商水县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 格式:doc
- 大小:558.00 KB
- 文档页数:19
商水县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行2. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .43. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A.B.C .24D .484. 已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1215. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 6. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .127. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-548. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.9. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .kB .﹣kC .1﹣kD .2﹣k10.α是第四象限角,,则sin α=( )A .B .C .D .11.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 12.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .6二、填空题13.已知i 是虚数单位,复数的模为 .14.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .15()23k x =-+有两个不等实根,则的取值范围是 .16.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .17.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.18.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.三、解答题19.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分): 甲 83 81 93 79 78 84 88 94 乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由; (Ⅱ)本次竞赛设置A 、B 两问题,规定:问题A 的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B 的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A ,B 成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I )中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.20.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?21.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.22.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=(1)求证{b n}为等比数列.(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.23.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.24.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.商水县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.2.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.3.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°, ∴△PF 1F 2的面积=. 故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.4. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n +++==,∴120n =,选C . 5. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D 6. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质. 7. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.8. 【答案】A 【解析】9. 【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k , ∴f (2016)=20163a+2016b+1=k , ∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k . 故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.10.【答案】B【解析】解:∵α是第四象限角,∴sin α=,故选B .【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.11.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 12.【答案】 B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.二、填空题13.【答案】.【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.14.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.15.【答案】53,124⎛⎤⎥⎝⎦ 【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 16.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x ) 即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1 所以①②⑤正确, 故答案为:3个17.1 【解析】18.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.三、解答题19.【答案】【解析】解:(I )记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B 成功”,则P (C )=,P (D )=,且事件C 与事件D 相互独立. …记甲按AB 顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P (ξ=0)=P ()=,P (ξ=100)=P ()=,P (ξ=400)=P (CD )=.ξ所以甲按AB 顺序获得奖品价值的数学期望.…记甲按BA 顺序获得奖品价值为η,则η的可能取值为0,300,400.P (η=0)=P ()=,P (η=300)=P ()=,P (η=400)=P (DC )=,所以甲按BA 顺序获得奖品价值的数学期望.…因为E ξ>E η,所以甲应选择AB 的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.20.【答案】(1)cos ,0,3CD πθθθ⎛⎫=∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD COCOD DCO CDO ==∠∠∠2cos 3CD πθθθ⎛⎫∴=-= ⎪⎝⎭,3OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,33CD πθθθ⎛⎫∴=+∈ ⎪⎝⎭(2)设观光道路长度为()L θ,则()L BD CD AC θ=++弧的长= 1cos θθθθ+++= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=--+' 由()0L θ'=得:sin 62πθ⎛⎫+= ⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
商水县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .2. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[]C[]D[]3. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥14. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q5. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣6. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .7. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 8. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i9. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e 10.若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <011.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(12.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .2二、填空题13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.14.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .15.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .16.在矩形ABCD 中,=(1,﹣3),,则实数k= . 17.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ . 18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,===.EA ED EF⊥;(1)求证:AD BE(2)若BE=-F BCD的体积.20.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.21.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.22.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.23.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.24.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.商水县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.2.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
