九年级数学难题精选(有答案)
- 格式:doc
- 大小:233.00 KB
- 文档页数:11
初三数学超难试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数y=ax^2+bx+c(a≠0)的对称轴?A. x=-b/2aB. x=b/2aC. x=a/2bD. x=b/2c答案:A2. 已知等腰三角形的两边长分别为3和6,那么这个三角形的周长是多少?A. 12B. 15C. 18D. 21答案:B3. 在一次函数y=kx+b中,若k>0且b<0,则该函数的图像不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 计算下列二次根式中,哪个是同类二次根式?A. √2和√8B. √3和√12C. √5和√20D. √6和√24答案:C6. 一个数的立方等于8,那么这个数是多少?A. 2B. -2C. 2和-2D. 以上都不对答案:C7. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是多少?A. 24cm³B. 36cm³C. 48cm³D. 52cm³答案:A8. 已知一个角的余角是30°,那么这个角的度数是多少?A. 60°B. 90°C. 120°D. 150°答案:A9. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A10. 计算:(1/2)^-1的值是多少?A. 2B. -2C. 1/2D. -1/2答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是______。
答案:±52. 一个角的补角是120°,那么这个角的度数是______。
答案:60°3. 一个正数的倒数是1/4,那么这个数是______。
答案:44. 一个三角形的内角和是______。
数学九年级模拟试卷难题【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴相交于点A,与y轴相交于点B,则△OAB的面积是:A. 3B. 4.5C. 6D. 94. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a3的值为:A. 11B. 12C. 13D. 145. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹是:A. 直线B. 圆C. 椭圆D. 双曲线二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 任何实数的平方都是非负数。
()3. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac,当Δ > 0时,方程有两个不相等的实数根。
()4. 在等差数列中,若m + n = p + q,则am + an = ap + aq。
()5. 若复数z满足|z| = 1,则z在复平面内对应点的轨迹是圆。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1) = _____。
2. 已知等差数列{an}的通项公式为an = 3n 2,则a5 = _____。
3. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹方程是_____。
4. 若函数f(x) = x³ 3x在x = 1处取得极小值,则f'(1) = _____。
5. 若直线y = kx + b与圆(x 1)² + (y + 2)² = 4相切,则k的值为_____。
练习一1.已知BC 是半径为2cm 的圆内的一条弦,点A 为圆上除点B C ,外任意一点,若BC =,则BAC ∠的度数为 .2.若a b ,均为整数,当1x =时,代数式2x ax b ++的值为0,则b a 的算术平方根为 . 3.如图(1),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则DE DF +44条,从位置A 出右行进,两步向上行进,如果用用数字“1”表示向右行进,数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有 种. 5.(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = ; (2)如果欲求232013333+++++的值,可令232013333S =+++++……………………………………………………① 将①式两边同乘以3,得………………………………………………………② 由②减去①式,得S = .(3)用由特殊到一般的方法知:若数列123n a a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则n a = (用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n a a a a ++++= (用有含1a q n ,,的代数式表示).练习二1.如图(4),在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.(1)当ECF △的面积与四边形EABF 的面积相等时,求CE 的长; (2)当ECF △的周长与四边形EABF 的周长相等时,求CE 的长;(3)试问在AB 上是否存在点P ,使得EFP △为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF 的长.