多层碳纳米球的研究
- 格式:pdf
- 大小:1.63 MB
- 文档页数:5
免费毕业论文—多壁碳纳米管在球形胶束上的层层自组装(一)多壁碳纳米管可在很多类型的胶束模板上自组装,运用众所周知的聚电解质层层自组装技术。
密集的单层和多层碳纳米管可成功地在不同尺寸的硅、聚苯乙烯和三聚氰胺的球状胶粒上沉积,同时,表明较短的碳纳米管可全部在球的表面缠绕,而较长的碳纳米管伸出球的表面,同时与很多球接触。
脱除胶束模板,可形成空心的碳纳米管球。
用盐酸处理三聚氰胺碳纳米管颗粒可证明这一点。
胶束模版的脱除可在有序排列的聚苯乙烯颗粒上进行,进而形成纳米结构、可导电的碳纳米管聚集体。
用超声波破坏积聚体表明自组装可以只发生在半个胶束球体上,因此比较容易得到带有不对称功能性的“两半”颗粒。
引言自从富勒烯和碳纳米管的发现以来,由于它们具有独特的由结构决定的电学性能和机械性能,碳结构已成为广泛研究的对象。
最近几年,科研工作者已花费很大的力量制备不同形貌的碳并开发它们在复合材料、电化学元件、场发射元件、纳米尺度的电子元件和感应器等诸多领域的应用。
但是,碳纳米管功能化的方法以及处理和自组装方法的限制成为追求这些潜在应用的重大障碍,也是由于这个原因,碳纳米管的自组装和有序排列有待新的发展。
特别是,高品质的、均一的薄膜的制备是在宏观范围内研究它们的光学,光电和电学性能的一个基本的先决条件。
有关碳纳米管薄片制备的报道很多:包括把碳纳米管分散液喷涂在基体上、拉伸聚合物薄片时加入碳纳米管、表面活性剂分散的碳纳米管或是化学处理的碳纳米管衍生物在水中的伸展以致单层沉积、光电沉积、Langmuir-Blodge沉积以及层层自组装。
由于层层自组装在包装、电子设备、传感器和药物缓释等方面具有巨大的潜在应用,所以备受关注。
聚合电解质是层层自组装第一个也是最多的研究例子。
但是,其他的带电化合物例如核酸、蛋白质、多化合价的金属离子、离子染体、纳米颗粒甚至病毒也可以形成层层自组装的结构。
用这种方法不但制备出薄膜而且制备出大小和成分搭配合理的核壳结构颗粒——用核做模版在其上多层组装,接着移除核可以得到聚合物、无机或者有机无机杂化的中空胶囊。
关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
纳米碳球复合材料纳米碳球复合材料是一种由纳米碳球和其他材料组成的复合材料。
纳米碳球是一种由纳米级碳材料构成的微小球体,具有很高的比表面积和优异的力学性能。
通过将纳米碳球与其他材料进行复合,可以充分发挥纳米碳球的特性,提高复合材料的力学性能和功能。
纳米碳球具有很高的比表面积,这意味着它可以提供更多的接触点,增加与其他材料之间的接触面积。
这种接触面积的增加可以提高复合材料的粘合强度和界面结合能力,从而改善材料的力学性能。
此外,纳米碳球还可以提供更多的支撑点,增加复合材料的强度和刚度。
纳米碳球还具有优异的力学性能,具有很高的强度和刚度。
由于纳米碳球是由纳米级碳材料构成的,其内部结构非常坚固。
这使得纳米碳球能够承受较大的力和应变,具有优异的耐久性和抗疲劳性能。
因此,将纳米碳球与其他材料进行复合可以显著提高复合材料的力学性能,使其具有更好的抗拉、抗压和抗弯能力。
除了力学性能的提高,纳米碳球还可以赋予复合材料其他功能。
例如,通过将纳米碳球与导电材料复合,可以制备出具有优异导电性能的复合材料。
这种导电复合材料可以应用于电子器件、传感器等领域,具有广泛的应用前景。
此外,纳米碳球还可以与其他功能材料进行复合,如纳米颗粒、催化剂等,从而赋予复合材料更多的功能。
制备纳米碳球复合材料的方法有很多种。
一种常用的方法是通过溶液法将纳米碳球与其他材料混合,并进行热处理或化学反应,使纳米碳球与其他材料形成复合结构。
另一种方法是通过机械混合将纳米碳球与其他材料混合,并进行压制或烧结,制备出纳米碳球复合材料。
这些制备方法可以根据具体的需求和材料特性进行选择,以获得理想的复合材料性能。
纳米碳球复合材料具有广泛的应用前景。
由于其优异的力学性能和功能特性,纳米碳球复合材料可以应用于航空航天、汽车制造、电子器件、能源存储等领域。
例如,将纳米碳球复合材料应用于飞机结构中,可以减轻重量、提高强度和刚度,从而提高飞机的性能和燃油效率。
将纳米碳球复合材料应用于电池材料中,可以提高电池的能量密度和循环寿命,推动新能源技术的发展。
碳纳米管的制备、性质和应用摘要:综述了碳纳米管的研究进展,简单地介绍了单层碳纳米管和多层碳纳米管的基本形貌、结构及其表征,列举了几种主要的制备方法以及特点,介绍了碳纳米管优异的物理化学性质,以及在各个领域中潜在的应用前景和商业开发价值。
