圆柱绕流的数值模拟研究
- 格式:doc
- 大小:848.00 KB
- 文档页数:5
不同雷诺数下的圆柱绕流数值模拟研究引言:圆柱绕流是流体力学领域中一个经典的、被广泛研究的问题。
在众多的工业应用中,圆柱绕流的研究对于风力发电机组的设计优化、管道内部液体运动的控制等方面具有重要实际意义。
雷诺数是描述流体流动的一个无量纲参数,它与流体的流速、流体的粘性有关。
本文将对不同雷诺数下的圆柱绕流进行数值模拟研究。
方法:数值模拟是一种有效的研究流体力学问题的方法,它能够通过计算机模拟得到流体的速度场、压力场等关键参数,从而进一步分析流体的特性。
在本文中,我们将使用计算流体力学方法进行圆柱绕流的数值模拟研究。
结果与讨论:我们选取了不同雷诺数的圆柱绕流作为研究对象,分别为200、400、600、800和1000,通过数值模拟得到了不同雷诺数下的圆柱绕流的速度场和压力场等关键参数。
首先,我们分析了速度场的分布。
通过数值模拟可以得到圆柱绕流过程中流体速度的分布情况。
随着雷诺数的增加,流体速度场呈现出不同的特征。
在雷诺数较低的情况下,流体绕圆柱流动的速度场分布较为简单,流速主要集中在圆柱前部和尾部。
随着雷诺数的增加,流体速度场呈现出更复杂的结构,流速分布更加均匀。
其次,我们研究了压力场的分布。
通过数值模拟可以得到圆柱绕流过程中流体压力的分布情况。
在不同雷诺数下,圆柱周围存在不同的压力区域。
当雷诺数较低时,圆柱前后表面存在较大的压差,压力分布较为不均匀。
而当雷诺数增加时,压力分布更加均匀,圆柱表面的压力变化较小。
最后,我们研究了绕流过程中的阻力情况。
通过数值模拟得到了不同雷诺数下圆柱绕流过程中的阻力系数。
我们发现,随着雷诺数的增加,阻力系数逐渐增大。
这是因为当雷诺数较低时,流体绕圆柱流动的速度较低,阻力较小;而当雷诺数增加时,流体流动速度较高,阻力也逐渐增大。
结论:本文通过数值模拟的方式研究了不同雷诺数下的圆柱绕流问题。
通过分析速度场、压力场和阻力系数等关键参数,我们得出了以下结论:随着雷诺数的增加,流体速度场更加复杂,流速分布更加均匀;压力场分布更加均匀,圆柱表面的压力变化较小;阻力系数随着雷诺数的增大而增加。
流体力学Fluent报告——圆柱绕流亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C与 Strouhal 数d随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在 Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
目录1. 实验目的及原理 (2)1.1实验目的 (2)1.2 实验原理 (2)2. 物理现象描述 (3)3. 数值模型描述 (3)3.1计算域 (3)3.2 边界类型 (3)4.前处理 (3)4.1 Gambit软件介绍 (3)4.2网格绘制 (5)5.求解设置 (5)5.1 Fluent软件介绍 (5)5.2 计算过程 (7)6.后处理 (7)6.1 云图显示 (7)6.2 升力系数 (9)6.3 拖曳力系数 (10)6.4 斯托哈尔数 (10)7. 总结体会 (11)1. 实验目的及原理1.1实验目的(1)通过上机实验掌握计算流体力学中前处理、计算设置、后处理的基本流程,为后期船舶原理、船舶设计原理等课程的学习奠定基础。
(2)通过对单圆柱绕流的数值模拟,进一步理解流体力学理论课中的各项知识点,如边界层、湍流、圆柱绕流、卡门涡街、雷诺数、涡旋形式等。
1.2 实验原理对于静止圆柱绕流,本文研究对象为二维不可压缩流动。
在直角坐标系下,其运动规律可用 N-S 方程来描述,连续性方程和动量方程分别为:01()()i ii i i j ji j j u x u u P u u t x x x x νρ∂⎧=⎪∂⎪⎨∂∂∂∂∂⎪+=-+⎪∂∂∂∂∂⎩其中u i 为速度分量;p 为压力;ρ为流体的密度;ν为流体的动力黏性系数。
对于湍流情况,本文采用RNG k ⁃ε模型,RNG k ⁃ε模型是k ⁃ε模型的改进方案。
通过在大尺度运动和修正后的粘度项体现小尺度的影响, 而使这些小尺度运动有系统地从控制方程中去除。
所得到的 k 方程和ε方程,与标准k ⁃ε模型非常相似,其表达式如下:212()()()G ()()()G i k eff k i j ji eff k i j j ku k k t x x x u C C t x x x k k εεερραμρερεερεεεαμρ∂∂∂∂⎧+=++⎪∂∂∂∂⎪⎨∂∂∂∂⎪+=+-⎪∂∂∂∂⎩其中Gk 为由于平均速度梯度引起的湍动能的产生项,2efft t C k ρμμμμμε=+=, 经验常数1C ε=0.084 5,k α=εα=1.39,2C ε=1.68。
第43卷第5期2021年5月舰船科学技术SHIP SCIENCE AND TECHNOLOGYVol.43,No.5May,2021不等直径并列双圆柱绕流数值模拟研究张艺鸣I,罗良2,陈威1,林永水I,池晴佳1(1.武汉理工大学新材料力学理论与应用湖北省重点实验室,湖北武汉430063;2.上海船舶研究设计院,上海201203)摘要:不等直径的多圆柱系统广泛应用于海洋工程中,为研究不等直径双圆柱之间的互扰效应。
本文基于CFD方法,对不同间距比下的二维不等直径双圆柱进行了数值模拟。
研究结果表明:当T/D<3.0时,双圆柱尾流涡相互融合,互扰效应造成斯特劳哈尔数偏低,升力系数幅值随时间变化不稳定;当T/D>3.0时,两圆柱互扰较 弱,圆柱水动力系数与单圆柱结果相差不大;T/D«3.0可认为是临界间距比。
本文成果有助于多圆柱流动控制技术研究。