2019-2020学年河南省周口市商水县第二中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知则()A. B. C. D.参考答案:B2. 在中,若,,此三角形面积,则的值是()(A)(B)(C)(D)参考答案:C3. 已知椭圆C: +=1(a>b>0)的离心率为,双曲线﹣=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()A. +=1 B. +=1 C. +=1 D. +=1参考答案:D【考点】椭圆的简单性质.【分析】由题意,双曲线﹣=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆C: +=1(a>b>0),利用e=,即可求得椭圆方程.【解答】解:由题意,双曲线﹣=1的渐近线方程为y=±x∵以这四个交点为顶点的四边形的面积为16,故边长为4,∴(2,2)在椭圆C: +=1(a>b>0)上∴,∵e=,∴,∴a2=4b2∴a2=20,b2=5∴椭圆方程为+=1.故选D.4. 当时,执行如图所示的程序框图,输出的S的值为()A.7 B.42C.210 D.840参考答案:C5. 抛物线的准线方程是,则的值为( )A. B. C.4 D.-4参考答案:B略6. 已知空间向量,,则向量与的夹角为( )A. B. C. D.参考答案:A考点:空间向量7. C+C+C+C+…+C的值为()A.C B.C C.C D.C参考答案:D【考点】组合及组合数公式.【分析】利用组合数公式解答.【解答】解:原式=+C+C+C+…+C=+C+C+…+C=+C+…+C=+C= =;故选D8. 曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=4参考答案:B【考点】Q7:极坐标系和平面直角坐标系的区别;Q8:点的极坐标和直角坐标的互化.【分析】曲线的极坐标方称即ρ2=4ρsinθ,即 x2+y2=4y,化简可得结论.【解答】解:曲线的极坐标方程ρ=4sinθ即ρ2=4ρsinθ,即 x2+y2=4y,化简为x2+(y﹣2)2=4,故选:B.9. 已知是球表面上的点,,,,,则球的表面积等于(A)4(B)3(C)2 (D)参考答案:A10. 设,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:B【分析】求出的解集,根据两解集的包含关系确定.【详解】等价于,故推不出;由能推出。
商水县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A. B .483C.D .1632032. 对“a ,b ,c 是不全相等的正数”,给出两个判断:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错3.“”是“一元二次方程x 2+x+m=0有实数解”的()A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件4. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .5. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .6. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i7. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .48. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .()11-,B .()()11-∞-+∞U ,,C .()1-∞-,D .()1+∞,9. 若是两条不同的直线,是三个不同的平面,则下列为真命题的是(),m n ,,αβγA .若,则,m βαβ⊂⊥m α⊥B .若,则,//m m n αγ=I//αβC .若,则,//m m βα⊥αβ⊥D .若,则,αγαβ⊥⊥βγ⊥10.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>11.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 212.利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .二、填空题13.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得mx最小值4,则m =________.15.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .16.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .17.设函数f (x )=则函数y=f (x )与y=的交点个数是 .18.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+三、解答题19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,请在此正方体中取出四个顶点构成一个三棱锥,满足三棱锥的四个面都是直角三角形,并求此三棱锥的体积.21.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.22.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.23.已知cos(+θ)=﹣,<θ<,求的值.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50150200女30170200合计8032040097.5%(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望.X X 参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++商水县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132032. 【答案】A【解析】解:由:“a ,b ,c 是不全相等的正数”得:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a ≠b ,b ≠c ,c ≠a 能同时成立,故②错.故选A .【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题. 3. 【答案】A【解析】解:由x 2+x+m=0知, ⇔.(或由△≥0得1﹣4m ≥0,∴.),反之“一元二次方程x 2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x 2+x+m=0有实数解”的充分非必要条件.故选A .【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系. 4. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小.即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上,∴﹣1=﹣2a ,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.【答案】A【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=.故选:A.6.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.7.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e 1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大. 8. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞U ,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式.9. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C .考点:空间直线、平面间的位置关系.10.【答案】 C【解析】,,且当时,,函数递减,当时,,22212'()x f x x x x-=-+='(2)0f =02x <<'()0f x <2x >'()0f x >函数递增,因此是的极小值点,A 正确;,2x =()f x ()()g x f x x =-221'()1g x x x=-+-,所以当时,恒成立,即单调递减,又,2217()24x x -+=-0x >'()0g x <()g x 11()210g e e e =+->,所以有零点且只有一个零点,B 正确;设,易知当2222()20g e e e =+-<()g x 2()2ln ()f x xh x x x x ==+2x >时,,对任意的正实数,显然当时,,即,222ln 21112()x h x x x x x x x x =+<+<+=k 2x k >2k x <()f x k x<,所以不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草()f x kx <()f x kx >图可看出(0,2)的时候递减的更快,所以124x x +>11.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,R=,S=4πR 2=12π故选B 12.【答案】C【解析】解:由ln (3a ﹣1)<0得<a <,则用计算机在区间(0,1)上产生随机数a ,不等式ln (3a ﹣1)<0成立的概率是P=,故选:C . 二、填空题13.【答案】 ①② .【解析】解:对于①由a n+1=,且a 1=m=<1,所以,>1,,,∴a 5=2 故①正确;对于②由a 3=3,若a 3=a 2﹣1=3,则a 2=4,若a 1﹣1=4,则a 1=5=m .若,则.若a 1>1a 1=,若0<a 1≤1则a 1=3,不合题意.所以,a 3=2时,m 即a 1的不同取值由3个.故②正确;若a 1=m=>1,则a2=,所a3=>1,a4=故在a1=时,数列{a n }是周期为3的周期数列,③错;故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目 14.【答案】-3e 【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2x m x减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e mem =-3e.15.【答案】0【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A 1E ⊥GF ,∴异面直线A 1E 与GF 所成的角的余弦值为0.故答案为:0.16.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P (4,1)的直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2),即有y 12=6x 1,y 22=6x 2,相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),即有k AB ====3,则直线方程为y ﹣1=3(x ﹣4),即为3x ﹣y ﹣11=0.将直线y=3x ﹣11代入抛物线的方程,可得9x 2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x ﹣y ﹣11=0.故答案为:3x ﹣y ﹣11=0.17.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f (x )=的图象与函数y=的图象,如下图所示,由图知两函数y=f (x )与y=的交点个数是4.故答案为:4. 18.