 确定保护区域:根据变压器的接线图和实际情况,确定差动保护所要覆盖的保护区域。
通常情况下,保护区域应包括变压器的高压侧和低压侧。
2. 确定整定电流:根据变压器的额定电流和负载情况,确定差动保护的整定电流。
整定电流一般设置为变压器额定电流的百分之几,具体数值根据实际情况而定。
3. 确定动作特性:根据差动保护的动作特性曲线,确定差动保护的整定参数。
常见的动作特性曲线有梯形曲线、平板曲线等,具体选择应考虑变压器的性能和运行要求。
4. 确定整定参数:根据变压器的特性、接线方式和运行要求,确定差动保护的整定参数。
整定参数包括时间定值、灵敏系数等,可以根据经验值或者故障模拟等方法确定。
二、差动保护的校验方法差动保护的校验是为了验证整定参数的准确性和保护装置的可靠性。
以下是差动保护校验的一般步骤:1. 检查接线:首先,检查差动保护装置的接线情况,确保连接正确可靠。
同时,还应检查变压器主绕组和各侧绕组之间的连接,确保变压器内部电路的连通性。
2. 模拟故障:通过模拟故障的方式进行校验,例如在变压器的高压侧或低压侧接入故障电阻、故障电容等。
模拟故障时,需要记录差动保护的动作时间和动作电流,与整定参数进行对比。
3. 调整整定参数:如果校验结果与整定参数存在较大偏差,需要进行整定参数的调整。
可以通过调整灵敏系数、时间定值等参数来准确匹配差动保护的整定与校验结果。
4. 验证保护可靠性:校验完成后,需要进行保护可靠性的验证。
可以通过变压器的正常运行和模拟故障实验等方式来验证差动保护的可靠性和准确性。
什么是变压器差动保护?变压器差动保护特点及误动作原因一、什么是变压器差动保护?变压器的差动保护是变压器的主保护,是按循环电流原理装设的。
主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。
在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。
从理论上讲,正常运行及外部故障时,差动回路电流为零。
实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。
当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即Ik=I1+I2=Iumb 能使继电器可靠动作。
变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。
二、变压器差动保护特点及误动作原因差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端的电气量进行比较,从而判断保护是否动作。
根据基尔霍夫定律,保护范围内流入与流出的电流应该相等(变压器应该归算到同侧)。
当保护范围内发生故障时,其流入与流出的电流就不相等了。
差动保护就是根据这个不平衡电流动作的。
因此,这种保护方法有很高的动作选择性和灵敏度,适用于保护大容量、强电流、高电压及对灵敏度要求高的电气设备。
所以,这种方法广泛用于保护大容量、高电压的变压器,并以其优越的保护性能成为大容量、高电压变压器的主要保护方法。
变压器差动保护动作原因变压器在我们的生活中可谓是个“大人物”,它负责把高电压转成我们日常用电所需的低电压,保证我们的灯亮、电视响。
可是,你知道吗?变压器可不是永远高高在上的。
它也有自己的“小心眼”,尤其是在遇到问题的时候。
今天,我们就来聊聊变压器差动保护这个话题,看看它是如何保护自己,避免遭遇不必要的麻烦的。
1. 变压器的“护身符”1.1 差动保护的基本原理变压器差动保护的基本理念就像是一个精明的警察,它通过对比进出电流来监控变压器的状态。
想象一下,如果你在家里有两个水龙头,一个是进水,一个是出水,正常情况下,进水和出水的水量应该是差不多的。
可是,如果你发现出水龙头的水流量少得可怜,而进水龙头的水流却依然强劲,那就很可能是出问题了!同理,变压器也是如此,当进出电流不平衡的时候,保护系统就会发出警报,立刻切断电源,确保设备安全。
1.2 动作原因大揭秘那么,这个保护机制是怎么发生的呢?原因有很多,比如短路、接地故障,还有设备老化等等。