图(2) 图(1)2.如图(5),已知平行四边形ABCD 的顶点A 的坐标是(016),,AB 平行于x 轴,B C D ,,三点在抛物线2425y x =上,DC 交y 轴于N 点,一条直线OE 与AB 交于E 点,与DC 交于F 点,如果E 点的横坐标为a ,四边形ADFE 的面积为1352.(1)求出B D ,两点的坐标; (2)求a 的值;(3)作ADN △的内切圆P ,切点分别为M K H ,,,求tan PFM ∠的值.练习三1.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱.2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面3.如图,在34⨯的矩形方格图中,不包含阴影部分的矩形个数是 个. 4.如图,当四边形PABN 的周长最小时,a =.5.如图,ABC △内接于O ,60BAC ∠=,点D 是BC 的中点.BC AB ,边上的高AE CF ,相交于点H .图(4)图(5)(2题1(3题图)x(4题图)试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.练习四5.阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定. 例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴--> 当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x --> (1+(2x 满足 时,(2)(1)(3)(4)0x x x x ++--<(3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<. 6.“512”汶川大地震后,某药业生产厂家为支援灾区人民,准备捐赠320箱某种急需药品,该厂家备有多辆甲、乙两种型号的货车,如果单独用甲型号车若干辆,则装满每车后还余20箱未装;如果单独用同样辆数的乙型号车装,则装完后还可以再装30箱,已知装满时,每辆甲型号车比乙型号车少装10箱. (1)求甲、乙两型号车每辆车装满时,各能装多少箱药品?(2)已知将这批药品从厂家运到灾区,甲、乙两型号车的运输成本分别为320元/辆和350元/辆.设派出甲型号车u 辆,乙型号车v 辆时,运输的总成本为z 元,请你提出一个派车方案,保证320箱药品装完,且运输总成本z 最低,并求出这个最低运输成本为多少元?练习五1.已知25350x x --=,则22152525x x x x --=-- . 2.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么2007,2008,2009,2010这四个数中 可能是剪出的纸片数. 3.阅读材料: 如图,ABC △中,AB AC =,P 为底边BC 上任意一点,点P 到两腰的距离分别为12r r ,,腰上的高为h ,连接AP ,则ABP ACP ABC S S S +=△△△. 即:12111222AB r AC r AB h +=12r r h ∴+=(定值).(1)理解与应用如图,在边长为3的正方形ABCD 中,点E 为对角线BD 上的一点,且BE BC =,F 为CE 上一点,FM BC ⊥于M ,FN BD ⊥于N ,试利用上述结论求出FM FN +的长.(2)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P 的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边ABC △内任意一点P 到各边的距离分别为123r r r ,,,等边ABC △的高为h ,试证明123r r r h ++=(定值).(3)拓展与延伸若正n 边形12n A A A 内部任意一点P 到各边的距离为12n r r r ,请问是12n r r r +++是否为定值,如果是,请合理猜测出这个定值.练习六1.如图所示,将ABC △沿着DE 翻折,若1280∠+∠=°,则B ∠=.2.已知Rt ABC △的周长是4+2,则ABC S =△ . 3.我市部分地区近年出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准备维护和新建的储水池共有20个,费用和可供使用的户数及用地情况如x y 万元.(1)求y 与x 之间的函数关系; (2)满足要求的方案各有几种;(3)若平均每户捐2000元时,村里出资最多和最少分别是多少? 4.如图所示,已知点(10)A -,,(30)B ,,(0)C t ,,且0t >,tan 3BAC ∠=,抛物线经ACPr 1r 2 h DCB A ENF M C A B P r 1r 3 r 2h过A 、B 、C 三点,点(2)P m ,是抛物线与直线:(1)l y k x =+的一个交点. (1)求抛物线的解析式;(2)对于动点(1)Q n ,,求PQ QB +的最小值; (3)若动点M 在直线l 上方的抛物线上运动,求AMP △的边AP 上的高h 的最大值.练习七1.已知2510m m --=,则22125m m m-+=___________. 2.下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有___________个,图3中以格点为顶点的等腰直角三角形共有___________个,图4中以格点为顶点的等腰直角三角形共有___________个.3.已知非负数a b c ,,满足条件75a b c a +=-=,,设S a b c =++的最大值为m ,最小值为n ,则m n -的值为___________.4.