【答案】②④【解析】试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角sin sin a A b B =A B =2A B π+=形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正sin sin a B b A =sin sin sin sin A B B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知是正确,故选选②④.1sin sin sin a b c A B C+=+考点:正弦定理;三角恒等变换.三、解答题19.【答案】【解析】20.【答案】【解析】解:连结BD ,B 1D ,B 1C ,则三棱锥B 1﹣BCD 即为符合条件的一个三棱锥,三棱锥的体积V==.【点评】本题考查了正方体的结构特征,棱锥的体积计算,属于基础题.21.【答案】【解析】解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.22.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.23.【答案】【解析】解:∵<θ<,∴ +θ∈(,),∵cos (+θ)=﹣,∴sin (+θ)=﹣=﹣,∴sin (+θ)=sin θcos+cos θsin =(cos θ+sin θ)=﹣,∴sin θ+cos θ=﹣,①cos (+θ)=cos cos θ﹣sinsin θ=(cos θ﹣cos β)=﹣,∴cos θ﹣sin θ=﹣,②联立①②,得cos θ=﹣,sin θ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.24.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.的分布列为:X 的数学期望为X X0123P 52815281556156………………12分()51515190123282856568E X =⨯+⨯+⨯+⨯=。
商水县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是()A.4立方丈B.5立方丈C.6立方丈D.8立方丈2.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>43.设0<a<b且a+b=1,则下列四数中最大的是()A.a2+b2B.2ab C.a D.4.α是第四象限角,,则sinα=()A.B.C.D.5.记,那么A B C D6. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( )A .4 2B .4 5C .2 2D .2 57. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .8. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .2105C .425D .4359. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a 10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( ) A .等腰三角形B .正三角形C .直角三角形D .钝角三角形11.已知角α的终边经过点(sin15,cos15)-oo,则2cos α的值为( )A .1324+ B .1324- C. 34D .0 12.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .二、填空题13.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线; ②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)14.已知实数x ,y 满足约束条,则z=的最小值为 .15.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 . 16.S n =++…+= .17.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 18.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .三、解答题19.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.20.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.21.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.22.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.23.(本小题满分12分)某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数N和分数在110-115分的人数;)中任选3人,求其中恰好含有一名女生的概率;(2)现准备从分数在110-115的名学生(女生占13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.数学88 83 117 92 108 100 112物理94 91 108 96 104 101 106已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()nii i nii uu v v uu β==--=-∑∑,^^a v u β=-.24.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2的参数方程为(θ为参数).(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.商水县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.2. 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环 循环前 1 0第一圈 2 2 是 第二圈 3 7 是 第三圈 4 18 是 第四圈 5 41 是 第五圈 6 88 否 故退出循环的条件应为k >5? 故答案选C .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3. 【答案】A【解析】解:∵0<a <b 且a+b=1 ∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A4.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.5.【答案】B【解析】【解析1】,所以【解析2】,6.【答案】【解析】选D.设圆的方程为(x-a)2+(y-b)2=r2(r>0).由题意得⎩⎪⎨⎪⎧2a+b=0(-1-a)2+(-1-b)2=r2(2-a)2+(2-b)2=r2,解之得a=-1,b=2,r=3,∴圆的方程为(x+1)2+(y-2)2=9,令y=0得,x=-1±5,∴|MN|=|(-1+5)-(-1-5)|=25,选D.7.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.8.【答案】B考点:双曲线的性质.9.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.10.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.11.【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.12.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.二、填空题13.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.14.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】38.【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:3816.【答案】【解析】解:∵ ==(﹣),∴S n =++…+= [(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.17.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-. 18.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p , ∴,解得0≤a ≤2, 则实数a 的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题三、解答题19.【答案】(1)10x y --=;(2)见解析;(3)见解析. 【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)求得可得()21'ax f x x -=,分为0a ≤和0a >两种情形判断其单调性;(3)当102a <<时,根据(2)可 得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a ⎛⎫+<⎪+⎝⎭,化简可得所证结论. 试题解析:(1)当2a =时,()12ln 1f x x x =+-,()112ln1101f =+-=,()221'f x x x =-,()221'1111f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=. (2)()1ln 1f x a x x =+-,定义域为()0+∞,,()2211'a ax f x x x x-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减;②当0a >时,令()'0f x =,得1x a= x10a ⎛⎫⎪⎝⎭, 1a1a ⎛⎫+∞ ⎪⎝⎭, ()'f x -+()f x↘极小值↗综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增.(3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫⊆ ⎪⎝⎭,,,所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有01a x <<,所以112a x <+<.所以()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a a x x⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x aa x +⎛⎫+< ⎪⎝⎭,所以1e x aa x +⎛⎫+< ⎪⎝⎭.20.【答案】【解析】(本题满分为12分)解:(1)在△ABC 中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°… (2)∵AD ⊥CD , ∴∠BDC=30°…在△ABC 中,由正弦定理得,…∴. …21.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列. ∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2. (2)由(1)可得:a n =2n ﹣1. b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.22.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0 ∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.23.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,24(,)A A ,21(,)A B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+, ∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数$,a b $,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于$,a b$的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b )常数项为这与一次函数的习惯表示不同.24.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1, 根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点. 解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.。