想象一下,短路就像是一场突如其来的暴风雨,打破了平静的电流流动;而接地故障就像是掉进了一个暗坑,电流跑去与大地“亲密接触”,根本不听指挥。
这些情况都能引起电流的失衡,进而触发差动保护。
2. 如何判断“病因”2.1 故障检测的重要性为了确保变压器的安全,差动保护系统得具备非常灵敏的“嗅觉”。
它会不断监测电流的变化,像是一个贼精明的侦探,及时发现问题。
这里面可有不少技术活,毕竟,电流波动可不是一成不变的,得实时调整。
不过,正因为有了这些高科技的监测手段,才能让变压器在风雨中依然屹立不倒。
2.2 各种故障的“成因”有些故障是外部因素引起的,比如雷电袭击、设备遭到碰撞等。
而有些则是内部问题,比如绝缘材料老化、连接松动等等。
这就好比我们人类生病,有的是外部病毒感染,有的则是自己体内的“隐患”作祟。
因此,定期检查和维护变压器,才能确保它的健康运行。
3. 保护机制的灵活性3.1 系统的自我调整不过,变压器差动保护可不仅仅是死守着进出电流的原则,它还具备一定的灵活性。
变压器差动保护的保护范围变压器差动保护是电力系统中一种非常重要的保护方式,它主要用于保护变压器绕组及其引出线、套管等设备免受内部故障和外部短路引起的损坏。
变压器差动保护的范围包括以下几个方面:1. 变压器内部故障保护变压器内部故障主要包括绕组的匝间短路、层间短路、相间短路等。
当变压器内部发生这些故障时,会产生很大的电流,可能导致变压器损坏。
差动保护装置能够迅速检测到这些故障,并切断变压器的电源,从而保护变压器不受损坏。
2. 变压器外部短路保护当变压器的外部线路发生短路时,会产生很大的电流,可能导致变压器过载或损坏。
差动保护装置能够迅速检测到这些故障,并切断变压器的电源,从而保护变压器不受损坏。
3. 变压器过载保护当变压器的负载超过其额定容量时,会导致变压器过载。
过载可能会导致变压器绕组过热,甚至烧毁。
差动保护装置能够检测到变压器的负载情况,当负载超过额定值时,及时切断变压器的电源,防止变压器过载损坏。
4. 变压器不平衡保护当变压器的负荷不均衡时,会导致磁通不平衡,从而产生不平衡电流。
这种不平衡电流会在变压器内部产生热量,可能导致变压器绕组过热,甚至烧毁。
差动保护装置能够检测到这种不平衡电流,并切断变压器的电源,防止变压器绕组过热损坏。
5. 变压器零序保护当变压器的中性点接地方式发生变化时,可能会产生零序电流。
这种零序电流会对变压器造成损害。
差动保护装置能够检测到这种零序电流,并切断变压器的电源,防止变压器受到损害。
6. 变压器励磁涌流保护当变压器投入运行或切除负荷时,会产生励磁涌流。
这种励磁涌流会在短时间内对变压器造成较大的冲击。
差动保护装置能够检测到这种励磁涌流,并切断变压器的电源,防止变压器受到冲击损坏。
7. 变压器瓦斯保护当变压器内部发生严重故障时,可能会产生大量瓦斯气体。
瓦斯气体的存在会对变压器造成严重的安全隐患。
差动保护装置能够检测到瓦斯气体的产生,并切断变压器的电源,防止事故的发生。
差动保护变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.从能量的角度考虑,电力故障就是电能释放转化为热和光等其它能量的过程,从而在故障点两端测得的(相同电压下或变换为同一电压)电流大小和相位必然是不一样的,测得有电流差即有电能释放,即表明有故障,保护就应动作。
“差动”就是有差即动!变压器的主保护是差动保护还是瓦斯保护?差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。
瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
由上可以看出,差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。
