海洋风机基础设计分析平台
- 格式:pdf
- 大小:857.73 KB
- 文档页数:3
三桩基础海上风机整体结构的共振分析海上风机的共振分析对于设计和运维至关重要。
共振是指当一个物体的振动频率与另一个物体的振动频率相接近时,会引起共振现象,从而增加结构的振动幅度和应力,甚至导致结构破坏。
对于海上风机这种高度暴露于海洋环境中的结构来说,共振分析尤为重要。
下面将从风机塔架、机舱和叶轮等三个方面对海上风机的共振分析进行探讨。
首先,风机塔架是风机结构的主要承载部分,也是常发生共振问题的地方。
在共振分析中,首先需要确定塔架的垂直共振频率和水平共振频率。
对于垂直共振,主要是分析风荷载和塔身自身结构的自振引起的共振。
对于水平共振,主要是分析风向输入振动引起的共振。
为了降低共振频率的影响,可以采取以下措施:一是增加塔身的刚度,可以通过增加塔身截面的尺寸或采用高强度材料来实现;二是通过增加阻尼措施来抑制共振现象,比如在塔身上安装阻尼器或阻尼器;三是通过改变塔身的几何形状来改变其共振频率。
其次,机舱是风机的控制中心,也是共振分析的重点之一、机舱内部包含了风机的发电装置、传动装置等,这些设备在工作过程中会产生振动,并且这些振动也会对整个机舱结构产生影响。
因此,在共振分析中,需要对机舱内的振动进行分析,并采取措施来降低机舱的共振现象。
一方面,可以通过对机舱内设备的布局和固定方式进行优化来减小振动的产生;另一方面,可以通过增加机舱结构的刚度和降低共振频率来避免共振问题。
最后,叶轮是风能转化为机械能的关键部分,也是容易发生共振的地方。
叶轮在运行过程中会受到风的作用力和旋转运动的惯性力的影响,这些力会引起叶轮的振动。
为了避免共振问题,可以考虑以下措施:一是增加叶轮的刚度,可以通过增加叶片的截面尺寸或采用高强度材料来实现;二是通过改变叶轮的扭曲角度或叶片的布置方式来改变叶轮的共振频率;三是增加叶轮的阻尼来抑制共振现象。
综上所述,海上风机的共振分析是保证其设计和运维安全的重要环节。
在共振分析中,需要对风机塔架、机舱和叶轮等三个方面进行分析,通过增加结构的刚度、增加阻尼和改变结构的几何形状等措施来降低共振的影响。
论海上风电风机基础几种结构模式优劣王钟庆发布时间:2021-11-22T08:39:17.055Z 来源:基层建设2021年第25期作者:王钟庆[导读] 在海上风电场建设中,风机基础的成本占总造价的比例较高广西广投海上风电开发有限责任公司广西南宁 530000摘要:在海上风电场建设中,风机基础的成本占总造价的比例较高,根据海上风电场不同海域环境,使用要求,选择不同的风机基础结构模式,是保障海上风电机组基础稳定性、可靠性和经济性的关键。
关键词:海上风电;风机基础;结构模式1前言国外海上风电建设起步较早,上世纪90年代,欧洲国家开始研发海上风机,并在装机容量等方面取得了一定成果,机组可靠性也进一步提高,海上风电产业得到迅猛发展,大型海上风电场开始出现。
我国海上起步比较晚,但发展比较快,自2009年起,我国海上风电开发建设工作全面启动,国家有关部门在发展规划、支持政策、管理流程等方面支持下,充分激发了市场活力。
此外,先后出台《海上风电开发建设方案及有关管理要求》《海上风电开发建设管理办法》,简化了项目开发建设管理程序,明确了用海标准与规定,为推动产业发展提供了持续稳定的市场环境。
近年来我国相关企业的投资积极性不断提升,海上风电开发建设速度明显加快,装备及工程技术不断突破,产业服务体系不断完善,海上风电产业发展取得了显著成果,前景可期。
2海上风电风机基础结构模式在海上风电场建设中,风机基础的成本占总造价的比例较高,根据海上风电场不同海域环境,使用要求,选择不同的风机基础结构模式,是保障海上风电机组基础稳定性、可靠性和经济性的关键。
国内外海上风电基础一般有桩(承)式基础、重力式基础、桶式(负压式)基础、浮式基础等形式,其中桩(承)式基础又分为单桩基础和多桩导管架基础,多桩导管架又分为单立柱多桩基础、桁架是导管架基础、多桩承台基础,单立柱多桩基础主要有三脚架基础、高三桩门架基础、其他单立柱多桩基础;多桩承台基础主要有高桩承台基础和低桩承台基础。