如图,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________.5.如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.练习八1.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点()()1122P x y Q x y ,、,的对称中心的坐标为1212.22x x y y ++⎛⎫⎪⎝⎭, 观察应用:(1)如图,在平面直角坐标系中,若点()()120123P P -、,的对称中心是点A ,则点A 的坐标为_________; (2)另取两点()()1.62.110.B C --,、,有一电子青蛙从点1P 处开始依次关于点A B C 、、作循环对称跳动,即第一次跳到点1P 关于点A 的对称点2P 处,接着跳到点2P 关于点B 的对称点3P 处,第三次再跳到点3P 关于点C 的对称点4P 处,第四次再跳到点4P 关于点A 的对称点5P 处,…则点38P P 、的坐标分别为_________、_________. 拓展延伸:(3)求出点2012P 的坐标,并直接写出在x 轴上与点O A CB x y2012P 、点C 构成等腰三角形的点的坐标.2.如图,在Rt ABC △中,90C ∠=°,点E 在斜边AB 上,以AE 为直径的O ⊙与BC 相切于 点.D(1)求证:AD 平分.BAC ∠ (2)若3 4.AC AE ==,①求AD 的值;②求图中阴影部分的面积.练习九1.若201120121m =-,则54322011m m m --的值是_________2.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DE 交于点O .若△ADE 的面积为S ,则四边形B0GC 的面积= _________3.已知263(5)36(3)m n m m n -+----,则m n -=4.在直角坐标系中,正方形1111A B C O 、2221A B C C 、…、n n n n-1A B C C 按如图所示的方式放置,其中点123A A A 、、、…、n A 均在一次函数y kx b =+的图象上,点123C 、C 、C 、…、n C 均在x 轴上.若点1B 的坐标为(1,1),点2B 的坐标为(3,2),则点n A 的坐标为_________5.小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果. (2)这个游戏对游戏双方公平吗?请说明理由.练习十1.同学们,我们曾经研究过n ×n 的正方形网格,得到了网格中正方形的总数的表达式为2222123...n ++++.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道1011223...(1)(1)(1)3n n n n n ⨯+⨯+⨯++-⨯=+-时,我们可以这样做:(1)观察并猜想:2212+=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2) 222123++=(1+0)×1+(1+1)×2+(l+2)×3 =1+0×1+2+1×2+3+2×3=(1+2+3)+(0×1+1×2+2×3)22221234+++=(1+0)×1+(1+1)×2+(l+2)×3+ ___________ =1+0×1+2+1×2+3+2×3+ ___________ =(1+2+3+4)+(___________) …(2)归纳结论:2222123...n ++++=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l )]n =1+0×1+2+1×2+3+2×3+…+n+(n-1)×n =(___________)+[ ___________] = ___________+ ___________ =16×___________(3 )实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是_________。
初中数学难题试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1 或 x = 6D. x = -2 或 x = -32. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可以是?A. 1B. 2C. 5D. 73. 计算下列表达式的值:(2x - 3)(x + 1) - (x - 4)(x - 2)A. 2x^2 - x - 5B. 2x^2 + 3x - 1C. 2x^2 + x - 5D. 2x^2 - 5x + 54. 一个数的平方减去4倍该数再加上4等于0,这个数是多少?A. 2B. -2C. 0D. 45. 一个圆的半径为5厘米,那么它的面积是多少平方厘米?B. 50πC. 75πD. 100π6. 下列哪个分数是最简形式?A. 3/6B. 4/8C. 5/10D. 7/147. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 108. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45度B. 90度C. 60度D. 120度9. 一个数的绝对值是3,这个数可以是?A. 3B. -3C. 3 或 -3D. 010. 下列哪个是不等式2x - 3 > 5的解?A. x > 4C. x > 2D. x < 2二、填空题(每题3分,共30分)1. 如果一个数的立方是-27,那么这个数是______。