而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.变压器的差动保护分为纵联差动和横联差动两种形式.纵联差动保护用于单回路,横联差动保护用于双回路.主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,其保护区在变压器一,二侧所装电流互感器之间.它是利用保护区内发生短路故障时变压器两侧电流在差动回路中引起的不平衡电力而动作的一种保护.主变差动保护跳闸的处理;查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。
变压器差动保护试验公式详解
一、电流差动保护试验公式:
ΔI=∑(I送-I回)
其中,ΔI表示差动电流,I送表示变压器的输入电流,I回表示变
压器的输出电流,∑表示对各相电流取和。
如果ΔI较大,则说明差动保
护动作。
二、电压差动保护试验公式:
电压差动保护试验主要是检测变压器两侧的电压差,从而判断差动保
护是否正常。
电压差动保护试验公式如下:
ΔU=∑(U送-U回)
其中,ΔU表示差动电压,U送表示变压器的输入电压,U回表示变
压器的输出电压,∑表示对各相电压取和。
如果ΔU较大,则说明差动保
护动作。
在实际试验中,为了提高试验的准确性,还需要考虑变压器的额定参
数和试验条件。
变压器的额定电压、额定电流、变比等参数可以在试验前
通过变压器的技术资料得知。
试验条件主要包括试验时刻和试验传动功率。
需要注意的是,电流差动保护试验和电压差动保护试验都是在正常工
作条件下进行,通常是在变压器负载满足额定容量的情况下进行。
而在试
验过程中,还需要对比实测的差动电流或差动电压与设定的差动保护灵敏度,以判断差动保护是否正常工作。
总之,变压器差动保护试验公式是根据变压器的电流和电压变化来判
断差动保护是否正常工作的一种方法。
通过实测的差动电流和差动电压与
设定的差动保护灵敏度进行对比,可以判断差动保护是否动作,保证变压器的正常运行。
变压器差动保护动作的现象
变压器差动保护是一种用于保护变压器的电气保护装置,主要用于检测变压器的变比是否正确,以及是否存在绕组短路、接地故障等异常情况。
当差动保护装置检测到异常时,会进行动作,触发保护动作。
以下是变压器差动保护动作的常见现象:
1. 出现告警信号:差动保护装置会通过显示屏或指示灯发出告警信号,以警示操作人员存在异常情况。
2. 发出警报声音:差动保护装置可能会发出警报声音,用于提醒操作人员存在问题。
3. 切断供电:在严重的故障情况下,差动保护装置可能会切断变压器的供电,以避免进一步的损坏。
4. 触发保护动作:差动保护装置会触发保护动作,例如切断相关电路、关闭开关等,以限制电流流动并保护变压器免受损坏。
需要注意的是,差动保护装置的动作并不一定意味着变压器一定存在故障,有时候可能是误动作,因此在确保安全的前提下,需要对动作原因进行进一步的检查和分析。
变压器差动保护概述变压器是电力系统中重要的设备之一,其承担着电能传递和变换的重要任务。
然而,由于一系列原因(如过负荷、短路等),变压器可能会遭受损坏。
为了防止这些故障的发生和进一步加剧,需要进行保护。
其中,差动保护是一种常用的保护方式,本文将对该保护方式进行详细介绍。
差动保护的原理差动保护是一种用于电力系统中变压器的保护方式。
该方式的基本原理是通过连续测量变压器二侧电流的差值,并与设置的阈值进行比较,来判断变压器是否处于故障状态。
当变压器出现故障时,二侧电流差值超过设定值,则差动保护器会发出信号,使变压器断开电源,以避免更严重的故障发生。
差动保护具有快速、准确、可靠的特点,被广泛应用于各种电力系统中变压器的保护。
差动保护的组成部分差动保护由三部分组成:差动传动器、比率装置和差动保护器。
差动传动器差动传动器主要由变压器二侧互感器组成,其作用是将变压器二侧电流转换为低电平的信号,并通过传输线路传送到比率装置进行处理。
由于变压器二侧电流大小不同,因此互感器的比率需要根据实际情况进行调整。
比率装置比率装置一般由电流变压器、变换器和电流积分器组成。
其主要作用是将差动传动器中传输过来的低电平信号转换为可以与设置的阈值进行比较的高电平信号。
比率装置具有保障设备运行的精确度要求,因此需要经常进行校准和调整。
差动保护器差动保护器是差动保护的核心部分,其主要功能是通过比对差动传动器和比率装置中所传递的电流信息,来判断变压器是否处于故障状态。