Abstract: the article reviews the study progress in nanotubes, and gives a brief introduction to single-layer carbon nanotubes and multi-walled carbon nanotubes of their morphology, structure and characterization. At the same time ,the commonly used ways of preparation and principlesas well as the applications and research prospect of carbon nanotubes are also presented.Key words: carbon nanotubes ; preparation; application前言仅仅在十几年前,人们一般认为碳的同素异形体只有两种:石墨和金刚石。
1985年,英国Sussex大学的Kroto教授和美国Rice大学的Smalley教授进行合作研究,用激光轰击石墨靶尝试用人工的方法合成一些宇宙中的长碳链分子。
在所得产物中他们意外发现了碳原子的一种新颖的排列方式,60个碳原子排列于一个截角二十面体的60个顶点,构成一个与现代足球形状完全相同的中空球,这种直径仅为0.7nm的球状分子即被称为碳60分子1-2。
此即为碳晶体的第三种形式。
1991年,碳晶体家族的又一新成员出现了,这就是碳纳米管。
日本NEC公司基础研究实验室的Iijima教授在给《Nature》杂志的信中宣布合成了这种一种新的碳结构3。
摘要炭吸附材料由于具有较大的比表面积,稳定的物理、化学性质,具有较强的吸附性能,已成为最具代表性的一类空气净化材料。
碳纳米管具有一些独特的性质,如特殊的导电性能、力学性质及物理化学性质等。
因此碳纳米管自出现以来即引起关注并广泛应用于诸多科学领域。
碳纳米管(CNTs)由于具有较大的比表面积,因此具有良好的吸附能力,现在已经被应用于储氢及吸附剂等领域。
本次研究主要是针对CNTs的吸附能力,通过KOH活化的方法进一步增大CNT的比表面积,进行甲基橙吸附实验并探索活化需要的最佳碱炭比,之后通过改变其它因素如震荡时间及CNTs的用量进一步探究CNTs的吸附能力。
关键词:吸附材料;碳纳米管;活化;AbstractCarbon adsorption material has larger specific surface area, stable physical and chemical properties, with strong adsorption properties, has become a kind of the most represe ntative materials of air purificati on. Carbon nano tubes have some unique properties, such as special con ductive properties, mecha ni cal properties and physical and chemical properties. Therefore carb on nano tubes since there has caused concern and that is widely used in many fields of scie nce.As Carbon nano tubes (CNTs) has a larger surface area, it has a good adsorption capacity, has now been applied to the field of hydroge n storage and adsorbe nt.This study focuses on the adsorpti on capacity of CNTs. Usi ng the KOH activati on method in crease the specific surface area of CNTs. For methyl orange adsorpti on experime nts and explore the best alkali activated carb on ratio required. The n cha ng other factors such as the shock time and the amount of CNTs to further