商水县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形2. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R3. 已知正三棱柱111ABC A B C 的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm4. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+185. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 26.已知,则f{f[f (﹣2)]}的值为( ) A .0 B .2C .4D .87. 设命题p :,则p 为( )A .B .C .D .8. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大. 9. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个10.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A. B. C. D.11.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个12.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 3二、填空题13.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.16.(lg2)2+lg2•lg5+的值为 .17.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.三、解答题19.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.20.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.21.2()sin 2f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.22.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.23.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.商水县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.2.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.3.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.4.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D5.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B6.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.7.【答案】A【解析】【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。
商水县高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若直线:圆:交于两点,则弦长L 047)1()12(=--+++m y m x m C 25)2()1(22=-+-y x B A ,的最小值为( )||AB A .B .C .D .58545252. 为了得到函数的图象,只需把函数y=sin3x 的图象()A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度D .向左平移个单位长度3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .04. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限5. 函数f (x )=,关于点(-1,2)对称,且f (-2)=3,则b 的值为()kx +b x +1A .-1B .1C .2D .46. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()m n +A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.7. 中,“”是“”的( )ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.8. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( )A .b <a <cB .a <c <bC .a <b <cD .b <c <a9. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是()A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值 10.图1是由哪个平面图形旋转得到的()A .B .C .D . 11.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .312.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2C.1±或2D .2±或-1二、填空题13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 . 14.下列命题:①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;R ()f x (0)0f =③既不是奇函数又不是偶函数;2()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1:||f x x →A B f ⑤在定义域上是减函数.1()f x x=其中真命题的序号是.15.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(16.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .17.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 18.若展开式中的系数为,则__________.6()mx y +33x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.三、解答题19.(本小题满分12分)已知向量满足:,,.,a b ||1a = ||6b = ()2a b a ∙-=(1)求向量与的夹角;(2)求.|2|a b -20.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1).(1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围;(2)若f (1)=g (1)①求实数a 的值;②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.21.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?22.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.23.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.24.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.商水县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:直线,直线过定点,解得定点,当点:L ()()0472=-++-+y x y x m ⎩⎨⎧=-+=-+04072y x y x ()1,3(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长AB ()()5123122=-+-=d ,故选B.545252=-=AB 考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=1111]2. 【答案】A【解析】解:把函数y=sin3x 的图象向右平移个单位长度,可得y=sin3(x ﹣)=sin (3x ﹣)的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题. 3. 【答案】B 【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B .解法二:∵,∴,∴,故选B .【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用. 4. 【答案】B【解析】解:∵(﹣4+5i )i=﹣5﹣4i ,∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B . 5. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则,恒成立.{n =km +b m +14-n =k (-2-m )+b -1-m )由方程组得4m +4=2km +2k 恒成立,∴4=2k ,即k =2,∴f (x )=,又f (-2)==3,2x +bx +1-4+b -1∴b =1,故选B.6. 【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=7. 【答案】A.【解析】在中ABC ∆2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B>⇒->-⇔>⇔>,故是充分必要条件,故选A.A B ⇔>8. 【答案】A【解析】解:∵a=0.52=0.25,b=log 20.5<log 21=0,c=20.5>20=1,∴b <a <c .故选:A .【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.9.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.10.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.11.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.12.【答案】D【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质.二、填空题13.【答案】 .【解析】解:由题意可得,2a ,2b ,2c 成等差数列∴2b=a+c∴4b 2=a 2+2ac+c 2①∵b 2=a 2﹣c 2②①②联立可得,5c 2+2ac ﹣3a 2=0∵∴5e 2+2e ﹣3=0∵0<e <1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题 14.