当电流超过设定阈值时,差动保护器将向断路器发出开断信号,以切断故障电源。
现代差动保护器配有各种电子设备,并能够根据实际的故障特征,快速地进行判断和消除故障。
差动保护的注意事项差动保护具有广泛的应用范围和显著的优点,但其在使用中仍需要注意一些事项。
首先,差动保护设备本身的稳定性和可靠性非常重要。
在进行装置选型时,应根据实际需求进行选择,避免装置过大或过小,从而影响差动保护的精确性和可靠性。
一、变压器的作用与分类变压器是电力系统输配电中的一个重要环节,起到升降压的作用。
按绕组可分为::两圈变、三圈变等;按结构可分为:三相变、单相变、自耦变等;按其在输电系统中的作用可分为:升压变,降压变、联络变、等;按其在电厂中的作用可分为:主变、高厂变、厂变、励磁变、高备变等。
二、变压器差动保护比率制动式差动保护是变压器(发-变组、高厂变、励磁变)的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障;保护能正确区分励磁涌流、过励磁故障。
保护采取自适应提高定值的方式,防止外部故障时由于CT饱和引起差动误动,当差流中的三次谐波与基波的比值大于某一定值时,自动提高比率制动差动的动作值、改变比率制动系数和最小制动电流,进一步提高保护的可靠性。
800系列发-变组保护装置最多可实现6侧差动,动作特性图如下:)poI(流电动差制动电流(Ires)图1.1 比率差动动作特性图图中阴影部分要经过励磁涌流判别、TA断线判别和TA饱和判别后才出口,双阴影部分只要经过励磁涌流判别就出口。
1.1比率差动原理基尔霍夫定律:I1+I2+I3=0差动辅助差动动作方程如下:I op > I op.0( I res≤ I res.0)I op≥ I op.0 + S(I res– I res.0) ( I res > I res.0 ) (1-1)I res >1.1 I nI op ≥ 1.2I n + 0.7(I res –1.1 I n ) ( I res >1.1 I n ) (1-2)I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性斜率,I n 为基准侧电流互感器的额定二次电流,各侧电流的方向都以指向变压器为正方向。
对于两侧差动:I op = | ∙I 1 + ∙I 2 | (1-3) I res = |∙I 1 - ∙I 2| / 2 (1-4) 对于三侧及以上差动:I op = | ∙I 1 +∙I 2 +…+ ∙I n | (1-5) I res = max{ |∙I 1|,|∙I 2|,…,|∙I n | } (1-6)式中:3≤n ≤6,∙I 1,∙I 2,。
∙I n 分别为变压器各侧电流互感器二次侧的电流。
判据(1-1)为低定值的比率制动差动,判据(1-2)为高定值比率制动差动。
1.2 励磁涌流判别装置提供两种励磁涌流识别判据,用户可根据需要由控制字进行选用,该控制字设为“1”时,励磁涌流判据为波形畸变判据;该控制字设为“0”时,励磁涌流判据为二次谐波判据。
1.2.1二次谐波判据保护利用三相差动电流中的二次谐波分量作为励磁涌流闭锁判据。
判别方程如下:1.22.op op I K I ⋅> (1-7)式中:Iop.2为A ,B ,C 三相差动电流中最大二次谐波电流,K 2为二次谐波制动系数,Iop.1为三相差动电流中最大基波电流。
该判据闭锁方式为“或”闭锁,即涌流满足(1-7)式,同时闭锁三相保护。
1.2.2波形畸变判据保护利用每相差流波形的畸变作为励磁涌流闭锁判据。
判别方程如下:Ssum+ > K * Ssum—(1-8)式中:Ssum+为差动电流采样点的不对称度值,Ssum—为对应差动电流的对称度值,K为某一固定系数。
该判据闭锁方式为“或”闭锁,即任一相涌流满足(1-8)式,同时闭锁三相保护。
1.3 TA饱和判别保护利用每相电流中的三次谐波分量作为TA饱和闭锁判据。
判别方程如下:I3 > K3 * I1(1-9)式中:I3为每相电流中三次谐波电流,K3为三次谐波比例系数(装置内部固定,不需整定),I1为对应基波电流。
任一相电流满足(1-9)式,比率制动差动自动改变该相的最小动作电流和比率制动斜率,保证差动保护正确、可靠动作。