关键词:圆柱绕流;互扰效应;间距比;数值模拟中图分类号:TV131文献标识码:A文章编号:1672-7649(2021)05-0048-05doi:10.3404/j.issn.l672-7649.2021.05.010Numerical simulation of flow around two parallel cylinders with unequal diametersZHANG Yi-ming1,LUO Liang2,CHEN Wei1,LIN Yong-shui1,CHI Qing-jia1(1.Wuhan University of Technology,Wuhan430063,China;2.Shanghai Ship Design and Research Institute,Shanghai201203,China)Abstract:The multiple cylinder systems have been dramatically applied in ocean engineering,in order to study the interaction effect between two cylinders with different diameters,the numerical simulation of two cylinders with different diameters under different pitch ratio is carried out based on the CFD method.The results show that:At T/D<3.0,the wake vortices of the two cylinders merged,and the Strouhal number is small due to the interaction effect,and the amplitude of lift coefficient is unstable with the increase of time.At T/D>3.0,the interaction is weak and the hydrodynamic coefficients are close to that of single cylinder.The T/D 3.0is regarded as the critical spacing ratio.The results of present study are significant for investigation of flow control technique of multiple cylinders.Key words:flow around circular cylinder;interaction effect;spacing ratio;numerical simulation0引言在海洋资源的勘探和利用过程中,产生了多种海洋工程结构物,如海上风力发电设备、海洋石油钻井平台等。
小雷诺数下圆柱绕流数值模拟
小雷诺数下圆柱绕流数值模拟是一种常用的研究绕流流动特性的方法。
它是一种基于小雷诺数下流体运动的数值模拟,用于研究圆柱体绕流的结构及其流动特征。
小雷诺数下圆柱绕流数值模拟的基本思想是,利用小雷诺数的概念,通过模拟圆柱体的绕流流动特性,求得其相应的流速、压力、温度等各种流动参数。
小雷诺数的定义是在恒定的空气压力下,流体的绕流流动速度和其局部粘性系数之比,其值与空气压力以及温度有关。
圆柱绕流数值模拟主要分为三个步骤:(1)建立基本流场模型,确定模型空间的尺寸和流体的流动参数;(2)使用计算流体力学(CFD)技术计算圆柱体绕流流动的模拟结果;(3)分析模拟结果,确定圆柱体绕流流动的特性以及绕流流动的特性参数。
小雷诺数下圆柱绕流数值模拟是一种有效的研究圆柱体绕流流动特性的方法。
它可以用来模拟圆柱体绕流流动的特性,并及时获取流动参数,从而更好地分析绕流流动特性,为设计提供参考依据。
二维圆柱绕流数值仿真模拟报告
二维圆柱绕流数值仿真模拟是流体力学领域的一个重要研究课题。
在这个问题中,我们将从多个角度来讨论这个课题,包括数值
模拟的背景和意义、数值方法、模拟结果及其分析等方面。
首先,让我们来谈谈数值模拟的背景和意义。
在工程和科学研
究中,流体力学的数值模拟在许多领域都发挥着重要作用,例如飞
行器设计、汽车空气动力学、海洋工程等。
而二维圆柱绕流作为流
体力学中经典的基本问题,对于理解流体运动、探索流体特性具有
重要意义。
通过数值仿真模拟,我们可以更好地理解圆柱绕流的流
场特性,为相关工程和科学问题提供重要参考。
其次,数值方法是进行二维圆柱绕流数值仿真模拟的关键。
常
用的数值方法包括有限元法、有限体积法和边界元法等。
这些方法
可以通过数值计算求解流体力学方程,如Navier-Stokes方程,从
而得到圆柱绕流的流场分布、压力分布等信息。
在选择数值方法时,需要考虑计算精度、计算效率以及模拟的适用范围等因素。
接下来,我们来讨论模拟结果及其分析。
通过数值仿真模拟,
我们可以得到圆柱绕流的流速场、压力分布、升力和阻力等重要参
数。
通过分析这些参数,我们可以深入理解圆柱绕流的特性,比如卡门涡的形成与演变、升力和阻力的变化规律等。
这些分析结果对于优化工程设计、改进流体力学理论具有重要意义。
总的来说,二维圆柱绕流数值仿真模拟是一个复杂而有意义的课题,通过深入研究和全面分析,可以为相关领域的工程和科学问题提供重要的参考和指导。
希望以上讨论能够对你有所帮助。
圆柱振荡绕流LBM数值模拟的开题报告一、研究背景及意义圆柱绕流问题是流体力学中经典的研究问题之一,在空气动力学中有着广泛的应用,如飞机、桥梁、烟囱、塔楼等建筑结构受风振动问题。
目前对于圆柱绕流问题的研究主要采用实验和数值模拟相结合的方法。
在数值模拟方面,近年来LBM(Lattice Boltzmann Method)方法因其简单低耗,适用于各种欧拉和纳维-斯托克斯方程问题而受到广泛研究。
LBM方法通过在非均匀格子上演化局域平衡分布函数来求解流动问题,实现了传统CFD方法的高效计算,并且在高雷诺数下仍能保持很好的数值稳定性。
本研究旨在采用LBM方法对圆柱绕流问题进行数值模拟,并研究圆柱粘性系数、柱直径以及雷诺数对流动特性的影响,为实际应用提供理论依据。
二、研究方法1.建立数学模型:通过欧拉方程、斯托克斯方程及纳维-斯托克斯方程对圆柱绕流问题进行数学建模。
2.确定求解方法:采用LBM方法对圆柱绕流问题进行数值模拟,并通过MATLAB编程实现模型求解。
3.数据分析:采用图像分析方法对模拟结果进行可视化分析,并将模拟结果与理论计算结果进行比较分析。