海上风电机组基础结构设计标准《海上风电机组基础结构设计标准》一、适用范围本标准适用于海上风电机组基础结构的设计,包括海上桩基式塔座和浮式塔座。
二、基础结构(一)基础结构组成部分:1. 基础结构的组成部分,包括基础结构的顶部平台、基础结构的腹部、基础结构的桩体或者浮体壳体。
2. 基础结构安装的安全装置。
(二)基础结构的设计要求:1. 基础结构的设计使用年限应满足设备设施安装的要求,保护安装的设备设施不受损坏。
2. 基础结构的设计应符合国家有关规定,并考虑海洋环境的特殊要求,且考虑海洋环境中的气候、海浪强度、土质结构和岩石属性等进行设计。
3. 基础结构的设计应考虑与海洋环境的配合,使其能够抵抗海洋环境的冲击,如海浪冲击、风荷载、悬浮物等,并具备相应的生态保护功能。
4. 基础结构的设计应确保其结构平衡,结构完整,不变形。
5. 基础结构的设计应考虑机组的振动,采用合理的减振措施,控制振动的扩散,保证机组的正常运行。
6. 基础结构的设计应考虑潮汐、海浪、风荷载等荷载和环境条件,以确保机组能够正常运行。
7. 基础结构的设计应考虑设备安装的方便性和机组维护的要求,使其能够满足机组的维护要求。
三、总体设计(一)总体设计的要求:1. 总体设计时应考虑到机组的布局,包括机组与港口的距离、机组之间的距离等,确保机组能够正常运行。
2. 总体设计时应考虑机组的布局与现有工程的叠放关系,使机组的安全运行不受影响。
3. 总体设计时应考虑到机组的安全性,能够满足机组的安全要求,并预留必要的维护空间和设备安装空间,以确保机组能够顺利运行。
4. 总体设计时应考虑海洋环境的影响,确保机组能够顺利运行,并考虑海岸线环境保护的要求,防止对海洋环境造成污染。
(二)总体设计的内容:1. 基础结构的设计,包括机组的布局,配套设施的设计,以及机组配置技术要求的考虑等。
2. 机组的抗海洋环境性能设计,包括抗海浪冲击性能、抗风荷载性能、抗潮汐性能等。
海上风机基础形式介绍如下:
一、单桩式基础
单桩式基础是最早也是最简单的一种海上风机基础形式。
它的原理是在海底钻孔后,将一根或多根桩驳入海底,形成一个单桩或者多桩的基础支撑系统。
该基础形式适用于比较浅的海域,桩身一般要求较粗,以满足在海洋环境下的稳固支撑。
优点是安装简单、成本较低,缺点是承载力较小、易受海底地质条件和海浪影响,而且不适合深水区的风电场。
二、桶式基础
桶式基础是一种较新的海上风机基础形式,它是将一种可以漂浮的桶状物质放置在海底或者浮标上,并以桶自身的重量或向下排水来产生足够的稳定力支撑风机。
该基础形式适用于水深较深,基础不易沉入海底的场合,可以大大减少安装的难度和成本。
然而,由于该基础的尺寸较大,在运输和装配方面会存在一定困难。
三、吊装式基础
吊装式基础是一种相对比较常见的海上风机基础形式。
它的原理是在海底先钻好一个孔,再将整个基础系统通过吊装机构放置在孔里。
该形式的设计使其能够适应不同水深和地质条件,同时也提高了基础的承载能力。
由于需要吊装机构的配合,它的装配难度和成本较高。
四、桩框式基础
桩框式基础是一种兼具单桩式基础和框架式基础的特点的海上风机基础形式。
它的基本结构是一组互相平行的桩体形成的桩群,在桩群
的顶部固定一个框架,风机塔身在框架上安装。
该基础形式适用于在较小的面积内固定多台风机,同时也可以降低风机维护和维修的成本。
海上风机基础形式摘要:一、引言1.全球能源状况与可再生能源的重要性2.海上风力发电的发展背景与现状二、海上风电机组基础结构1.海上风电机组基础形式的分类2.各类基础结构的特点与适用情况三、海上风电基础的优缺点分析1.优点2.缺点四、海上风电基础的发展趋势1.技术创新与发展方向2.市场需求与政策支持五、结论1.海上风电基础在风电场建设中的重要性2.对未来海上风电基础发展的展望正文:一、引言1.全球能源状况与可再生能源的重要性随着全球气候变暖和能源价格的持续上涨,发展新能源和可再生能源已成为一个全球化态势。
许多国家和地区都纷纷制定了发展可再生能源的政策框架,以应对能源危机和环境问题。
其中,海上风力发电作为一种清洁、可再生的能源形式,受到越来越多国家的关注和重视。
2.海上风力发电的发展背景与现状海上风力发电是指在海上利用风力发电机组进行发电的一种可再生能源形式。