1.4 过励磁判据变压器过励磁时,励磁电流急剧增加,可能引起差动保护误动作,因此对于500kV超高压变压器的差动保护,还增加了5次谐波制动判据。
保护利用三相差动电流中的五次谐波分量作为过励磁闭锁判据。
判别方程如下:Iop.5 > K5 * Iop.1 (1-10)式中:Iop.5为A,B,C三相差动电流中最大五次谐波电流,K5为五次谐波制动系数,Iop.1为三相差动电流中最大基波电流。
该判据闭锁方式为“或”闭锁,即涌流满足(1-10)式,同时闭锁三相保护。
装置设有“5次谐波投退”控制字,该控制字设为“1”时,投入5次谐波制动判据;该控制字设为“0”时,不投入5次谐波制动判据。
1.5 TA断线判据当任一相差动电流大于0.15倍的额定电流时启动TA断线判别程序,满足下列条件认为TA断线:●本侧三相电流中至少一相电流不变;●最大相电流小于1.2倍的额定电流;●本侧三相电流中至少有一相电流为零。
1.6 差流速断保护当任一相差动电流大于差流速断整定值时瞬时动作于跳各侧断路器。
1.7 比率制动式差动保护极性接线图及保护逻辑图差动辅助图1.2 比率制动差动极性接线图图1.3 比率制动差动保护逻辑图1.8 整定计算 (1) 平衡系数的计算项目 名称 各侧参数高压侧中压侧低压侧TA 接 线方式 Y YYTA 一次电流 I H =hn U S 3I M =mn U S 3I L =ln U S 3TA 二次电流 I h =haHN I I m =ma MN I I l =la LN I 平衡 系数K 1=hbI I K 2=mbI I K 3=lbI I说明:1、 Sn 为计算平衡系数的基准容量。
对于两圈变压器Sn 为变压器的容量;对于三圈变压器Sn 一般取变压器高压侧的容量。
2、 U h 、U m 、U l 分别为变压器高压侧、中压侧、低压侧的额定线电压。
3、 N ha 、N ma 、N la 分别为高压侧、中压侧、低压侧的TA 变比。
4、 TA 的二次侧均接成“Y ”型5、 I b 为计算平衡系数的基准电流,一般取变压器额定容量下高压侧的二次电流。
如果按上述的基准电流计算的平衡系数大于4或小于0.1,那么要更换基准电流I b ,直到平衡系数满足0.1<K<4;如果无论怎么选取基准电流都不能满足0.1<K<4的要求,建议使用中间变流器。
(2)最小动作电流I op 。
0I op 。
0为差动保护的最小动作电流,应按躲过变压器额定负载运行时的最大不平衡电流整定,即:I op.0=b n i rel I m U f K )()(∆+∆+式中:I b 为变压器基准侧的额定电流归算到TA 二次侧的值;K rel 为可靠系数,K rel =1.3—1.5;f i(n)为电流互感器在额定电流下的变比误差。
f i(n)=0.03*2(10P ),f i(n)=0.01*2(5P )ΔU 为变压器分接头调节引起的误差(相对于额定电压的百分数); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。
一般情况下可取:I op.0=b I )5.02.0(-。
(3) 最小制动电流的整定I res.0 = b I )0.18.0(-。
(4)比率制动斜率S 的整定 最大不平衡电流的计算: a 、三圈变压器I unb.max =K st K aper f i I s.max +ΔU H I s.H.max +ΔU M I s.M.max +Δm 1I s.1.max +Δm 2I s.2.max式中:K st 为TA 的同型系数,K st =1.0Kaper 为TA 的非周期系数,Kaper=1.5—2.0(5P 或10P 型TA )或=1.0(TP 型TA )f i 为TA 的比值误差, f i =0.1;Is.max 为流过靠近故障侧的TA 的最大外部短路周期分量电流; I s.H .max 、I s.M .max 分别为在所计算的外部短路时,流过调压侧(H 、M )TA 的最大周期分量电流;I s.1.max 、I s.2.max 分别为在所计算的外部短路时,流过非靠近故障点的另两侧的最大周期分量电流;Δm 1、Δm 2为由于1侧和2侧的TA (包括TAA )变比不完全匹配而产生的误差,初选可取Δm 1=Δm 2=0.05;b 、 两圈变压器I unb.max =(K st K aper f i +ΔU +Δm )I s.max式中的符号与三圈变压器一样。
