细胞生物学——核糖体学习资料
- 格式:ppt
- 大小:314.50 KB
- 文档页数:21
高中生物核糖体知识点核糖体是细胞中的一个重要细胞器,它是蛋白质合成的场所,也是高中生物课程中的重要知识点。
下面将从核糖体的结构、功能以及合成蛋白质的过程等方面来介绍核糖体的相关知识。
一、核糖体的结构核糖体是由核糖核酸(rRNA)和蛋白质组成的复合物。
在真核细胞中,核糖体分为大、小、中三个亚单位,分别为大亚单位(60S)、小亚单位(40S)和中亚单位(5.8S)。
而在原核细胞中,核糖体则分为大、小两个亚单位,分别为大亚单位(50S)和小亚单位(30S)。
二、核糖体的功能核糖体是蛋白质合成的场所,它通过读取mRNA上的遗传密码,将mRNA上的信息转化为氨基酸序列,从而合成蛋白质。
核糖体的功能主要可以分为三个方面:1. 担任翻译作用:核糖体通过识别mRNA上的起始密码子,并将其翻译为氨基酸序列,从而合成蛋白质。
2. 维持结构稳定:核糖体的结构稳定性对蛋白质的合成起着重要作用。
它能够保持合适的空间结构,使得tRNA和mRNA能够正确地结合在一起。
3. 负责核糖体组装:核糖体的组装是一个复杂的过程,需要参与多个rRNA和蛋白质的相互作用。
核糖体通过组装不同的rRNA和蛋白质,形成不同的亚单位,从而完成核糖体的组装。
三、核糖体的合成蛋白质过程核糖体合成蛋白质的过程主要包括三个阶段:起始阶段、延伸阶段和终止阶段。
1. 起始阶段:在起始阶段,小亚单位首先与mRNA和起始tRNA 结合,形成起始复合物。
起始复合物由起始tRNA和小亚单位的特定蛋白质组成。
随后,大亚单位与小亚单位结合,形成完整的核糖体。
2. 延伸阶段:在延伸阶段,核糖体沿着mRNA的模板链进行滑移,将tRNA上携带的氨基酸逐个添加到正在合成的多肽链上。
这个过程需要依赖rRNA的催化作用和tRNA的识别作用。
3. 终止阶段:在终止阶段,当到达终止密码子时,核糖体停止合成蛋白质,并释放蛋白质和mRNA。
这个过程需要依赖特定的终止tRNA和终止因子。
四、核糖体的调控核糖体的合成和活性受到多种因素的调控,包括细胞内外的信号以及某些特定的蛋白质。
与核糖体有关的知识点高一与核糖体有关的知识点核糖体是细胞中的一种重要细胞器,它参与了蛋白质的合成过程。
下面是与核糖体相关的一些重要知识点。
1. 核糖体的结构核糖体由两个亚单位组成,分别称为大亚单位和小亚单位。
在真核生物中,大亚单位含有三个RNA链和多种蛋白质,而小亚单位含有一个RNA链和少数蛋白质。
2. 核糖体的功能核糖体的主要功能是将mRNA上的密码子与tRNA上的氨基酸配对,从而在蛋白质合成过程中确定氨基酸的顺序。
它还可以提供一个平台,使mRNA和tRNA之间的相互作用得以发生。
3. 核糖体的合成核糖体的合成是一个复杂而精确的过程。
在核糖体合成过程中,rRNA(核糖体RNA)和蛋白质逐步组装在一起,并在细胞核中形成预核糖体。
预核糖体随后通过核孔转运到细胞质,并在那里经过成熟化,最终形成功能完整的核糖体。
4. 核糖体的位置在真核生物中,核糖体通常位于细胞质中,并且可以存在于游离状态或附着在内质网上。
在原核生物(如细菌)中,核糖体则位于细胞质中。
5. 核糖体的大小和组成核糖体的大小是以Svedberg单位(S)来表示。
在真核生物中,大亚单位约为60S,小亚单位约为40S,两个亚单位结合后形成一个80S的完整核糖体。
在原核生物中,大亚单位约为50S,小亚单位约为30S,形成一个70S的核糖体。
6. 核糖体与抗生素的关系由于核糖体在蛋白质合成中扮演着重要角色,因此抗生素常常会以各种方式干扰核糖体的正常功能。
例如,青霉素类抗生素可以阻断核糖体上的氨酰-tRNA与mRNA之间的结合,从而抑制细菌的蛋白质合成。
7. 核糖体的演化核糖体是生物界中普遍存在的一种细胞器,它在不同生物中的结构和组成略有差异。
通过对各种生物中核糖体的比较研究,科学家们得出了一些关于生物演化的重要结论,并证实了核糖体的共同祖先。
总结起来,核糖体是细胞中不可或缺的细胞器,它在蛋白质合成过程中发挥着重要的作用。
通过了解核糖体的结构、功能、合成过程以及其与抗生素的关系,我们可以更好地理解细胞的基本生物学过程。