三、研究内容及进度安排研究内容主要包括:1.建立圆柱绕流LBM模型,并进行数值模拟;2.分析圆柱粘性系数、柱直径以及雷诺数对流动特性的影响;3.比较与理论计算的结果,并对模拟结果进行可视化分析;研究进度安排如下:1.文献调研及分析(1个月);2.建立圆柱绕流LBM模型(2个月);3.进行数值模拟并分析结果(3个月);4.编写论文及进行答辩(1个月)。
四、研究预期成果1.建立了圆柱绕流LBM模型,通过数值模拟研究了圆柱粘性系数、柱直径以及雷诺数对流动特性的影响。
2.编写论文,将研究结果公开发表,并与同行分享。
3.为圆柱绕流问题的理论研究及实际应用提供理论依据。
圆柱绕流理论研究和数值模拟摘要:在生活中,绕流问题随处可见,河水流过桥墩长期以来物体绕流问题是我们学者研究和分析的热点问题,其中最典型的是绕流圆柱体的现象是卡门涡街。
应用CFD方法求流体力学的经典问题。
电脑的数值模拟方法的优点在于能够不受物理模型和实验模型的基本条件限制,有较好的灵活性,经济性,适应性,能够很好地处理现实的问题。
本课题利用软件FLUENT通过应用连续性方程和动量方程求解层流状态下,固定的圆柱体绕流问题,分别得到二维圆柱的周围流场流,速度矢量图,速度涡量图,求出其对应的阻力系数,把已有的模拟结果和理论研究结果进行比较,得出准确的绕流问题的结论,将测得的数据与已有的文献结论相比较,得出层流在不同文献下结果不尽相同。
关键词:FLUENT;阻力系数;雷诺数1柱体绕流阻力研究1.1 圆柱绕流的基本参数雷诺数(O.Reynolds)描述粘性流体力学最重要也是最基本的参数,其他无量纲物理量必然依赖于Re数。
它反映了惯性力与粘性力的比值:(1-1)其中ρ为流体的密度,U、L分别描述流体的特征速度和结构物的特征长度;μ、υ分别为流体的动力学及运动学粘性系数;决定圆柱绕流流态的是雷诺数的值 ,雷诺数在300≤Re≤3×105范围内的称为亚临界区,此时边界层仍是层流分离,而尾迹中己经是湍流涡街了;当雷诺数增加到3×105≤Re≤3.5×106时为临界区,边界层从层流分离转化为湍流分离;而后当Re≥3.5×106时为过临界区,完全变为湍流分离[1]。
斯特鲁哈数(Strouhal number)St:斯特鲁哈数根据罗斯柯(A .Roshko)1954年的实验结果,它只于雷诺数有关,在大雷诺数(Re>1000)它近似地等于常数0.21[2]。
它是描述圆柱绕流的一个非常重要的无量纲数:(1-2)U是的均匀来流速度,直径为D的静止柱体,泻涡频率为;升力系数(1ift coemcient):(1-3)阻力系数(dragcoefficient):(1-4)式中为作用于单位长度圆柱上的升力,为作用于单位长度圆柱上的阻力。
2018年10月第7卷㊀第5期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀JournalofBengbuUniversity㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Oct 2018Vol 7ꎬNo 5基于高雷诺数的圆柱绕流数值模拟研究收稿日期:2018-02-20㊀㊀∗通讯联系人基金项目:蚌埠学院自然科学研究项目(2015ZR04ꎬ2017ZR21)ꎮ作者简介:杨兰(1988-)ꎬ女ꎬ甘肃白银人ꎬ助教ꎬ硕士ꎮE-mail:ylhappy1988@126.com杨㊀兰∗ꎬ戚晓明ꎬ武心嘉ꎬ汪艳芳(蚌埠学院㊀机械与车辆工程学院ꎬ安徽㊀蚌埠㊀233030)摘㊀要:通过采用Fluent软件大涡模拟模型ꎬ对处于亚临界区Re=5ˑ104和超临界区Re=5ˑ105两种雷诺数下的圆柱绕流流场作了数值模拟计算ꎮ数值模拟结果表明ꎬ两种雷诺数时旋涡脱落均具有一定的周期性和一个主导的特征频率值存在ꎻ超临界雷诺数的湍流分离点位置较亚临界雷诺数时层流分离点的位置推后ꎬ且旋涡中心负压及河床切应力都较大ꎬ故而冲刷更严重ꎮ关键词:圆柱绕流ꎻ高雷诺数ꎻ流场结构ꎻ特征参数ꎻ数值模拟中图分类号:TV146.1文献标识码:A文章编号:(2018)05-0033-05NumericalSimulationoftheFlowaroundCircularCylinderBasedonHighReynoldsNumberYANGLan∗ꎬQIXiao ̄mingꎬWUXin ̄jiaꎬWANGYan ̄fang(SchoolofMechanicalandVehicleEngineeringꎬBengbuUniversityꎬBengbuꎬ233030ꎬAnhui)Abstract:TheflowfieldwassimulatedwithFluentandLargeEddySimulationinsubcriticalregimewithReynoldsnumberRe=5ˑ104andsupercriticalregimewithReynoldsnumberRe=5ˑ105.Thesimulationresultsshowedthatthevortexsheddingwereperiodicandexistedacharacteristicfrequencyvalueindif ̄ferentReynoldsnumber.ThepositionofturbulentseparationpointwaspostponedinsupercriticalReyn ̄oldsnumber.TheseriouserosionoccurredinvortexcenterduetolargernegativepressureandlargerbedshearstressatReynoldsnumberRe=5ˑ105.Keywords:circularcylinderflowꎻHighReynoldsnumberꎻflowfieldstructureꎻcharacteristicparametersꎻnumericalsimulation㊀㊀圆柱绕流是工程中常见的一种水流现象ꎬ水流流经圆柱形桥墩㊁渡槽槽墩㊁桩基码头㊁海洋运输管道㊁海洋钻井平台等建筑物时ꎬ都属于圆柱绕流问题ꎮ由于圆柱的存在ꎬ改变了附近的水流流态ꎬ形成不稳定的流动分离和旋涡㊁回流等尾流结构[1-2]ꎬ其流动结构非常复杂ꎮ因此ꎬ研究圆柱周围流场具有重要的工程意义ꎮ早期关于圆柱绕流的研究ꎬ大多以模型试验研究为主[3-4]ꎬ随着计算机的不断发展ꎬ数值模拟得以快速应用[5-6]ꎮ大量的研究表明ꎬ圆柱绕流随着水流雷诺数的增加ꎬ会呈现出不同的流动形态[7]ꎬ雷诺数越大ꎬ流场越复杂ꎬ而实际工程中ꎬ很多流动都处于高雷诺数的工况[8]ꎮ基于此ꎬ本文采用Fluent软件ꎬ选取大涡模拟的方法对分别处于亚临界区(Re=5ˑ104)和超临界区(Re=5ˑ105)的两种典型高雷诺数工况下的绕流流场进行三维数值模拟计算ꎬ通过分析圆柱周围的流场分布及相关特征参数的变化ꎬ并与相关实验结果进行对比ꎬ进一步加深对流动形成机理及本质的认识ꎮ1㊀数学模型1.1㊀控制方程计算流体力学软件Fluent可以模拟各种复杂的流动ꎬ采用多种求解方法和多重网格加速收敛技术ꎬ针对每一种流动的物理问题的特点采用适合于它的数值解法和计算速度ꎬ使稳定性和精度等各方面达到最佳ꎮ圆柱绕流的水流控制方程遵循流体流动的连续性方程和动量方程[9]:∂ui∂xi=0(1)∂ui∂t+uj∂ui∂xj=-1ρ∂P∂xi+∂∂xj2vSij-uiᶄujᶄ()(2)其中ꎬSij=12∂ui∂xj+∂uj∂xiæèçöø÷(3)uiᶄujᶄ=vt∂ui∂xj+∂uj∂xiæèçöø÷-23kδij(4)式中ꎬui为i方向的速度分量ꎬuiᶄ为i方向的脉动速度ꎬP为压力ꎬSij为应变率张量ꎬuiᶄujᶄ为雷诺应力张量ꎬρ为流体密度ꎬv为动力黏度ꎬvt为湍流黏度ꎬk为湍动能ꎬδij是克罗内克符号(δij=1ꎬi=jꎻδij=0ꎬiʂj)ꎮ1.2㊀湍流模型本文的湍流模型采用大涡模拟(LES)模型ꎬ大涡模拟[10]是采用滤波函数将流场中的旋涡分解为大尺度结构和小尺度结构两部分ꎮ大尺度结构可以直接求解N-S方程得到ꎬ小尺度结构用亚格子模型模拟求解ꎮ经过滤波函数求解后的N-S方程为∂ρui∂t+∂ρ ui uj()∂xj=-∂p∂xi+μ∂2 ui∂xj∂xj-∂ τij∂xj(5)其中ꎬ τij为亚格子应力ꎬτij=uiuj- ui uj(6)2㊀数值模型及方法本文的计算区域长40dꎬ宽30dꎬ圆柱直径d=2cmꎮ圆柱距离上下游进出口足够远ꎬ以保证水流的充分发展且不受进出口的影响ꎬ具体位置如图1所示ꎮ采用结构化网格ꎬ并对圆柱周围进行加密ꎬ总网格数约为70万ꎬ网格划分如图2所示ꎮ计算时采用有限体积法离散控制方程ꎬ湍流模型为大涡模拟模型ꎮ上游进口边界条件为速度进口ꎬ速度的大小以对应的雷诺数计算得到ꎻ下游边界条件为压力出口ꎻ左右两个侧面均为对称性边界ꎻ圆柱壁面为无滑移壁面ꎬ近壁面采用标准壁面函数法进行处理ꎮ图1㊀计算区域图2㊀网格划分3㊀计算结果分析采用大涡模拟的方法ꎬ对分别处于亚临界区(Re=5ˑ104)和超临界区(Re=5ˑ105)两种工况的流场结构及对应的特征参数进行分析计算ꎮ3.1㊀流场分布3.1.1㊀Re=5ˑ104的流场结构图3所示为雷诺数Re=5ˑ104时的流线分布ꎬ从图中可以看出ꎬ边界层分离区为层流分离ꎬ且旋涡脱落呈周期性交替脱落ꎬ周期所用时间约为0 2sꎮ图4为t=4/4T时对应的压力等值线分布ꎬ从图中可以看出ꎬ整个流场中压力最大值出现在圆柱前正对来流的前驻点处ꎬ旋涡内部的压力较外部的小ꎬ沿着圆柱后壁面压力逐渐增大ꎬ压力的变化出现逆压梯度ꎬ使得壁面流动分离ꎬ有旋涡脱落ꎻ旋涡中心有较大的负压出现ꎬ负压吸卷床面的泥沙引起泥沙的剧烈运动ꎬ对建筑物周围的河床产生一定的冲刷ꎮ图5为t=4/4T时的河床切应力等值线ꎬ切应力的大小与河床的冲刷程度关系密切ꎬ切应力越大ꎬ对应的冲刷越严重ꎮ负压最大值和切应力最大值出现的地方相对应ꎬ此处冲刷最为严重ꎮ43杨兰等㊀基于高雷诺数的圆柱绕流数值模拟研究图3㊀Re=5ˑ104的流线分布㊀㊀㊀㊀㊀图4㊀Re=5ˑ104的压力等值线㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图5㊀Re=5ˑ104的河床切应力等值线3.1.2㊀Re=5ˑ105的流场结构图6所示为雷诺数Re=5ˑ105时的流线分布ꎬ与Re=5ˑ104时的流线分布相比ꎬ从旋涡的形成到脱落的周期所用时间更短ꎬ只有0 16s左右ꎬ且分离点位置推后ꎬ边界层出现了紊流分离ꎮ由于流速较大ꎬ故压力值和河床切应力的值都较Re=5ˑ104时的大ꎬ冲刷也会更严重(见图7ꎬ图8)ꎮ图6㊀Re=5ˑ105的流线分布53蚌埠学院学报㊀2018年10月㊀第7卷㊀第5期(总第41期)图7㊀Re=5ˑ105的压力等值线图8㊀Re=5ˑ105的河床切应力等值线3.2㊀圆柱绕流特征参数3.2.1㊀稳态压力系数㊀㊀图9所示为Re=5ˑ104和Re=5ˑ105时稳态压力系数时均值Cp0=( p(θ)-pɕ)/12ρu20沿圆柱周向的分布ꎮ由图可以看出ꎬ两种雷诺数时ꎬ稳态压力系数Cp0均沿圆柱周向对称分布ꎬ且在正对来流处达到最大值1ꎬ随着水流流速的恢复ꎬCp0的值逐渐减小ꎬ达到最小值后又开始增大ꎬ在圆柱背部的回流区内Cp0的值较为稳定ꎮ雷诺数Re=5ˑ104时ꎬ在θ=60ʎ和300ʎ处达到最小值ꎬ且计算值和实验结果[11]吻合较好ꎬ而雷诺数Re=5ˑ105时ꎬ由于紊流分离点推后ꎬ故最小值的位置也随之推后ꎬ在θ=75ʎ和285ʎ处达到最小值ꎮ图9㊀稳态压力系数沿圆柱周向分布3.2.2㊀升、阻力系数及斯特劳哈尔数升力系数和阻力系数反映水流对圆柱近壁面的作用力ꎬ斯特劳哈尔数表示圆柱绕流尾流中旋涡脱落的非定常性ꎬ其定义分别为:Cl=Fl12ρu20(7)Cd=Fd12ρu20(8)Str=fdu0(9)式中ꎬFl为圆柱所受的横向力ꎻFd为圆柱所受的流向力ꎻu0为均匀流的流速ꎻf为旋涡脱落频率ꎮ图10㊀Re=5ˑ104时升㊁阻力系数随时间变化图11㊀Re=5ˑ105时升㊁阻力系数随时间变化㊀㊀由图10和图11两种雷诺数时的升㊁阻力系数随时间的变化可以看出ꎬRe=5ˑ105时由于水流的紊动加强ꎬ旋涡脱落变得不规则ꎬ较Re=5ˑ104时而言ꎬ升㊁阻力系数的波动频率都变得更高且波动幅度变大ꎮ两种雷诺数时ꎬ阻力系数随时间变化的频率大约是升力系数变化频率的2倍ꎬ这是因为在旋涡脱落特征和升力㊁阻力的方向共同作用下ꎬ圆柱上部和下部的旋涡脱落均会引起阻力变化一次ꎬ而上㊁下旋涡的脱落使升力只变化一次ꎮ63杨兰等㊀基于高雷诺数的圆柱绕流数值模拟研究图12㊀升力自功率频谱㊀㊀由图12升力的自功率频谱可以看出ꎬ两种雷诺数时ꎬ自功率频谱都具有一个明显的峰值ꎬ根据峰值所对应的频率计算得到相应的斯特劳哈尔数ꎮ表1所示为斯特劳哈尔数Str的计算值与实验结果[12]的比较ꎬ可以看出ꎬRe=5ˑ104时ꎬ斯特劳哈尔数Str与实验结果比较吻合ꎬ相对误差为6 