相较于陆上风力发电,海上风力发电具有风力资源更丰富、占地面积小、对土地资源影响小等优点。
近年来,随着技术的不断创新和成熟,海上风力发电在全球范围内得到了广泛应用和快速发展。
二、海上风电机组基础结构1.海上风电机组基础形式的分类海上风电机组基础结构主要分为以下几种形式:单桩基础、多桩基础、导管架基础、浮式基础等。
各种基础结构有其独特的特点和适用情况。
2.各类基础结构的特点与适用情况(1)单桩基础:单桩基础是指风电机组通过一根桩基固定在海床上。
这种基础结构简单、施工方便,适用于水深较浅、海床地质条件较好的区域。
(2)多桩基础:多桩基础是指通过多根桩基将风电机组固定在海床上。
这种基础结构稳定性较好,适用于水深较深、海床地质条件较差的区域。
(3)导管架基础:导管架基础是指通过一个导管架将风电机组固定在海床上。
这种基础结构适用于水深较深、风力资源丰富的区域,但其施工难度较大。
(4)浮式基础:浮式基础是指风电机组通过一个浮动平台固定在海面上。
这种基础结构适用于水深较深、海床地质条件较差的区域,但其设计和施工难度较大。
海上风电场风机基础介绍技术服务中心业务筹备部前言近年来,国家对清洁能源特别是风电的发展在政策上给予了很大支持,使得中国风电得到蓬勃发展。
风力发电作为新能源领域中技术最成熟、最具规模化开发条件和商业化发展前景的发电方式,获得了迅猛发展。
随着风电机组从陆地延伸到海上,海上风电正成为新能源领域发展的重点。
本文结合国内外海上风电场具体的风机基础,对现有的海上机组的基础类型逐一介绍,目的是对海上风机基础形成一个初步的了解,为公司日后的海上服务业务做铺垫。
为人类奉献白云蓝天,给未来留下更多资源。
2目录1 风机基础类型--------------------------------------- 4 1.1 重力式基础----------------------------------------- 4 1.2 单桩基础------------------------------------------- 6 1.3 三脚架式基础--------------------------------------- 8 1.4 导管架式基础-------------------------------------- 10 1.5 多桩式基础---------------------------------------- 111.6 其他概念型基础------------------------------------ 122 海上风力发电机组基础维护 -------------------------- 14为人类奉献白云蓝天,给未来留下更多资源。
3为人类奉献白云蓝天,给未来留下更多资源。
4 1 风机基础类型1.1 重力式基础重力式基础,顾名思义是是靠重力来追求风机平衡稳定的基础,重力式基础主要依靠自身质量使风机矗立在海面上,其结构简单,造价低且不受海床影响,稳定性好。
缺点是需要进行海底准备,受环境冲刷影响大,且仅适用于浅水区域。
海上风机单桩基础水平位移敏感性分析许成顺;孙毅龙;张小玲;席仁强【摘要】海上风机结构属于高耸结构,风机基础过大的水平位移,将会影响风机结构的整体稳定性,因此研究风机基础的水平位移的影响因素规律具有重要意义.基于OPENSEES有限元平台,建立海上风机动力分析模型,探讨了水体附加质量对桩基桩顶水平位移的影响,同时分析了海水深度、钢管桩壁厚、土的有效重度、内摩擦角、不排水剪切强度等因素对风机基础桩顶水平位移的敏感性.研究结果表明水体附加质量对大直径钢管桩的桩顶水平位移影响较小,最大约为1%;砂土地基中,影响桩顶水平位移的主要参数是内摩擦角,软粘土地基中,影响桩顶水平位移的主要参数是钢管桩的桩径;在砂土和软粘土中,桩基础的埋深对桩项水平位移的影响均存在一个临界深度.【期刊名称】《海洋技术》【年(卷),期】2018(037)004【总页数】7页(P82-88)【关键词】海上风机;单桩基础;水平位移;OPENSEES;敏感性分析【作者】许成顺;孙毅龙;张小玲;席仁强【作者单位】北京工业大学城市与工程安全减灾教育部重点实验室,北京100124;北京工业大学城市与工程安全减灾教育部重点实验室,北京100124;北京工业大学城市与工程安全减灾教育部重点实验室,北京100124;北京工业大学城市与工程安全减灾教育部重点实验室,北京100124【正文语种】中文【中图分类】TU470;P74海上风力发电具有占地面积少、对环境影响小、运营时间长等特点,越来越受到各国能源界的重视[1-2]。
