第讲两个重要极限极限存在准则
- 格式:pptx
- 大小:404.83 KB
- 文档页数:43
两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。
其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。
第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。
其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。
这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。
柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。
而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。
这两个定理的应用范围和方法略有不同。
除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。
无穷小是指极限趋近于零的数列或函数。
对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。
对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。
无穷大则是指极限趋于无穷的数列或函数。
对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。
对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。
准则1:若数列}{n x 、}{n y 、}{n z 满足以下条件:(i ) N n ∈∃0,当0n n >时,有n n n z y x ≤≤; (ii )a y n n =∞→lim ,a z n n =∞→lim 。
那么数列}{n x 极限存在,且a x n n =∞→lim 。
证明:因为a z y n n n n ==∞→∞→lim lim ,所以对0,01>∃>∀N ε,当1N n >时,有ε<-a y n ,即εε+<<-a y a n ,对2N ∃,当2N n >时,有ε<-a z n ,即εε+<<-a z a n ,又因为n n n z x y ≤≤,所以当},{21N N Max N n =>时,有εε+<≤≤<-a z x y a n n n ,即有:εε+<<-a x a n ,即ε<-a x n ,所以 a x n n =∞→lim 。
准则1′如果函数)(),(),(x h x g x f 满足下列条件:(i )当))(,(0M x r x U x >∈∧时,有)()()(x h x f x g ≤≤。
(ii )当)(0∞→→x x x 时,有A x h A x g →→)(,)(。
那么当)(0∞→→x x x 时,)(x f 的极限存在,且等于A 。
第一个重要极限:1sin lim0=→xxx作为准则I ′的应用,下面将证明第一个重要极限:1sin lim 0=→xxx 。
证明:作单位圆,如下图: 设x 为圆心角AOB ∠,并设20π<<x 见图不难发现:AOD AOB AOB S S S ∆∆<<扇形,即:x x x tan 2121sin 21<<,即 x x x tan sin <<, (因为20π<<x ,所以上不等式不改变方向,若02<<-x π,不等式也成立)当x 改变符号时,x x x sin ,cos 及1的值均不变,故对满足20π<<x 的一切 x ,有1si n co s <<x xx 。
两个极限存在准则和两个重要的极限1.两个极限存在准则(1) 夹逼准则:设a, b, c为实数,如果函数f(x)在a的一些左邻域内对于一切x都有h(x)≤f(x)≤g(x),且lim[x→a]h(x)=lim[x→a]g(x)=L,则必有lim[x→a]f(x)=L。
夹逼准则的本质是通过构造两个函数作为边界来确定原函数的极限。
(2) 单调有界准则:设函数f(x)在(a, b)上单调递增(递减),且在(a, b)上有界,则必有lim[x→a]f(x)=sup{f(x)}(或lim[x→a]f(x)=inf{f(x)})。
单调有界准则的基本思想是通过函数的单调性和有界性来确定极限。
(1) 无穷小极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=0,如果对于任意正数ε,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有,f(x),<ε,那么称函数f(x)在x=a处的极限为0。
无穷小极限的重要性在于它在微积分中有广泛应用。
例如,微分定义中的导数可以看作是函数在其中一点的极限,这也符合函数在该点的变化趋势比较明显。
无穷小极限的概念使得我们能够更好地描述和理解函数在其中一点的变化情况。
(2) 无穷大极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=∞,如果对于任意正数M,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有f(x) > M,那么称函数f(x)在x=a处的极限为无穷大。
无穷大极限的重要性在于它可以帮助我们研究函数在其中一点的增长速度和趋势。
例如,在极限定义中,我们可以通过无穷大极限来刻画函数在其中一点的无限增长或无限逼近的情况。
此外,无穷大极限也在微积分中的积分定义中有重要的应用,帮助我们理解函数的积分和面积的概念。
综上所述,极限的存在准则和重要的极限是微积分中的重要概念。
了解它们的定义和应用可以帮助我们更好地理解和分析函数在其中一点的变化情况,为进一步研究微积分和数学分析打下坚实的基础。