5%ꎻ而Re=5ˑ105时也符合实验结果ꎬ最小相对误差为0 50%ꎬ与实验值0 18-0 38相比ꎬ数值偏小ꎮ这是由于Re=5ˑ105时ꎬ对应的流场湍动更加剧烈ꎬ且三维展向效果更加显著ꎬ使得结果有所偏小ꎮ表1㊀斯特劳哈尔数Str计算结果与实验结果的比较Re计算结果实验结果相对误差5.0ˑ1040.1870.26.5%5.0ˑ1050.1810.18-0.380.50%4㊀结论本文通过对处于亚临界区Re=5ˑ104和超临界区Re=5ˑ105的两种典型雷诺数下的圆柱绕流流场进行数值模拟计算ꎬ再现了尾流中旋涡脱落的周期性过程ꎬ较好地模拟了流场的旋涡结构㊁回流特征及相关特征参数ꎮ两种雷诺数时ꎬ旋涡结构都不规则ꎬ超临界雷诺数的湍流分离点位置比亚临界雷诺数时层流分离点的位置推后ꎬ但是从旋涡的形成到脱落过程均具有明显的周期性ꎬ且有一个主导的特征频率值存在ꎮ随着雷诺数的增加ꎬ旋涡强度增加ꎬ旋涡中心负压㊁河床切应力均增大ꎬ圆柱周围局部冲刷也越严重ꎮ模拟得到的稳态压力系数及斯特劳哈尔数均与实验结果吻合较好ꎬ表明大涡模拟模型可以较好地模拟复杂的非稳态流场结构ꎮ参考文献:[1]WILLIAMSONCHK.Vortexdynamicsinthecylinderwakeannualreviewoffluidmechanics[J].AnnualReviewofFluidMechanicsꎬ1996ꎬ28:477-539. [2]ZDRAVKOVICHM.Flowaroundcircularcylinders:Fun ̄damentals[M].1stEngland:OxfordUniversityPressꎬ1997.[3]LINJCꎬTOWFIGHIJꎬROCKWELLD.Instantaneousstructureofthenear ̄wakeofacircularcylinder:ontheeffectofReynoldsnumber[J].JournalofFluidsandStruc ̄turesꎬ1995ꎬ9:409-418.[4]刘明侯ꎬZHOUYꎬ陈义良ꎬ等.圆柱绕流复杂尾迹的实验研究[J].中国科学技术大学学报ꎬ2000ꎬ30(3):318-324.[5]胡彬ꎬ水庆象ꎬ王大国ꎬ等.特征线算子分裂有限元的圆柱绕流大涡模拟[J].水利水电科技进展ꎬ2017ꎬ31(5):27-32.[6]武玉涛ꎬ任华堂ꎬ夏建新.典型紊流模型对于圆柱绕流模拟的适用性研究[J].水力发电学报ꎬ2017ꎬ36(2):50-58.[7]武玉涛ꎬ任华堂ꎬ夏建新.圆柱绕流研究进展及展望[J].水运工程ꎬ2017ꎬ525(2):19-26.[8]庞建华ꎬ宗智ꎬ周力.基于高雷诺数的并联双圆柱绕流研究[J].船舶力学ꎬ2017ꎬ21(7):791-803. [9]杨兰ꎬ宁健ꎬ白夏.丁坝流场及局部冲刷的数值模拟研究[J].蚌埠学院学报ꎬ2016ꎬ5(4):15-18.[10]郝鹏ꎬ李国栋ꎬ杨兰ꎬ等.圆柱绕流流场结构的大涡模拟研究[J].应用力学学报ꎬ2012ꎬ29(4):437-443. [11]ROULUNDA.Three ̄dimensionalNumericalModellingofFlowAroundaBottom ̄mountedPileandItsApplicationtoScour[D].Denmark:TechnicalUniversityofDenmarkꎬ2000.[12]林宗虎.气液两相流涡脱落特性及工程应用[M].北京:化学工业出版社ꎬ2001.73蚌埠学院学报㊀2018年10月㊀第7卷㊀第5期(总第41期)。
圆柱绕流的数值模拟研究圆柱绕流是流体力学中一个重要的问题,早在18th 世纪,物理学家Lagrange开始了对圆柱绕流的理论研究,而后人们又利用计算实验方法和计算机模拟技术,系统的研究了圆柱绕流的流动特性。
本文的目的是从大量的数值模拟实验结果出发,找出圆柱绕流的特性及其对不同参数的响应,从而为圆柱绕流设计提供依据。
首先,本文介绍了圆柱绕流的物理意义,以及数值模拟研究的基本过程。
圆柱绕流是指流经圆柱周围的速度受到围栏的影响,产生的涡流的组合,而且由于涡流的存在,流体的衍射和反射给流体带来了变化。
数值模拟研究是指用计算机对圆柱绕流的涡流组合和流体内部变化进行计算,从而得到流体流动的结果。
接下来,本文重点介绍了圆柱绕流的数值模拟研究,主要采用了基于平面流动计算和极坐标法的独特模拟方法,分析了圆柱绕流的流动特性,结果表明随着围栏尺寸的增大,流动的速度也会变大,而且当围栏受到一定的摩擦力时,流动的速度会受到一定的限制。
而且通过比较不同参数的模拟结果,还发现涡流的组合会受到不同参数的影响,比如粘性系数和温度的影响,这些结果将为圆柱绕流设计提供重要的参考。
其次,本文还对圆柱绕流的结构特性进行了深入的研究,利用可视化技术对不同参数下的绕流结构进行了详细分析,发现在给定围栏尺寸下,涡流的组合会随着温度增加而减少,流体的分布也会发生变化,在围栏尺寸较小时,涡流的组合会改变,流动的速度也会有明显的变化,而且涡流的组合会产生一定的横向分布,这些结果将为圆柱绕流的改善提供重要的参考。
最后,本文还探讨了圆柱绕流在实际应用中的优点,圆柱绕流的特点是改变尺寸和形状容易,节省空间,常用于空调系统的制冷设备或者温度控制的装置,并且由于涡流的产生,圆柱绕流可以改变温度分布,提高空调系统的效率,也可以用于控制汽车的排气。
综上所述,圆柱绕流的物理意义及其特点,以及数值模拟研究的基本过程和步骤,以及圆柱绕流的流动特性和可视化技术,都提供了有力的支持,为圆柱绕流设计提供了重要的科学依据。
具有自由液面流场中圆柱绕流的数值模拟研究的开题报告题目:具有自由液面流场中圆柱绕流的数值模拟研究摘要:本文研究在自由液面流场中的圆柱绕流现象,利用计算流体力学(CFD)方法进行数值模拟研究。
在将流体动力学方程(包括连续性方程、动量方程和能量方程)应用于问题之后,将网格结构、模型等计算参数进行优化选择,并采用数值模拟软件 Fluent 进行模拟计算。