风机是高耸结构,桩顶水平位移会在风机顶端产生放大效应,单桩基础过大的桩顶水平位移会影响风机结构的整体稳定性[3],因此桩顶水平位移是风机基础设计中要考虑的重要因素。
在海上风机研究中,Liao W M等[4]进行了海上风机单桩基础室内缩尺试验,研究了风机基础在动荷载作用下的水平位移、桩的挠曲等动力变形特性。
AchmusM等[5]建立了数值模拟模型,引入了土体累积变形的影响,研究结果表明土体的累积变形与桩的埋深、桩径、荷载周期密切相关。
海上风电项目海洋勘测与风机基础设计随着全球对可再生能源需求的不断增长,海上风电作为一项具有巨大潜力的能源产业备受关注。
而在海上风电项目的实施过程中,海洋勘测和风机基础设计是至关重要的环节。
本文将介绍海洋勘测的重要性,以及风机基础设计的相关考虑因素。
1. 海洋勘测的重要性海洋勘测是海上风电项目的前提和基础,它包括对海底地质条件、海流、风速、潮汐等自然环境因素进行全面和准确的调查和测量。
海洋勘测的目的是为项目选址提供科学依据,确保风机的安全和高效运行。
以下是海洋勘测的几个重要方面:1.1 地质探测地质条件对风机基础的稳定性和可靠性有着重要影响。
通过地质探测可以了解海底的岩层、沉积物、孔隙度、地下水位等情况,以便确定风机基础的类型和形式。
常用的地质探测方法包括钻探、声学探测、地震勘测等。
1.2 海洋气象观测海洋气象观测包括对风速、风向、波浪高度、浪周期等气象因素进行连续测量和分析。
这些数据对风机的设计和运行具有至关重要的意义。
通过海洋气象观测,可以选择适宜的风机类型和电动机功率,以及优化风机的操作和维护策略。
1.3 海流观测海流是海上风电项目中不可忽视的因素之一。
它对风机的桨叶推进力和方向产生影响,进而影响风机的输出功率和稳定性。
通过对海流进行全面观测和分析,可以选择合适的风机位置和方向,并设计相应的海洋结构物来承受海流的冲击力。
2. 风机基础设计的考虑因素风机基础的设计在海上风电项目中起着关键作用,它保证了风机在海洋环境中的稳定性和可靠性。
以下是风机基础设计的几个关键考虑因素:2.1 水平稳定性水平稳定性是指风机基础在海洋环境中抵御侧向力和倾覆的能力。
设计师需要充分考虑海上风电项目所处的地质条件、波浪和风速等因素,采用适当的基础类型和结构形式,确保风机能够稳定地运行。
2.2 竖直稳定性竖直稳定性是指风机基础在海底地质条件中保持稳定的能力。
根据海洋勘测数据和地质探测结果,设计师可以选择适当的基础类型,如单桩基础、浮式基础或钢管桩基础,并合理确定基础的深度和直径。
海上风电基础施工方案一、前言随着可再生能源的发展和对环境保护的日益重视,海上风电逐渐成为清洁能源领域发展的热点。
本文将针对海上风电基础施工方案进行探讨和分析,为海上风电项目的建设提供参考。
二、施工前准备1.勘测与设计阶段在进行海上风电基础施工前,需要对风力资源进行详细的勘测,确定风电场布局和选址等。
同时,还需要进行海洋环境勘测,包括水深、波浪、潮流等参数的测量,以便为基础施工提供准确的数据支持。
2.材料采购与准备根据设计方案,需要提前计划并采购所需的施工材料,包括钢材、混凝土、缆绳等。
同时,也需要准备相关的设备和工具,如起重机、打桩机等,以确保施工过程的顺利进行。
三、基础施工技术1.桩基施工针对海上风电的桩基施工,常见的方法有打桩法和冲洗法。
打桩法适用于土质较硬的海床,通过大型钢管桩或钢筋混凝土桩的打桩作用来固定风机基础。
而冲洗法适用于软土、半流沙等地质条件,通过将水压引入管道,冲刷地层并使土壤流动,形成孔洞来安装和固定基础。
2.浮式施工考虑到海上环境的复杂性和水深的限制,浮式施工成为一种常见的施工方式。
通过搭建浮式平台,实现基础的装配和安装。