【答案】①②【解析】试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.2n()241f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于2n奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 15.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲1362722=+y x y 927362=-=c ()3,0±线的定义可得,故,,故所求双()()()()4340153401522222=++---+-=a 2=a 5492=-=b 曲线的标准方程为.故答案为:.15422=-x y 15422=-x y 考点:双曲线的简单性质;椭圆的简单性质.16.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题. 17.【答案】 充分不必要 【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i ,∴在复平面内对应的点M 的坐标是(a+2,a ﹣2),若点在第四象限则a+2>0,a ﹣2<0,∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题. 18.【答案】2-【解析】由题意,得,即,所以.336160C m =-38m =-2m =-三、解答题19.【答案】(1);(2).3π【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量,a ba b ⋅ ()2a b a ∙-= 积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把a b ⋅22a a =考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个cos ,a ba b a b⋅<>=向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角.[0,]π20.【答案】【解析】解:(1)因为抛物线y=2x 2﹣4x+a 开口向上,对称轴为x=1,所以函数f (x )在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f (x )在[﹣1,3m]上不单调,所以3m >1,…(2分)得,…(3分)(2)①因为f (1)=g (1),所以﹣2+a=0,…(4分)所以实数a 的值为2.…②因为t 1=f (x )=x 2﹣2x+1=(x ﹣1)2,t 2=g (x )=log 2x ,t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),…(7分)t 2∈(﹣∞,0),…(9分)t 3∈(1,2),…(11分)所以t 2<t 1<t 3.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.21.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.22.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为X567p.【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.23.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想. 24.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.。
商水县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,如果输入的t =10,则输出的i =()A .4B .5C .6D .72. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .93. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=()A .﹣16B .14C .28D .304. “”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要6. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)7. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是()A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )8. 已知数列的各项均为正数,,,若数列的前项和为5,则{}n a 12a =114n n n n a a a a ++-=+11n n a a +⎧⎫⎨⎬+⎩⎭n ( )n =A .B .C .D .35361201219. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .110.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A.⎡⎢⎣ B .[]1,1- C.⎤⎥⎦ D.⎡-⎢⎣11.下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()()2xf x x =-11(,)32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥12.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A .B .C .D .248064240二、填空题13.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(14.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .15有两个不等实根,则的取值范围是.()23k x =-+16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.三、解答题18.如图,在三棱锥A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥CD ,E ,F ,G 分别是AC ,AD ,BC 的中点.求证:(I )AB ∥平面EFG ;(II )平面EFG ⊥平面ABC .19.已知等差数列{a n }满足a 2=0,a 6+a 8=10.(1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.20.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:分数段理科人数文科人数[40,50)[50,60)[60,70)[70,80)正正[80,90)正[90,100](1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.21.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.22.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.23.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.商水县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.2.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.3.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 4.【答案】A【解析】5.【答案】B【解析】p p q∨p⌝p q∨p⌝p⌝试题分析:因为假真时,真,此时为真,所以,“真”不能得“为假”,而“为p p q∨假”时为真,必有“真”,故选B.考点:1、充分条件与必要条件;2、真值表的应用.6.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.7.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.8.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和.由n 114n n n na a a a ++-=+得,∴是等差数列,公差为,首项为,∴,由得2214n n a a +-={}2n a 44244(1)4n a n n =+-=0n a >.,∴数列的前项和为n a=1112n n a a +==+11n n a a +⎧⎫⎨⎬+⎩⎭n,∴,选C.11111)1)52222+++=-= 120n =9. 【答案】C 【解析】考点:指数函数的概念.10.【答案】D 【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.11.【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.12.【答案】B 【解析】试题分析:,故选B.8058631=⨯⨯⨯=V 考点:1.三视图;2.几何体的体积.二、填空题13.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲1362722=+y x y 927362=-=c ()3,0±线的定义可得,故,,故所求双()()()()4340153401522222=++---+-=a 2=a 5492=-=b 曲线的标准方程为.故答案为:.15422=-x y 15422=-x y 考点:双曲线的简单性质;椭圆的简单性质.14.【答案】0【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A 1E ⊥GF ,∴异面直线A 1E 与GF 所成的角的余弦值为0.故答案为:0.15.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,y =()23y k x =-+y =直线的图象恒过定点,结合图象,可知,当过点时,,当直线()23y k x =-+()2,3()2,0-303224k -==+,解得,所以实数的取值范围是.111]()23y k x =-+2512k =53,124⎛⎤ ⎥⎝⎦考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.16.【答案】12【解析】考点:分层抽样17.【答案】48【解析】三、解答题18.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.19.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.20.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.21.【答案】【解析】解:∵A={x|0<x﹣m<3},∴A={x|m<x<m+3},(1)当A∩B=∅时;如图:则,解得m=0,(2)当A∪B=B时,则A⊆B,由上图可得,m≥3或m+3≤0,解得m≥3或m≤﹣3.22.【答案】【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.∴f(x)=cos+=sin+cos+=sin(+)+,∴最小正周期T==4π,2kπ﹣≤+≤2kπ+,则4kπ﹣≤x≤4kπ+,k∈Z.故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,∴则y=g(x)﹣k=sin(x﹣)+﹣k,∵x∈[0,],可得:﹣≤x﹣≤π,∴﹣≤sin(x﹣)≤1,∴0≤sin(x﹣)+≤,∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,∴实数k的取值范围是[0,].∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.23.【答案】【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE解:(Ⅱ)方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.所以∠AHB为二面角A﹣EF﹣C的平面角.在Rt△CEF中,因为EF=2,CF=4.EC=∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,∴由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,所以当时,二面角A﹣EF﹣C的大小为60°方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,设平面AEF的法向量为,由得,,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得.所以当时,二面角A﹣EF﹣C的大小为60°.【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 。