2. 一个数的平方根是2,那么这个数是______。
3. 一个数的倒数是1/3,那么这个数是______。
4. 一个数的绝对值是5,那么这个数可以是______或______。
5. 一个数的相反数是-7,那么这个数是______。
6. 一个等腰三角形的顶角是60度,那么底角是______度。
7. 一个圆的直径是10厘米,那么它的半径是______厘米。
如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式. (3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.28、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。
为减员增效,决定从中调配x 人去生产新开发的B 种产品,根据评估,调配后,继续生产A 种产品的员工平均每人每年创造的利润可增加20%,生产B 种产品的员工平均每人每年可创造利润1.54m 万元。
(1)调配后,企业生产A 种产品的年利润为_________万元,企业生产B 种产品的年利润为_________万元(用含x 和m 的代数式表示)。
若设调配后企业全年总利润为y 万元,则y 与x 之间的关系式为y =____________。
(2)若要求调配后,企业生产A 种产品的年利润不小于调配前企业年利润的54,生产B 种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案 ?请设计出来,并指出其中哪种方案全年总利润最大(必要时,运算过程可保留3个有效数字)。
(3)企业决定将(2)中的年最大总利润(设m =2)继续投资开发新产品。
现有6种产品可供选择(不得重复投资同一种产品)各产品所需资金及所获年利润如下表:如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品?请写出两种投资方案。
25.解:(1)连结AD ,得OA=3,AD=23 ……………………1分∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上, (3)分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分x∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ON ∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分28、解:(1)m x %)201()300(+⋅-,mx 54.1,mx m x y 54.1%)201)(300(++-=(2)由题意得⎪⎪⎩⎪⎪⎨⎧⨯>⨯≥+-mmx m m x 3002154.130054%)201(0300(解得773197<x ≤100。
第22 章二次函数难题精编一.选择题(共28小题)1.若整数a使得关于x的分式方程有整数解,且使得二次函数y=(a﹣2)x2+2(a﹣1)x+a+1的值恒为非负数,则所有满足条件的整数a的值之和是()A.12B.15C.17D.202.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()A.长方形B.正方形C.正三角形D.圆3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:①abc>0;②4a+2b+c>0;③2a+c<0;④一元二次方程cx2+bx+a=0的两根分别为x1=,x2=﹣1;⑤若m,n(m<n)为方程a(x+1)(x﹣3)+2=0的两个根,则m<﹣1且n>3.其中正确的结论有()个.A.2B.3C.4D.54.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.若横、纵坐标都是整数的点叫做整点,当抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,可得m的取值范围为()A.<m≤B.≤m<C.0<m<D.0<m≤5.如图在平面直角坐标系中,一次函数y=mx+n与x轴交于点A,与二次函数交于点B、点C,点A、B、C三点的横坐标分别是a、b、c,则下面四个等式中不一定成立的是()A.a2+bc=c2﹣ab B.=C.b2(c﹣a)=c2(b﹣a)D.=+6.将函数y=﹣x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5B.3C.3.5D.47.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点在B(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论不正确的是()A.9a+3b+c=0B.4b﹣3c>0C.4ac﹣b2<﹣4a D.<a<8.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值9.如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.其中正确的判断有()A.①②③④B.②③④C.①③④D.①③10.已知函数f(x)=x2﹣2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1﹣y2|≤4,则实数a的取值范围是()A.﹣1≤a≤3B.﹣1≤a≤2C.2≤a≤3D.2≤a≤411.