核糖体知识点总结首先,我们来了解一下核糖体的结构。
核糖体呈现出一个小而细长的圆柱状结构,类似于一个小颗粒。
它由两个亚单位组成,分别是大亚单位和小亚单位。
大亚单位主要包含三个不同的位点,称为A位点、P位点和E位点。
而小亚单位主要负责识别mRNA上的启动子序列,并形成起始复合物。
接下来,我们来了解一下核糖体的功能。
核糖体主要的功能是合成蛋白质。
在蛋白质合成的过程中,mRNA会被核糖体识别,并且与tRNA上的氨基酸进行配对。
核糖体通过识别mRNA上的密码子来寻找正确的tRNA,并将氨基酸连接在一起合成蛋白质。
此外,核糖体还有一个重要的功能,就是保证蛋白质的正确合成。
在核糖体中,mRNA上的密码子会与tRNA上的反密码子进行配对,这样保证了蛋白质的正确合成。
如果配对错误,核糖体会停止合成蛋白质,从而保证了蛋白质的正确性。
除此之外,核糖体还参与了细胞的调控和信号传导。
在细胞的正常功能中,核糖体不仅仅是合成蛋白质的工具,它还可以通过改变mRNA的翻译速率来调控蛋白质的合成量。
此外,核糖体还可以调控细胞的新陈代谢和生长。
它使得细胞可以根据环境的变化来调整自身的生长和代谢。
接下来,我们来了解一下核糖体的合成。
核糖体的合成主要通过核糖体RNA的转录合成。
核糖体RNA是由基因转录合成的一种RNA,它与蛋白质组成了核糖体的结构。
在核糖体RNA的合成过程中,DNA上的核糖体RNA基因会被RNA聚合酶依据DNA模板合成核糖体RNA前体。
之后,核糖体RNA前体会经过一系列的加工和修饰,最终形成成熟的核糖体RNA。
最后,我们来看一下核糖体在生物学中的意义。
核糖体是构成细胞的一种重要的结构,它参与了蛋白质的合成和细胞代谢的调控。
在细胞的正常功能中,核糖体是不可缺少的。
例如,在感染病毒的过程中,核糖体可以成为潜在的治疗靶点。
通过抑制核糖体的正常功能,可以有效地阻断病毒的蛋白质合成,从而达到抑制病毒复制的目的。
总的来说,核糖体是一个细胞中非常重要的结构,它不仅参与了蛋白质的合成,还参与了细胞的调控和信号传导。
高一生物核糖体知识点生物学中,核糖体是一种位于细胞质内的细胞器,其主要功能是参与蛋白质合成。
核糖体由RNA和蛋白质组成,其中RNA占主导地位。
本文将针对高一生物核糖体的知识点进行详细阐述。
1. 核糖体的结构核糖体由大、小两个亚基组成。
大亚基是较大的亚单位,通常由28S rRNA、5.8S rRNA和5S rRNA以及多个蛋白质组成,而小亚基是较小的亚单位,由18S rRNA和多个蛋白质组成。
两个亚基结合后形成完整的核糖体结构。
核糖体大小亚基之间的结合是通过一些蛋白质桥连接在一起的。
2. 核糖体的功能核糖体是蛋白质合成的主要场所,它参与翻译mRNA上的遗传信息,将其转化为具体的氨基酸序列。
核糖体通过结合mRNA的起始密码子,并沿着mRNA链逐个读取密码子,利用tRNA将特定的氨基酸送到合适的位置上,最终完成蛋白质的合成。
3. 核糖体的组成核糖体主要由rRNA和蛋白质组成。
rRNA(核糖体RNA)是核糖体的主要构成部分,其作用是提供支架结构和催化蛋白质合成的活性中心。
蛋白质则充当核糖体结构的支持者和辅助因子,确保核糖体能够正常运作。
4. 核糖体的生物合成核糖体的生物合成包括转录、加工和组装三个过程。
首先,rRNA基因在细胞核中经过转录产生初级rRNA转录产物,经过后续加工,获得成熟的rRNA分子。
随后,rRNA分子结合蛋白质,形成核糖体的前体颗粒。
这些前体颗粒进一步经过加工和核糖体成熟反应,最终形成功能完整的核糖体。
5. 核糖体的种类核糖体在不同的生物中存在一定的差异,通常通过对rRNA和蛋白质的序列分析可进行分类。
细菌核糖体相对简单,由两个亚基组成,一般表示为70S(50S + 30S)。
真核生物核糖体较为复杂,由四个亚基组成,一般表示为80S(60S + 40S)。
6. 核糖体与生物进化的关系核糖体在生物进化过程中具有高度保守性。
rRNA和蛋白质在不同物种中均具有相似的序列和结构,这表明核糖体在进化中起到了重要的功能和结构保持作用。
文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.第十一章核糖体一、核糖体的结构及功能核糖体是体积较小的无膜包围的细胞器,在光镜下看不到。
