界面与胶体化学基础共498页文档
- 格式:ppt
- 大小:4.82 MB
- 文档页数:498
绪论(2学时)第一章胶体的制备与纯化第二章液体的表面性质第三章固体的表面性质第四章表面活性物质第五章液-液界面和固-液界面第六章胶体的动力学性质第七章胶体的光学性质第八章胶体的电学性质第九章胶体的稳定性第十章胶体的流变性一、胶体体系及其分类1、胶体体系国际纯粹化学与应用化学联合会(IUPAC)规定:直径在1~1000nm范围内的颗粒为胶体颗粒。
含有胶体颗粒的体系称为胶体体系或胶体分散体系。
1m = 106 µm = 109 m 1nm = 10 À系。
零维量子点;纳米粒低维一维纳米线二维薄膜按分散相颗粒大小分类:粗分散体系>10-6 m (1µm) 宏观胶体分散体系10-9 m ~10-6 m 介观分子分散体系< 10-9 m (1nm) 微观2.胶体体系的分类(1)按胶体颗粒结构①胶体分散体系溶胶、乳状液、泡沫、气溶胶等多相体系,具有很大的界面能,热力学不稳定,相分离后又容易恢复原状。
②分子胶体高分子溶液,均相体系,热力学稳定,相分离后易恢复。
③缔合胶体胶束溶液、液晶、微乳液等。
均相体系,热力学稳定。
(2)按胶粒与介质的亲和力①亲液胶体---分子胶体和缔合胶体②疏液胶体---胶体分散体系(溶液),难溶物高度分散在介质中(3)按分散相和分散介质的聚集状态----8大类s.t.g.3.胶体分散体系的特点①高度分散的多相体系②动力学稳定③热力学不稳定④巨大的比表面积比表面积: 单位体积或质量的物体所具有的表面积。
S0 = S/V (m-1)= S/W (m2/g)20℃,1cm3水滴分散成半径10-7cm的小水滴S0 = 3*107(cm2/cm3)表面分子占分子总数的90%表面自由能218J/ cm3二、胶体化学的研究内容1、胶体化学研究胶体体系各种行为的科学分散体系胶体体系2、内容高分子溶液界面现象界面上发生的各种物理或化学现象,如界面电现象、界面吸附三、胶体化学与界面化学共存的、“界面”有厚度四、学科特点胶体与界面化学物理化学化学交叉学科、应用性很强、基础学科五、胶体化学的产生和发展1861年,Graham (美)提出“胶体”概念。
界面现象和胶体化学的基本概念表面吉布斯自由能和表面张力1、界面:密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。
2、界面现象:由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同:1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零;2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。
由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。
由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。
3、比表面(Ao)表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。
用数学表达式,即为:A=A/V高分散体系具有巨大的表面积。
下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。
高度分散体系具有巨大表面积的物质系统,往往产4、表面功在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。
-δω’=γdA(γ:表面吉布斯自由能,单位:J.m-²)5、表面张力观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。
它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。
如下面的例子所示:计算公式:-δω'= γdA (1)式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。