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B 的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤12.已知二次函数y=(m+1)x2﹣2mx+m﹣2的图象与x轴有两个交点(x1,0),(x2,0),下列说法中:①m≠﹣1;②该函数图象过定点(1,﹣1);③若该函数图象开口向下,则m的取值范围为﹣2<m<﹣1;④当m>0,且﹣2≤x≤﹣1时,y的最大值为:9m+3;⑤当m>﹣1,且该函数图象与x轴两交点的横坐标x1,x2满足﹣2<x1<﹣1,1<x2<2时,m的取值范围为:﹣<m<.正确是()A.①②③B.①③④C.②③④⑤D.①②③⑤13.已知点A(a﹣m,y1),B(a﹣n,y2),C(a+b,y3)都在二次函数y=x2﹣2ax+1的图象上,若0<m<b<n,则y1、y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y114.对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点.若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.﹣3<c<﹣2C.﹣2<c<D.c>15.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+416.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,m),与y轴的交点在(0,﹣4),(0,﹣3)之间(包含端点),下列结论:①a+c<0;②1≤a ≤;③c=a+m;④关于x的方程ax2+bx+c+1﹣m=0没有实数根.其中正确的结论有()A.4个B.3个C.2个D.1个17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>018.如图,抛物线y=ax2+bx+1的顶点在直线y=kx+1上,对称轴为直线x=1,有以下四个结论:①ab <0,②b<,③a=﹣k,④当0<x<1时,ax+b>k,其中正确的结论是()A.①②③B.①③④C.①②④D.②③④19.已知二次函数y=x2﹣bx+a﹣3的图象与x轴有交点,对称轴位于y轴左侧,则当关于a,b的代数式(a﹣6)2+b2有最小值时,该二次函数的顶点坐标为()A.(1,0)B.(1,2)C.(﹣1,0)D.(﹣1,2)20.表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y…6m11k11m6…根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④21.如图是抛物线y=﹣(x+1)2+k的部分图象,其顶点为M,与y轴交于点(0,3),与x轴的一个交点为A,连接MO,MA.以下结论:①k=3;②抛物线经过点(﹣2,3);③S△OMA=4;④当x=﹣3+时,y>0.其中正确的是()A.①③B.②③C.①④D.②④22.如图,抛物线y=x2+x+3与直线y=﹣x﹣交于A,B两点,点C为y轴上点,当△ABC周长最短时,周长的值为()A.+5B.+3C.+3D.+523.如图,已知抛物线y1=x2﹣2x,直线y2=﹣2x+b相交于A,B两点,其中点A的横坐标为2.当x 任取一值时,x对应的函数值分别为y1,y2,取m=(|y1﹣y2|+y1+y2).则()A.当x<﹣2时,m=y2B.m随x的增大而减小C.当m=2时,x=0D.m≥﹣224.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<025.如图,直线y=kx(k>0)分别与二次函数y1=x2﹣2x﹣3,y2=x2﹣6x+6在各自对称轴左侧的图象交于A,B两点,若平移直线y=kx(k>0),AB长度保持不变,则k的值为()A.B.C.D.226.已知函数y=4x2﹣4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),且(x1+x2)(4x12﹣5x1﹣x2)=10,则该函数的最小值为()A.12B.﹣12C.13D.﹣1327.如图是王阿姨晚饭后步行的路程S(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB 是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为S=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为S=﹣3(t﹣20)2+1200(5≤t≤20)28.如图,已知抛物线y=﹣x2+m(m>0)的图象分别交x轴于A、B两点,交y轴于点C,点D是y轴上一点,线段BC的延长线交线段AD于点P.若BP=,△DPC与△COB的面积相等,则点C的坐标为()A.(0,6)B.(0,3)C.(0,2)D.(0,1)二.解答题(共7小题)29.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)点P是第一象限内的抛物线上一点,过点P作PH⊥x轴于点H,交直线BC于点Q,求PQ+ CQ的最大值,并求出此时点P的坐标;(3)如图2,将抛物线沿射线BC的方向平移个单位长度,得到新抛物线y1=a1x2+b1x+c1(a1≠0),新抛物线与原抛物线交于点G.点M是x轴上一点,点N是新抛物线上一点,若以点C、G、M、N 为顶点的四边形是平行四边形时,请直接写出点N的坐标.30.