商水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣2. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤03. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±34. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<5. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 6. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 7. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣8 8. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 29. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)10.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体 积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111]A .41 B .31 C .21D .不是定值,随点M 的变化而变化11.命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=12.已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .2 二、填空题13.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .14.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 . 15.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .16.多面体的三视图如图所示,则该多面体体积为(单位cm ) .17.经过A (﹣3,1),且平行于y 轴的直线方程为 .18.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题19.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.20.在平面直角坐标系xOy 中,点P (x ,y )满足=3,其中=(2x+3,y ),=(2x ﹣﹣3,3y ).(1)求点P 的轨迹方程;(2)过点F (0,1)的直线l 交点P 的轨迹于A ,B 两点,若|AB|=,求直线l 的方程.21.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.23.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.24.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.商水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.2.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.3.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.4.【答案】D5.【答案】C6.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.7.【答案】B【解析】解:∵f(x+4)=f(x),∴f(2015)=f(504×4﹣1)=f(﹣1),又∵f(x)在R上是奇函数,∴f(﹣1)=﹣f(1)=﹣2.故选B.【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.8.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.9.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.10.【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 11.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .12.【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 二、填空题13.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.14.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.15.【答案】③④.【解析】解:函数f(x)=cosxsinx=sin2x,对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z当k=0时,x∈[﹣,],f(x)是增函数,故③正确;对于④,将x=代入函数f(x)得,f()=﹣为最小值,故f(x)的图象关于直线x=对称,④正确.综上,正确的命题是③④.16.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.17.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.18.1【解析】三、解答题19.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解20.【答案】【解析】解:(1)由题意,=(2x+3)(2x ﹣3)+3y 2=3, 可化为4x 2+3y 2=12,即:; ∴点P的轨迹方程为;(2)①当直线l 的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l 的斜率存在时,设方程为y=kx+1,A (x 1,y 1),B (x 2,y 2),代入椭圆方程可得:(4+3k 2)x 2+6kx ﹣9=0,∴x 1+x 2=,x 1x 2=,∴|AB|=•|x 1﹣x 2|==,∴k=±,∴直线l 的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.21.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立, 且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分22.【答案】 【解析】23.【答案】【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.24.【答案】【解析】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.。
商水县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .722. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对3. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( )A .15B .30C .31D .644. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=845. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .26. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称 C .坐标原点对称 D .直线y=x 对称7. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切9. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或C .±1D .10.若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3 B .6C .9D .1211.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)12.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-2二、填空题13.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.16.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .17.已知函数,则__________;的最小值为__________.18.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .三、解答题19.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.20.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.21.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.22.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.23.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.24.已知角α的终边在直线y=x上,求sinα,cosα,tanα的值.商水县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2. 则a 2a 6=9×q 6=72.故选:D .2. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 3. 【答案】A【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .4. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 5. 【答案】B【解析】解:作出不等式组对应的平面区域如图: 设z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C 时,直线y=﹣x+的截距最小,此时z 最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6.【答案】C【解析】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.7.