explore the adsorpti on capacity of CNTs.Keywords: Adsorptio n material; Carbon nano tubes;Activati on;目录1绪论 (1)1.1课题研究背景 (1)1.2本文研究的内容和意义 (2)1.2.1实验研究的主要内容 (2)1.2 .2研究意义 (2)1.3碳纳米管的结构与特性 (2)1.3.1碳纳米管的结构 (2)1.3.2碳纳米管的吸附特性 (3)1.4碳纳米管的纯化 (4)1.5碳纳米管的活化 (5)2碳纳米管的KOH活化实验 (7)2.1活化实验方案设计 (7)2.2仪器与试剂 (7)2.3实验内容及过程 (7)2.4实验误差分析 (8)3碳纳米管吸附甲基橙实验 (10)3.1甲基橙吸附实验目的 (10)3.2仪器与试剂 (10)3.3实验内容及过程 (10)3.4数据分析及实验结论 (11)4其它因素对甲基橙吸附的影响 (15)4.1震荡时间对吸附效果的影响 (15)4.2碳纳米管用量对吸附效果的影响 (17)5结论 (19)致谢 (21)参考文献 (22)1绪论1.1课题研究背景随着室内装修的不断升温,各种建筑材料的广泛应用,由此引发的室内空气污染越来越受到人们的关注,其中主要的污染物为来源于油漆、胶合板、刨花板、内墙涂料、塑料贴面等材料中的甲醛、苯、VOC(Volatile Orga nic Compou nds)等挥发性有机物。
碳球的制备进展1引言微球是一种形态可控的微粒材料,在研究与工业生产均具有很大的价值。
碳球是一种碳元素所构成的微球,球型碳材料是在20世纪60年代被发现的,人们在研究焦炭的形成过程中发现沥青类化合物在热处理过程中会生成中间相小球[1]。
与普通微球相同,碳球分为实心碳球、中空碳球、多孔碳球三种.实心碳球因其不存在内部空间,在纳米级材料的研究应用方面有着重要的作用。
中空材料的形成机理、结构、制备及其应用是近年来的研究热点。
可控的中空碳球与多孔碳球因其高比表面积、高化学稳定性、高吸附性等优良的性质,在电学领域、能源领域、催化、吸附等方面有着重要的作用。
鉴于碳球制备技术的迅速发展和应用需求的急剧增加,本文对近年来实心、空心、多孔三种碳球的制备方法、成型机理与发展的研究做一综述。
2碳球的制备与应用就目前国内外的研究状况,根据碳球的结构特点将其分为3种:实心碳球,即整个球是密实的;中空碳球,球的中心部分是空的;多孔碳球,球的表面有许多孔洞。
下面对这3种不同类型碳球制备的方法进行阐述,介绍其制备方法、成型机理与发展。
2.1实心碳球2。
1.1实心碳球的制备实心碳球的制备方法主要有Stöber法、水热合成和热裂解法等。
2。
1。
1。
1Stöber法制备球形SiO2常用的方法是Stöber法,该方法通过烧结硅酸盐球形前驱体得到球形的SiO2[17]。
Lu等采用这种方法,以PR为前驱体,成功合成实心碳球[18]。
以间苯二酚、甲醛和1,2-乙二胺为原料,F127为表面活性剂合成PR,经过高温烧结,顺利得到实心碳球。
2。
1。
1。
2水热合成采用水或有机溶剂作为反应介质,通过对反应容器加热,在一定的温度和自生压力下,原料混合进行反应.这可使一些在常温常压下反应速率很慢的热力学反应,在溶剂热条件下可实现反应快速化。
Wang等[19]在190℃水热条件下处理蔗糖溶液,再把所得到的产物置于管式炉中在氩气保护下进行高温碳化,即可制得单分散的实心碳球。
实验2-1 葡萄糖水热法制备纳米碳球一、目的要求(1)熟悉葡萄糖水热法制备纳米碳球的方法,熟练掌握高温高压反应釜的组装与应用。
(2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。
二、实验原理炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。
碳微球的形状和大小显著影响着其电学性能。
葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer模型(见图4-2),当0.5 molL-1的葡萄糖溶液在低于140 C或反应时间小于1h时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。
当反应条件为0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。
从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500nm。
由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。