如图,已知抛物线C1的顶点为E(,﹣),与x轴交于点A、B(点A在点B左侧),与y轴交于点C(0,﹣2);(1)求抛物线C1的解析式;(2)点D是抛物线C1上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,MB,NA分别交y轴于P、Q两点,求OP﹣2OQ的值.31.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交C点,点A的坐标为(﹣2,0),点C的坐标为(0,﹣3).(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.32.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?33.如图,直线y=﹣x+n与x轴交于点A(4,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式;(2)E(m,0)为x轴上一动点,过点E作ED⊥x轴,交直线AB于点D,交抛物线于点P,连接BP.①点E在线段OA上运动,若△BPD直角三角形,求点E的坐标;②点E在x轴的正半轴上运动,若∠PBD+∠CBO=45°.请直接写出m的值.34.如图,直线y=x﹣3与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,3).△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(t>0)秒,直线DF交x轴于点G,交抛物线于点P,连接PE.(1)求抛物线的解析式;(2)如图1,当S△PEF=3时,请求出t的值;(3)如图2,点M为抛物线顶点,在平面内找一点N,使点O,M,F,N为顶点构成菱形,请直接写出满足条件的点N的坐标.35.如图,已知抛物线y=ax2+bx﹣3,与x轴交于A(1,0)、B(﹣3,0)两点,与y轴的交于点C.点P是线段BC上一动点,过点P作x轴的垂线交抛物线于点D.(1)求抛物线的表达式;(2)连接CD、DB.当△BDC的面积最大时,求△BDC面积的最大值以及此时点P的坐标?(3)是否存在点P,使得△PCD是等腰三角形,若存在,求出P点的坐标.若不存在,说明理由.第22 章二次函数难题精编参考答案与试题解析一.选择题(共28小题)1.若整数a使得关于x的分式方程有整数解,且使得二次函数y=(a﹣2)x2+2(a﹣1)x+a+1的值恒为非负数,则所有满足条件的整数a的值之和是()A.12B.15C.17D.20【分析】由抛物线的性质得到,然后通过解分式方程求得a的取值;然后求和.【解答】解:∵二次函数y=(a﹣2)x2+2(a﹣1)x+a+1的值恒为非负数,∴,解得a≥3,解关于x的分式方程得到:x=,由x≠2得,a≠5,由于a、x是整数,所以a=3,x=6,a=4,x=3,a=8,x=1,同理符合a≥3的a值共有3,4,8,故所有满足条件的整数a的值之和=3+4+8=15,故选:B.【点评】本题考查的是抛物线和x轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.2.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()A.长方形B.正方形C.正三角形D.圆【分析】设铁丝的长度为a,用函数的观点求出相应图形的面积即可.【解答】解:设铁丝的长度为a,①当围成长方形时,设长为x,则宽为(a﹣x),则长方形的面积=x×(a﹣x)=﹣x(x﹣a),当x=a时,长方形的面积最大为,此时长方形为正方形,即正方形的面积大于长方形的面积;②当围成正三角形时,则三角形的边长为a,则正三角形的面积为×a×a sin60°=;③当围成圆时,则圆的半径为,则圆的面积为π()2=;而>>,即圆的面积最大,故选:D.【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,进行数据处理.3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:①abc>0;②4a+2b+c>0;③2a+c<0;④一元二次方程cx2+bx+a=0的两根分别为x1=,x2=﹣1;⑤若m,n(m<n)为方程a(x+1)(x﹣3)+2=0的两个根,则m<﹣1且n>3.其中正确的结论有()个.A.2B.3C.4D.5【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1>0,因此a、b异号,所以b>0,抛物线与y轴交点在正半轴,因此c>0,所以abc<0,于是①不正确;当x=2时,y=4a+2b+c>0,因此②正确;抛物线与x轴交点(3,0),对称轴为x=1.因此另一个交点坐标为(﹣1,0),所以a﹣b+c=0,又x=﹣=1,有2a+b=0,所以3a+c=0,而a<0,因此2a+c>0,③不正确;抛物线与x轴交点(3,0),(﹣1,0),即方程ax2+bx+c=0的两根为x1=3,x2=﹣1;因此cx2+bx+a =0的两根x1=,x2=﹣1,故④正确;抛物线y=ax2+bx+c与x轴交点(3,0),(﹣1,0),且a<0,因此当y=﹣2时,相应的x的值大于3,或者小于﹣1,即m<﹣1,n>3,故⑤正确;综上所述,正确的结论有:②④⑤,故选:B.【点评】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键.4.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.若横、纵坐标都是整数的点叫做整点,当抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,可得m的取值范围为()A.