比率制动特性斜率S 为: S=res.0res.max op.0unb.max rel I -I I -I K应根据上式的计算来整定S 值,一般取S=0.3-0.5。
(5)灵敏度计算校验在系统最小运行方式下,计算变压器出口两相短路的最小短路电流I s.min 。
如果变压器具有单侧电源运行的可能性,则以单侧电源的情况计算,即 差动电流I op =min .121s I I I I ==+∙∙制动电流I res =222min.121s I I I I ==-∙∙在比率制动式差动保护的动作特性曲线上以Ires=min .21s I 值查找出保护相应的动作电流整定值I op.set ,见图1.4。
则灵敏系数K sen 为:K sen =setop s setop op I I I I .min..=要求K sen ≥2.0。
图1.4(6)谐波制动的整定利用二次谐波来防止励磁涌流误动的差动保护,二次谐波制动比表示差流中的二次谐波分量与基波分量的比值。
一般二次谐波制动比可整定为15%—20%。
(7)差流速断为了加速切除变压器严重的内部故障,常常增设差流速断保护,其动作电流按照避越励磁涌流来整定,即:I op =K rel I e.amx式中:I e.amx 为变压器实际的最大励磁涌流。
K rel 为可靠系数,可取1.15—1.30。
实际的最大的励磁涌流很难测量,应参考整定计算导则进行整定。
差流速断保护的灵敏度系数按正常运行方式下保护安装处两相金属性短路≥1.2。
计算,要求Ksen1.9 定值清单(1)主变差动定值清单定值名称整定范围备注变压器比率差动保护额定电流0.1In -1.2 In最小动作电流0.1In -1.0In I op.0最小制动电流0.5In -2In I res.0比例制动特性斜率0.3-0.7 S2次谐波制动系数0.15--0.30 K25次谐波制动系数0.25-0.45 仅用于500kV变压器差动第1侧平衡系数0.1-4差动第2侧平衡系数0.1-4差动第3侧平衡系数0.1-4五次谐波投退0-1 1:投入0:退出识别励磁涌流方式0-1 1:波形畸变0:二次谐波差流速断电流1In -12InTA断线闭锁差动0-1 1:闭锁0:不闭锁差流越限动作电流0.1In -1.0In差流越限延时0.1s-10s以下为保护软压板比率制动式差动软压板√:投入×:退出差流速断软压板√:投入×:退出差流越限软压板√:投入×:退出(2)TA断线定值清单定值名称整定范围备注TA断线额定电流0.1In-1.2 In差动第1侧平衡系数0.1-4差动第2侧平衡系数0.1-4差动第3侧平衡系数0.1-4以下为保护软压板TA断线软压板√:投入×:退出三、变压器投运时应注意的问题1、定值检查定值名称整定范围备注变压器比率差动保护额定电流0.1In -1.2 In 一般为高压侧负荷电流最小动作电流0.1In -1.0In 一般为0.4~0.6 In最小制动电流0.5In -2In 一般为0.8~1.0 In比例制动特性斜率0.3-0.7 一般为0.3~0.52次谐波制动系数0.15--0.30 K2一般为0.17~0.185次谐波制动系数0.25-0.45 仅用于500kV变压器差动第1侧平衡系数0.1-4差动第2侧平衡系数0.1-4差动第3侧平衡系数0.1-4五次谐波投退0-1 1:投入0:退出识别励磁涌流方式0-1 1:波形畸变0:二次谐波差流速断电流1In -12InTA断线闭锁差动0-1 1:闭锁0:不闭锁差流越限动作电流0.1In -1.0In 0.5~0.8倍最小动作电流差流越限延时0.1s-10s以下为保护软压板比率制动式差动软压板√:投入×:退出差流速断软压板√:投入×:退出差流越限软压板√:投入×:退出2、差流检查差流一般为:0~30mA,应小于二次额定电流的3%;注意:对于调压变压器,变压器差动或发变组差动的差流应该在额定抽头下检查。