图4-2 水热法形成炭球的结构变化示意图三、实验预备葡萄糖,去离子水,95%乙醇;5mL高压反应釜,鼓风干燥箱,电子天平,抽滤装置。
四、实验过程1.材料制备用电子天平称取6g葡萄糖放入5mL反应釜内衬中,用移液管准确移取4mL去离子水(葡萄糖溶液的浓度为0.78molL-1)加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。
碳纳米管的应用研究蒋泓清;黄先亮;黄志兵【摘要】自从发现碳纳米管以来,因其特殊的结构、优异的性能及诱人的应用前景引起了人们广泛的关注.碳纳米管作为一种新型碳材料具有独特的纳米结构、密度低,预示着其具有不同寻常的电学、力学、热学和物理化学等特殊性能.本文主要讨论碳纳米管在作为场发射材料的场致发射平板显示器元件、复合材料增强体和储能材料中的应用.【期刊名称】《广州化工》【年(卷),期】2013(041)010【总页数】3页(P6-8)【关键词】碳纳米管;增强体;储能材料【作者】蒋泓清;黄先亮;黄志兵【作者单位】江西理工大学,江西赣州341000;江西理工大学,江西赣州341000;江西理工大学,江西赣州341000【正文语种】中文【中图分类】TB32120 世纪70 年代纳米颗粒材料问世,80 年代中期在实验室合成了纳米块体材料[1],1991 年,日本NEC 科学家Iijima[2]在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515 nm、内径213 nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。
进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。
相邻管子之间的距离约为0.34 nm,与石墨中碳原子层与层之间的距离0.335 nm 相近,所以这种结构一般被称为碳纳米管,这是继C60 后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果。
1 碳纳米管的常规应用领域碳纳米管因其独特的力学、电学及化学等特性,已成为全世界的研究热点,在场致发射、纳米复合增强材料、储能材料等众多领域取得了广泛应用。
随着碳纳米管合成技术的日益成熟,低成本大量合成碳纳米管已经成为可能,探索和研究碳纳米管的应用已成为当务之急,具有重大的实用价值。
1.1 场发射材料自1995 年Heer 等[3]研究碳纳米管场发射特性以来,便在学术界引起很大的轰动。
纳米多孔碳材料的制备与应用纳米多孔碳材料作为一种重要的材料,在许多领域中都有着广泛的应用。
它具有高度的比表面积、良好的电化学性能和独特的化学稳定性,因此在能源存储、催化剂、吸附分离等方面发挥着重要作用。
纳米多孔碳材料的制备方法多种多样,其中一种常用的方法是模板法。
模板法通过选择合适的模板,在其表面沉积碳源,然后去除模板得到纳米多孔碳材料。
常用的模板有硅胶、纳米颗粒和有机聚合物等。
通过调控模板的形状和尺寸,可以得到具有不同孔结构和孔径分布的纳米多孔碳材料。
纳米多孔碳材料在能源存储领域的应用受到广泛关注。
由于其高比表面积和优良的导电性,纳米多孔碳材料被用作电化学超级电容器和锂离子电池的电极材料。
通过调控碳材料的孔结构和孔径分布,可以提高电化学反应的速率和电容量。
此外,纳米多孔碳材料还可以用作储能材料,用于存储气体、液体和氢能等。
在催化剂领域,纳米多孔碳材料也有着重要的应用。
由于其高度开放的孔道结构和丰富的活性位点,纳米多孔碳材料可以作为催化剂的载体或直接作为催化剂使用。
通过调控纳米多孔碳材料的孔结构和孔径分布,可以增加反应通道和提高催化效率。
此外,纳米多孔碳材料还可以用于电催化、光催化和生物催化等方面,为催化领域的研究和应用提供了新的思路和方法。
纳米多孔碳材料还可以用于吸附分离领域。
由于其高比表面积和调控孔结构的能力,纳米多孔碳材料可以用来吸附和分离小分子、气体和离子等。
例如,纳米多孔碳材料可以用于污染物的吸附和去除,环境保护和水处理方面具有很大的潜力。
此外,纳米多孔碳材料在药物传递和生物检测等方面也有着广泛的应用。
虽然纳米多孔碳材料在各个领域中都有广泛的应用,但是其制备过程仍然面临一些挑战。
首先,纳米多孔碳材料的制备方法需要考虑孔结构的调控和碳源的选择。
其次,纳米多孔碳材料的制备过程需要注意反应条件的控制和材料的纯度。
最后,纳米多孔碳材料的应用需要进一步研究和开发,以满足实际应用中的需求。
综上所述,纳米多孔碳材料作为一种重要的材料,在能源存储、催化剂和吸附分离等领域具有广泛的应用。