【答案】D【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,∴|AB|的最小值为4,当AB⊥x轴时,|AB|取得最小值为4,∴=4,解得b2=6,b=.故选:D.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.8.【答案】D【解析】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D9.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.10.【答案】A【解析】解:复数z===.由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A.【点评】本题考查复数的代数形式的混合运算,考查计算能力.11.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.12.【答案】B【解析】考点:向量共线定理.二、填空题13.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.14.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.15.【答案】201616.【答案】[,4].【解析】解:由题意知≤logx≤2,即log2≤log2x≤log24,∴≤x≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是[,2],得到≤log2x≤2”是关键,考查理解与运算能力,属于中档题.17.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:18.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.三、解答题19.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为20.【答案】【解析】解:由题意得命题P真时0<a<1,命题q真时由(2a﹣3)2﹣4>0解得a>或a<,由p∨q真,p∧q 假,得,p,q一真一假即:或,解得≤a<1或a>.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.21.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.22.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.23.【答案】【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,两式作差,得:a n+2=a•a n+1,n≥2,∴{a n}是首项为b,公比为a的等比数列,∴.(Ⅱ)当a=1时,S n=na1=nb,不合题意,当a≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得{S n}成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.24.【答案】【解析】解:直线y=x,当角α的终边在第一象限时,在α的终边上取点(1,),则sinα=,cosα=,tanα=;当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),则sinα=﹣,cosα=﹣,tanα=.【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.。
商水县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.2. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .32D .334. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a5. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分6. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)7. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.8. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.=1.23x+4 B.=1.23x﹣0.08 C.=1.23x+0.8 D.=1.23x+0.089.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37 121新设备22 202根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对10.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.11.P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为()A.a B.b C.c D.a+b﹣c12.已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的部分图象如图所示,△EFG是边长为2 的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位二、填空题13.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则=.14.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.15.在正方体ABCD﹣A1B1C1D1中,异面直线A1B与AC所成的角是°.16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.17.(sinx+1)dx的值为.18.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题19.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.20.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.21.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.22.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.23.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)24.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;(2)设数列的前n项和为P n,求证:P n<;(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.商水县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C2. 【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B3. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征. 4. 【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b . 故选C5. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.6. 【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .7. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .8. 【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.9.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.10.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.11.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.12.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.二、填空题13.【答案】.【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.14.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.15.【答案】60°°.【解析】解:连结BC1、A1C1,∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,∴四边形AA1C1C为平行四边形,可得A1C1∥AC,因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则△AB1C中A1B=BC1=C1A1=a,1∴△A1B1C是等边三角形,可得∠BA1C1=60°,即异面直线A1B与AC所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.16.【答案】25【解析】考点:分层抽样方法.17.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.18.【答案】≤a<1或a≥2.【解析】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.三、解答题19.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …20.【答案】【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.(Ⅱ)∵f(A)=sin(+),∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,∴则sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴cosB=,又0<B<π,∴B=.∴可得0<A<,∴<+<,∴sin(+)<1,故函数f(A)的取值范围是(1,).【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.21.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).f'x=0x=1f x f'x(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.22.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).23.【答案】【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.令f′(x)=0得x=e,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.24.【答案】【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)∴S n+1=(n+1)a n+1﹣(n+1)n…∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…∴na n+1﹣na n﹣2n=0∴a n+1﹣a n=2,∴{a n}是以首项为a1=1,公差为2的等差数列…由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,数列{a n}通项公式a n=2n﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n∈N*,∴2n>1,∴,∴…。