<m≤B.≤m<C.0<m<D.0<m≤【分析】根据题意判断出点A的位置,利用待定系数法确定m的范围.【解答】解:如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,对称轴x=1,∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),当抛物线经过(﹣1,0)时,m=,当抛物线经过点(﹣2,0)时,m=,∴m的取值范围为<m≤.故选:A.【点评】本题考查抛物线与x轴的交点,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.5.如图在平面直角坐标系中,一次函数y=mx+n与x轴交于点A,与二次函数交于点B、点C,点A、B、C三点的横坐标分别是a、b、c,则下面四个等式中不一定成立的是()A.a2+bc=c2﹣ab B.=C.b2(c﹣a)=c2(b﹣a)D.=+【分析】将点A(a,0)坐标代入一次函数表达式,求得一次函数的表达式为y=mx﹣am,而点B、C 在该二次函数上,则,对①②两式进行处理,即可求解.【解答】解:一次函数y=mx+n与x轴的轴交于点A,故点(a,0),将点A(a,0)坐标代入一次函数表达式得:0=am+n,解得:n=﹣am,故一次函数的表达式为y=mx﹣am,∵点B、C在一次函数上,故点B、C的坐标分别为(b,mb﹣ma)、(c,mc﹣ma),设二次函数的表达式为y=Ax2,点B、C在该二次函数上,则,(1)②﹣①得:A(b2﹣c2)=m(c﹣b),等式两边同除以Ab2得,,即,故B正确,不符合题意;(2)①÷②得:③,即C正确,不符合题意;(3)化简③得:a=,即=,故D正确,不符合题意;(4)化简A得:a2﹣c2=﹣bc﹣ab,化简得:a+b=c,而从上述各式看,该式不一定成立,故A符合题意,故选:A.【点评】本题考查的是二次函数图象上点的坐标特征,涉及到一次函数图象上点的特征,确定二次函数表达式是本题解题的关键.6.将函数y=﹣x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5B.3C.3.5D.4【分析】令y=0,则x=1±,设抛物线于x轴右侧的交点A(1+,0),翻折后的函数表达式为:﹣y′=﹣x2+2x+m,当x=4时,y′=8﹣m,当0≤x≤4时,函数的最小值为0,故函数最大值与最小值之差最小,只需要函数的最大值最小即可,即可求解.【解答】解:如下图,函数y=﹣x2+2x+m的对称轴为x=1,故顶点P的坐标为(1,m+1),令y=0,则x=1±,设抛物线于x轴右侧的交点A(1+,0),根据点的对称性,图象翻折后图象关于x轴对称,故翻折后的函数表达式为:﹣y′=﹣x2+2x+m,当x=4时,y′=8﹣m,当0≤x≤4时,函数的最小值为0,故函数最大值与最小值之差最小,只需要函数的最大值最小即可;①当点A在直线x=4的左侧时(直线n所处的位置),即1+<4,解得:m<8;当函数在点P处取得最大值时,即m+1≥8﹣m,解得:m≥3.5,当m=3.5时,此时最大值最小为3.5;当函数在x=4处取得最大值时,即m+1≤8﹣m,解得:m≤3.5,m最大为3.5时,此时最大值为m+1=4.5,故m=3.5;②当点A在直线x=4的右侧时(直线m所处的位置),即1+>4,解得:m>8;函数的最大为m+1>9>3.5;综上,m=3.5,故选:C.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点在B(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论不正确的是()A.9a+3b+c=0B.4b﹣3c>0C.4ac﹣b2<﹣4a D.<a<【分析】根据抛物线的开口方向、对称轴、顶点坐标以及与x轴、y轴的交点坐标综合进行判断即可.【解答】解:抛物线y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为x=1,则抛物线与x轴的另一个交点为(3,0),有﹣=1,即2a+b=0,图象过点(3,0),因此,9a+3b+c=0,故选项A不符合题意;图象过点(﹣1,0),故有a﹣b+c=0,即a=b﹣c,∴4b﹣3c=b+3a=﹣2a+3a=a>0,因此选项B不符合题意,由于﹣2<c<﹣1,对称轴为x=1,因此顶点的纵坐标小于﹣1,即<﹣1,就是4ac﹣b2<﹣4a,故选项C不符合题意;由﹣2<c<﹣1,b=﹣2a,a﹣b+c=0可得,﹣2<﹣3a<﹣1,所以<a<,故选项D符合题意;故选:D.【点评】本题考查二次函数的图象和性质,数形结合,不等式的性质以及等量代换在解题过程中起到非常重要的作用.8.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【分析】方法1、①当b﹣a=1时,当a,b同号时,先判断出四边形BCDE是矩形,得出BC=DE =b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan∠ABC=n﹣m,再判断出45°≤∠ABC<90°,即可得出n﹣m的范围,当a,b异号时,m=0,当a=﹣,b=时,n最小=,即可得出n﹣m 