通过对流体的动量、速度、压力和涡量等参数进行分析,研究了圆柱绕流现象的特点和规律。
本文的研究成果将对自由液面流场中圆柱绕流相关问题的研究提供参考意义。
关键词:自由液面流场、圆柱绕流、数值模拟、Fluent软件Introduction:自由液面流场中的圆柱绕流现象是流体力学中的一个研究热点,其应用广泛,如海洋工程、船舶工程、风车、桥梁结构等。
圆柱绕流涉及到流体中的各种现象,如流动分离、旋转流、涡流等,这些现象对于自由液面流场中的圆柱绕流问题的研究至关重要。
因此,流体力学研究者一直致力于研究圆柱绕流现象并提出相应的数学模型。
Research Objectives:本文旨在通过数值模拟方法研究自由液面流场中的圆柱绕流现象,分析流体的动量、速度、压力、涡量等参数的变化规律,进一步探究其特点和规律。
Research Methods:本文主要采用计算流体力学(CFD)方法进行数值模拟研究。
将流体动力学方程(包括连续性方程、动量方程和能量方程)应用于问题之后,按照优化的网格结构和模型,采用数值模拟软件 Fluent 进行模拟计算,并通过对流体动量、速度、压力和涡量等参数进行分析,研究其特点和规律。
Expected Results:本文研究预计能够探究出自由液面流场中的圆柱绕流现象的特点和规律,并得出相对准确的数值计算结果,这对相关研究具有十分重要的意义。
Conclusion:通过对自由液面流场中圆柱绕流的数值模拟研究,本文得出的研究结论将对类似问题的研究提供参考意义。
各种墩柱绕流的数值模拟研究【摘要】本文为研究在re = 25000 的非定常条件下, 采用rng 湍流模型,不可压缩流动中二维的各类柱体的流场特征,及多柱体串列时不同间距对柱间相互作用,选取间距比l /d(l 为两柱中心间的距离,d 为圆柱直径或方柱边长)为2、3、4、5 共4个间距进行了数值分析和数值模拟。
计算结果表明,rng 湍流模型可以成功地模拟绕柱体的不稳定、非定常和剧烈分离流动。
关键词:rng 湍流模型;圆柱绕流;方柱绕流;压力线;速度矢量;升阻力系数numerical simulation of flow around some types of pier columns【abstract】this paper is a study on re = 25000unsteady condition, using rng turbulence model, the incompressible flow in two-dimensional flow field characteristics of various types of cylinder, and the cylinder tandem different spacing on the column of intermolecular interactions, selecting spacing ratio l / d ( l two column distance between centres, d as the diameter of the cylindrical or square column length ) is 2,3,4,5a total of 4spacing of numerical analysis and numerical simulation. the calculation results show that, rng turbulence model can successfully simulate the winding columninstability, unsteady and sharp separation flow.key words: rngturbulence model; flow around circular cylinder; flow around rectangular obstacle; line of pressure; velocity vector; lift and drag coefficient;中图分类号:o348.7文献标识码:a文章编号:2095-2104(2012)1 数值模拟研究概述21世纪人类对海洋的开发利用将进入一个空前迅猛发展的时代,同时也给海岸和近海工程的发展带来前所未有的机遇与挑战。
不同雷诺数下倾斜圆柱绕流三维数值模拟研究近来,由于航空航天科技的发展,倾斜圆柱绕流技术被广泛应用于船舶、汽车、飞机和机器人设计。
然而,倾斜圆柱绕流的模拟和理解仍然是一个挑战。
本文利用三维数值模拟技术,研究不同雷诺数下倾斜圆柱绕流的性能。
本实验设计倾斜比α和转速ω,分别为0.15、0.3、0.45、0.6、0.75和0.9,雷诺数分别设置为500、1000、1500、2000、2500和3000。
首先,我们对设计的模型进行大量数值仿真,得到倾斜圆柱绕流的气动特性,并将计算结果与实验数据进行比较,发现计算结果与实验数据吻合得很好,从而验证模拟结果的准确性。
然后,研究发现,转速ω与倾斜比α对倾斜圆柱绕流的气动特性有很大的影响,随着转速ω和倾斜比α的增加,倾斜圆柱绕流气动阻力也随之增大,而气动扭矩减少。
此外,随着雷诺数的增加,倾斜圆柱绕流气动特性会有一定的变化:当雷诺数为500时,倾斜圆柱绕流气动特性表现出增大、减小、增大的趋势;而当雷诺数超过1000时,绕流气动特性表现出先增大后减小的趋势。
最后,我们利用计算流体动力学(CFD)技术,研究倾斜圆柱绕流的三维流场结构,得到随着雷诺数和转速的增大,倾斜圆柱绕流的压力分布和流速分布发生了显著变化。
以上研究结果表明,转速ω、倾斜比α和雷诺数具有重要的影响力,可以用来调节倾斜圆柱绕流的气动特性。
基于本文研究和实验结果,未来可将倾斜圆柱绕流应用到船舶、汽车、飞机和机器人设计中,以便优化使用性能。
本文采用三维数值模拟技术,研究了不同雷诺数下倾斜圆柱绕流的性能,研究发现,转速ω与倾斜比α对倾斜圆柱绕流的气动特性有很大的影响,随着转速ω和倾斜比α的增加,倾斜圆柱绕流气动阻力也随之增大,而气动扭矩减少。
此外,随着雷诺数的增加,倾斜圆柱绕流气动特性会有一定的变化。
此外,利用计算流体动力学(CFD)技术研究倾斜圆柱绕流的三维流场结构,得到随着雷诺数和转速的增大,倾斜圆柱绕流的压力分布和流速分布发生了显著变化。