1958年才把这种含有大量RNA的能合成蛋白质的关键装置定名为核糖核蛋白体ribosome,简称为核糖体。
(一)核糖体的一般性质1、存在与分布核糖体存在一切生物的细胞中,包括真核细胞和原核细胞。
这是有别于其它细胞器的特点。
在真核细胞中,有些核糖体是游离分布在细胞质基质中,也有许多是附着在rER膜及核膜外表。
此外,还有核糖体是分布在线粒体和叶绿体的基质中。
在原核细胞内,大量核糖体游离在细胞质中,也有的附着在质膜内侧面。
细菌的核糖体占总重量的25—30%2、形态和大小一般直径为25—30nm,由大、小两亚单位构成,通常是以大亚单位附在内质网膜或核膜外表。
当进行蛋白质合成时,小亚单位先接触mRNA才与大亚单位结合,而合成完毕后又自行解离分开。
另外,多个核糖体还可由mRNA串联成多聚核糖体polyribosome(=polysome),每个多聚核糖体往往由5-6个核糖体串成,但也有多至50个以上的(例如肌细胞中合成肌球蛋白的多聚核糖体是由60—80个串联而成)。
3.数量和分类细胞中的核糖体数量多少不一。
一般来说,增殖速度快的细胞中偏多,分泌蛋白质的分泌细胞中也较多。
例如分泌胆汁的肝细胞中为6X 106个,大肠杆菌中为1500—15000个。
在不同类型生物细胞之中,核糖体大小及组分都有一定差1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.异。
一般可分为两大类:80S型和705型。
大亚单位60S真核生物核糖体80S v小亚单位40S大亚单位50S原核生物核糖体70S一小亚单位30S(“S”是沉降系数的衡量单位。
大、小亚单位组成核糖体, 并非由其两者的S值直接相加,这是因为S值变化其实是与颗粒的体积及形状相关的。
十二、核糖体1、概述是一种核糖核蛋白颗粒,是细胞内合成蛋白质的细胞器,其功能是按照mRNA 的信息将氨基酸高效精确地合成多肽链。
核糖体几乎存在一切细胞内,除了在哺乳动物成熟的红细胞等极个别高度分化的细胞内。
核糖体是一种不规则的颗粒状结构,没有生物膜包裹,直径为25~30nm,主要成分是RNA(rRNA)【2/3,在内部】和蛋白质(r蛋白)【1/3,表面】,二者靠非共价键结合。
附着在糙面内质网表面或原核细胞质膜内侧的称附着核糖体;不附着在膜上的称游离核糖体。
两者结构与化学组成完全相同,所合成的蛋白质种类不同。
核糖体的实质是核酶。
2、类别和化学组成两种基本类型:原核细胞核糖体,真核细胞核糖体。
rRNA中的某些核苷酸残基被甲基化修饰,发生在序列保守的区域。
大小亚基常游离于细胞质基质中,只有当小亚基与mRNA结合后大亚基才与小亚基结合形成完整的核糖体。
3、形态结构X射线衍射分析-获得高质量的核糖体晶体-2009年诺贝尔化学奖-核糖体的三维结构和功能rRNA折叠成高度压缩的三维结构,构成核糖体的核心。
r蛋白有一个球形的结构域和伸展的尾部,球形结构域分布于核糖体表面,伸展尾部伸入核糖体内折叠的rRNA分子中。
活性部位只包括rRNA,核糖体大小亚基结合面无r蛋白分布,说明r蛋白本身不参与将遗传信息变成蛋白质的反应,起稳定rRNA 作用。
每个核糖体有4个RNA分子结合位点,其中1个mRNA结合,3个供tRNA 结合,A位点、P位点、E位点。
16S rRNA在一级结构上进化保守,某些序列完全一致,二级结构具有更高的保守性(多个茎环组成的结构)。
4、核糖体的功能部位及其作用①与mRNA结合的位点:原核中,mRNA的结合位点位于16S rRNA的3’端,mRNA的SD序列能与16S rRNA的3’端互补结合;真核中,小亚基识别主要依赖于mRNA 5’端的甲基化帽子结构。
②A位点:与新掺入的氨酰-tRNA结合的位点【氨酰基位点】③P位点:与延伸中的氨酰-tRNA结合的位点【肽酰基位点】④E位点:脱氨酰tRNA的离开A位点到完全释放的一个位点⑤延伸因子EF-G(与肽酰tRNA从A位点转移到P位点有关的转移酶)的结合位点⑥肽酰转移酶的催化位点——最主要的活性部位r蛋白作用推测:对rRNA折叠成有功能的三维结构十分重要;r蛋白对核糖体的空间构象起微调的作用。