这种施工方式灵活、高效,适应性强,可以有效提高施工进度和效率。
3.海底电缆敷设海上风电项目中,电缆是将风机与陆地电网相连接的重要纽带。
为了保证电缆的安全敷设,需要采取合适的方法,如水下拖航、潜水员布放等。
在电缆敷设过程中,需要严格控制敷设的张力、弯曲半径等参数,以免损坏电缆。
四、施工安全与质量控制1.安全措施海上风电基础施工具有一定的风险性和复杂性,需要严格遵守安全操作规程。
施工人员应定期进行安全培训,并全程佩戴必要的防护装备。
同时,施工现场应设立合适的警示标志和隔离措施,确保施工过程中人员的安全。
2.质量控制为了保证施工质量,应建立完善的质量管理体系。
施工人员需要熟悉工程图纸和技术规范,进行严格的施工操作。
建立质量检测体系,对施工过程中的关键节点进行监测和检验,确保基础的稳固性和安全性。
三桩基础海上风机结构的比较分析1. 单桩式基础单桩式基础是海上风机最早采用的基础结构之一。
其结构简单,适用于较小的风机。
该结构将风机通过一个大型钢筋混凝土柱子固定在海床上,柱子的根部会深入海床,从而能够提供足够的支撑力。
单桩式基础的成本较低,安装简单容易,但是由于单桩式基础的支撑力有限,其适用范围相对较小,只适用于海水比较浅的地区,而且其受风机承载能力较弱,易受大风和海浪的影响。
此外,由于单桩式基础的支撑力主要来自于一个钢筋混凝土柱子,因此在海底的固定工作复杂,需要较长的时间和较高的成本。
桩帽式基础是一种适用于中等大小海上风机的基础结构,其构造是将单桩式基础和浮式基础相结合设计而成。
其基本结构是将一系列钢管桩深入海床,桩的顶部用桩帽连接,风机塔架则连接在桩帽上。
桩帽式基础相对于单桩式基础来说,其承载能力更强,更适用于中等大小的海上风机。
由于其基础结构的特殊性,该结构需要较多的钢管和混凝土,造价较高。
此外,由于需要考虑到钢管桩的深入程度和桩帽的设计等复杂的因素,桩帽式基础的设计和建造难度都较高,需要较长的时间和较高的管理成本。
浮式基础是一种在深海和高浪区域中广泛应用的海上风机基础结构。
其基本结构是一种从船体上高出水面的浮体,其中心部分为一个空心柱体,柱体底部连接一些重物以保持稳定。
风机塔架则连接在柱体的顶部。
浮式基础不需要用于透过海底的结构,因此避免了海底固定的复杂性,安装和维护较为容易。
此外,由于其基础结构可以自由浮动,其对海浪和大风的适应性较强,能够在波浪荡漾的海面上安全运行。
然而,浮式基础设计和建造成本相对较高,其需要大型、复杂的安装设备和稳定性计算,同时还需要确保船只的安全性和环境友好性。
综合来看,单桩式基础、桩帽式基础和浮式基础各有其优缺点。
单桩式基础适用于海水比较浅的地区,成本低,但受大风和海浪的影响较弱;桩帽式基础适用于中等大小海上风机,受力较为稳定,但建造难度较大,成本相对较高;浮式基础适用于深海和高浪区域,能够抵御大风和海浪,但建造成本较高,需要复杂的设置来维持平稳运行。
文章来源:安世亚太官方订阅号(搜索:peraglobal)
海上风机平台作为一种能源勘探平台,在实际建造之前需要模拟整个平台的各种力学性能,包括静力学分析、动力学分析、疲劳分析等。
分析过程有助于模拟平台在各种工况条件下的结构性能,并辅助设计的改进和验证。
主要技术挑战:
●平台类型较多,实际模型较为复杂;
●边界条件复杂,包括风载荷、波浪载荷、风机载荷等;
●海底情况复杂,需要考虑地质因素;
解决方案:
●用pipe单元模型模拟实际管道,简化建模难度;
●对各种类型的载荷进行分类梳理,视工况条件施加;
●提供海况参数和地质参数模拟实际海洋环境;
●为整套流程提供可视化界面,包括前处理、边界条件施加、求解和后处理;
结论:
●通过计算模板的形式整合整个计算流程,分析覆盖静力学、动力学、疲劳等;
●平台类型包括单桩、水下多桩、水上三桩、高桩承台和导管架。
应用价值:
●海上风机设计平台模板为该种类型的平台设计提供了仿真分析的整体流程,可视化界面
操作方便,可直接生成分析报告,使专业的仿真分析更好地和设计相结合,服务于设计。
安世亚太官方订阅号(搜索:peraglobal)将为您提供CAE仿真、工业先进设计与增材制造领域最新的行业资讯、专业的课程培训、权威的技术资料、丰富的案例分析。