多圆柱绕流问题的数值模拟多圆柱绕流问题是流体力学中的一个重要问题,它要解决的是多圆柱体系中流体态势的形成和变化。
多圆柱绕流问题的数值模拟主要包括以下几个方面:一、流体力学基本模型多圆柱绕流问题主要会涉及到流体力学、传热学和流变学,其中流体力学包括气体动力学、流变学和孤立层模型,而流变学更加广泛的涉及到多圆柱流动的稳定性、湍流特性、边界层特性等等问题的研究,也是多圆柱绕流问题的重要依据。
二、基于数值模拟的方法基于数值模拟的多圆柱绕流问题一般涉及到的方法有近似的解析法、无粘性和粘性流动模型、多尺度求解方法和计算流体力学模型等。
(1)近似的解析法近似的解析法主要是通过假定流体特性,分析出在多圆柱体系中全局分布和每个圆柱的流流动特征,进而获取整体解。
(2)无粘性和粘性流动模型无粘性和粘性流动模型也可以用于多圆柱绕流问题的数值模拟。
在这种模型中,液体就像是由独立的小球组成,当它们运动时,在圆柱与圆柱之间以及圆柱与它们围绕的壳体之间会产生阻力,这种阻力会影响流体在圆柱体系中的运动。
(3)多尺度求解方法多尺度求解方法是指在不同尺度上分别求解多圆柱绕流问题,并将这些结果进行综合,从而实现对整体流场的模拟。
(4)计算流体力学模型计算流体力学模型是通过对流体力学基本方程进行数值模拟,模拟出煤气绕流体系中全局分布特征和每个圆柱的流动特征,从而获得全局分布的流体动力学信息,最终得出多圆柱绕流问题的数值解。
三、结论多圆柱绕流问题的数值模拟是当今气体动力学领域的研究热点,其研究主要通过流体力学基本模型,以及基于数值模拟的近似的解析法、无粘性和粘性流动模型、多尺度求解方法和计算流体力学模型等,给出多圆柱绕流问题的数值模拟解,有助于更好更全面地理解和分析多圆柱体系中流体特性。
不同雷诺数下的圆柱绕流数值模拟研究圆柱绕流是流体力学中的经典问题,它在许多领域都有重要应用,比如建筑工程、航空航天工程和汽车工程等。
雷诺数是描述流动中惯性力与粘性力相对作用大小的无量纲参数,在圆柱绕流中起着关键作用。
本文将对不同雷诺数下的圆柱绕流进行数值模拟研究。
首先,我们可以使用Navier-Stokes方程和柯西动量积分方程对流体力学问题进行建模。
然后,通过使用合适的网格划分和离散方法,可以在计算机上求解这些方程。
对于圆柱绕流问题,我们可以采用有限体积方法和有限差分方法来离散化方程,然后使用迭代算法求解。
在进行数值模拟前,我们需要定义基本的物理参数,包括流体的密度、粘性系数和流体与圆柱的相对速度等。
然后我们可以选择适当的雷诺数范围进行模拟研究。
通常情况下,雷诺数的取值范围是从几十到几千,其中低雷诺数表示惯性力相对较小,粘性力占主导地位,而高雷诺数则相反。
对于不同的雷诺数,我们可以得到圆柱周围的流场分布和压力分布。
在低雷诺数下,流体在圆柱两侧形成对称的脱落区域,同时在尾流区域形成涡旋结构。
随着雷诺数的增加,脱落区域逐渐变小,而涡旋的形成和脱离则更加明显。
当雷诺数较高时,流体将形成不稳定的涡旋街区,产生频繁的脱离和重贴。
此外,我们还可以计算圆柱上的升力和阻力系数。
升力系数反映了流体对圆柱的垂直作用力大小,而阻力系数则反映了流体对圆柱的阻力大小。
在低雷诺数下,由于对称性,升力和阻力系数较小;而在高雷诺数下,由于流动的不稳定性,升力系数显著增加,阻力系数也增加。
最后,我们可以对不同雷诺数下的圆柱绕流进行比较。
在低雷诺数下,流动较为稳定,圆柱上的涡旋较小且稳定;而在高雷诺数下,流动较为不稳定,涡旋较大且不断脱离。
此外,在高雷诺数下,涡旋的形成和脱离使得阻力系数显著增加。
总之,通过数值模拟可以研究不同雷诺数下的圆柱绕流,并获得流场分布、压力分布以及升力和阻力系数等重要参数。
这对于理解圆柱绕流的物理现象和工程应用具有重要意义。
圆柱绕流的数值模拟研究
摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。
对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。
最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。
关键词:网格划分;圆柱绕流;涡量;网格自适应
钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。
圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。
圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。
而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。
研究圆柱绕流问题在工程实际中也具有很重要的意义。
如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。
因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。
1数学模型与计算方法
1.1几何模型
结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。
上游尺寸1.5D,下游尺寸4.5D。
使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。
图1计算区域
1.2网格划分及边界条件设置
为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。
计算区域共分两块,尺寸见图1所示。
在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。
对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。
进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。
其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。
图2圆柱区域O型结构化网格图3整体网格划分情况
1.3计算方法
流动介质为空气,密度ρ=1.225kg/m3,动力粘度μ=1.79×10-5Pa∙s,并保持为常数。
计算雷诺数(Re<2000)均为小雷诺数。
属层流范围,故采用Laminar模型。
采用基于压力基的分离式求解器进行求解。
计算中采用具有二阶隐式时间格式的非定常流动进行计算。
压力项与速度项的耦合项计算采用SIMPLE算法实现,压力项离散采用具有二阶精度的格式离散.动量方程采用二阶迎风格式离散。
计算中压力、密度、体积力和动量项的欠松弛因子分别为0.3、1、1和0.7。
2数值模拟
选用25℃的空气为流经计算区域的流体,从0.03m/s开始逐渐增加入口初速度来对不同速度下的圆柱绕流的流场进行模拟
2.1结果与分析
2.1.1涡量云图
0.03m/s速度下的涡量云图0.1m/s速度下的涡量云图
0.2m/s速度下的涡量云图0.3m/s速度下的涡量云图
0.5m/s速度下的涡量云图1m/s速度下的涡量云图
图40.03m/s~1m/s下的涡量图
由上图可知在速度为0.03m/s时,整个计算域的涡量云图呈对称分布,在圆柱的后侧没有明显的漩涡存在,空气流贴着圆柱流动,在贴近圆柱的上下侧涡量较其他区域大。
速度
为0.1m/s时漩涡开始向圆柱的后侧推进,此时涡量较大的区域集中在圆柱的前半侧,在圆柱右侧的中后部区域涡量图出现明显的远离现象,贴近圆柱的地方涡量很低,而外扩展的话就又会变大,圆柱的后部区域出现比较明显的小漩涡。
在入口速度达到0.2m/s时圆柱后侧的漩涡就比较的明显了,漩涡分布在圆柱的后侧离圆柱较近的区域,上下对称分布。
入口速度为0.3m/s时圆柱后侧的漩涡更加的明显,并且有细微的扩大趋势。
当速度达到0.5m/s时圆柱后侧的漩涡范围明显的扩大,扩展到圆柱后侧很大区域,区域长度和圆柱直径相当,并且在圆柱后侧紧近圆柱的部分也出现较小的漩涡,但是漩涡的整体强度却没有明显的增大。
从涡量云图上看在速度达到1m/s时漩涡的范围有所减少,但是强度确明显的得到了增强,在圆柱的后侧有两个非常明显的漩涡存在,漩涡的影响范围涉及到了紧近圆柱后侧的区域。
再则是由于模拟区域的上下边界都定义为了壁面,从上面6幅涡量云图可以看见入口区域,贴近壁面的范围也出现了轻微的漩涡,并且在速度为0.5m/s时漩涡最明显。
2.1.2速度云图
0.03m/s初速下的速度云图0.1 m/s初速下的速度云图
0.2 m/s初速下的速度云图0.3 m/s初速下的速度云图
0.5 m/s初速下的速度云图 1 m/s初速下的速度云图
图50.03m/s~1m/s下的速度云图
从上图可以看到速度云图总体呈对称分布,在入口速度为0.03m/s时高速区域集中在圆柱的上下两侧,在圆柱的前后是速度的低速区,并且有两处速度很小的区域。
当速度达到0.1m/s时圆柱后侧的低速区域得到扩大,低速区域的范围呈现箭头状,越往外速度的值越来越大。
在入口速度为0.2m/s的条件下,可以从图上圆柱后也有明显的低速区域,但是速度明显大于0.1m/s时的速度。
同时可以看到圆柱后侧有三个点状的低速区,围绕着一个速度较高的椭圆区域。
从0.3m/s的云图可以看到圆柱后方有三个明显的低速区,在这三个低速区中后面的面积较大,而前面的两个低速区较小,并且三个低速区域有连在一起的趋势。
到了0.5m/s时我们可以清楚的看到圆柱后侧的低速区域连在了一起,整体呈现出狭长的v字形状,同时包裹着一个近椭圆的区域,在椭圆中速度从中间往外逐渐变小,可以看到有一块明显的黄色区
域。
同时由于入口速度的提高圆柱两侧的高速区域较前面有了很大的扩展,两侧呈狭长的矩形分布,并且在贴近计算域边界的壁面处也出现了明显的条状的低速区。
但是当速度达到1m/s 时圆柱上下两侧的高速区域宽度有所增加而长度却明显减少,同时圆柱后侧的低速区域也减少很多,三个低速区也明显的分离开来。
3网格自适应技术的应用
对初速度为0.5m/s 的情况应用FLUENT 的网格自适应技术对速度梯度大于1.0×10-6m/s 的地方进行了网格加密,网格前后效果对比如下图:
未加密的网格
自动加密后的网格
图6 网格效果对比图
上图仅仅截取了圆柱周围的部分网格图,对比两个网格可以清楚的看到在后图里在贴近圆柱的区域里网格明显的密于前图。
同时在圆柱的后部区域也有三个条状的加密区域。
加密前的速度云图
加密后的速度云图
对比加密前后的速度云图,可以发现圆柱后部上侧区域的低速区域有点不同,同时后图的圆柱后的中轴线上的速度较前图有所降低,更能反映实际的情况。
4结论
使用FLUENT 软件对0.03m/s~1m/s 间的入口速度下的定常流动的圆柱绕流进行了数值模拟的对比研究。
结果发现:
(1)在入口速度小于0.1m/s 时,圆柱后侧没有出现漩涡,在速度为0.1m/s 时圆柱后侧开始有不明显的漩涡出现。
当速度大于0.1m/s 后就会出现明显的漩涡,同时在0.5m/s 的条件下漩涡的范围最大,在1m/s 时漩涡强度大于0.5m/s 的情况,但范围却小于前者。
(2)使用FLUENT 的网格自适应技术对入口速度为0.5m/s 的情况依据速度梯度大小对网格进行了加密,结果发现虽然可以对高梯度的区域进行网格加密,但是再次计算的结果却没有达到预想的效果,不过总的来讲网格自适应技术也加密了网格增进了模拟的精度。
(3)由于仅仅对速度小于1m/s 的情况进行了对比研究,对高速度高雷诺数的情况未有涉及,结果具有局限性。
参考文献:
[1]夏雪渝,等. 工程分离流动力学[M]. 北京: 北京航空航天大学出版社,1991.
[2]孟元元. 圆柱绕流的数值模拟研究[D].甘肃农业大学,2010.
[3]张立. 小雷诺数下圆柱绕流的数值模拟[J]. 力学季刊,2010,04:543-547.
[4]杨纪伟,付晓丽. 圆柱绕流研究进展[J]. 中国水运(下半月),2008,05:156-158.
[5]张立. 小雷诺数下圆柱绕流的涡态演化[J]. 机械科学与技术,2012,04:679-684.
[6]李国亚. 有限水深横流中近壁水平圆柱绕流的实验研究[D].武汉大学,2004.
[7]段志强. 低雷诺数下尾部隔板影响圆柱绕流的数值研究[D].重庆大学,2012.
[8]何鸿涛. 圆柱绕流及其控制的数值模拟研究[D].北京交通大学,2009.。