的范围;②当n﹣m=1时,当a,b同号时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,当a,b异号时,m=0,则n=1,即可求出a,b,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【解答】解:方法1、①当b﹣a=1时,当a,b同号时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADE=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,且a,b同号,∴45°≤∠ABC<90°,∴tan∠ABC≥1,∴n﹣m≥1,当a,b异号时,m=0,当a=﹣,b=时,n=,此时,n﹣m=,∴≤n﹣m<1,即n﹣m≥,即n﹣m无最大值,有最小值,最小值为,故选项C,D都错误;②当n﹣m=1时,如图2,当a,b同号时,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHN中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,当a,b异号时,m=0,∴n=1,∴a=﹣1,b=1,即b﹣a=2,∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;故选:B.方法2、当n﹣m=1时,当a,b在y轴同侧时,a,b都越大时,a﹣b越接近于0,但不能取0,即b﹣a没有最小值,当a,b异号时,当a=﹣1,b=1时,b﹣a=2最大,当b﹣a=1时,当a,b在y轴同侧时,a,b离y轴越远,n﹣m越大,但取不到最大,当a,b在y轴两侧时,当a=﹣,b=时,n﹣m取到最小,最小值为,因此,只有选项B正确,故选:B.【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.9.如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.其中正确的判断有()A.①②③④B.②③④C.①③④D.①③【分析】①把y=m+2代入y=﹣x2+2x+m+1中,判断所得一元二次方程的根的情况便可得判断正确;②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故①结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<,点M(﹣2,y1)、点N(,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故②结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故③结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:+=+=,故④结论正确;综上所述,正确的结论是①③④.故选:C.【点评】本题是二次函数的应用,主要考查二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.10.已知函数f(x)=x2﹣2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1﹣y2|≤4,则实数a的取值范围是()A.﹣1≤a≤3B.﹣1≤a≤2C.2≤a≤3D.2≤a≤4【分析】对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1﹣y2|≤4,只需最大值与最小值的差小于等于4即可,进而求解.【解答】解:函数的对称轴为x=a,而x≤2时,函数值随x增大而减小,故a≥2;∵1≤x1≤a+1和1≤x2≤a+1,∴x=a时,函数的最小值=5﹣a2,故函数的最大值在x=1和x=a+1中产生,则x=1,x=a+1那个距x=a远,函数就在那一边取得最大值,∵a≥2,∴a﹣1≥1,而a+1﹣a=1,∴1距离a更远,∴x=1时,函数取得最大值为:6﹣2a,∵对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1﹣y2|≤4,只需最大值与最小值的差小于等于4即可,∴6﹣2a﹣(5﹣a2)≤4,a2﹣2a﹣3≤0,解得﹣1≤a≤3,而a≥2,故选:C.【点评】本题考查的是二次函数图象与系数的关系,|y1﹣y2|≤4转换为最大值与最小值的差小于等于4,是解题的关键.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B 的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤【分析】①由顶点坐标公式判断即可;②根据图象得到一次函数y=kx+b当y的值随的x的增大而增大,抛物线当x大于0时y的值随的x的增大而增大,本选项正确;③AB长不可能为5,由A、B的横坐标求出AB为5时,直线AB与x轴平行,即k=0,与已知矛盾;④三角形OAB不可能为等边三角形,因为OA与OB不可能相等;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,作出对称后的图象,故y=﹣kx+b与抛物线交点横坐标分别为﹣3与2,找出一次函数图象在抛物线上方时x的范围判断即可.【解答】解:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时y的值随的x的增大而增大,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选:B.【点评】此题考查了二次函数综合题,涉及的知识有:抛物线顶点坐标公式,一次函数与二次函数的增减性,关于y轴对称点的性质,利用了数形结合的思想,熟练对称性质及数形结合思想是判断命题⑤的关键.12.已知二次函数y=(m+1)x2﹣2mx+m﹣2的图象与x轴有两个交点(x1,0),(x2,0),下列说法中:①m≠﹣1;②该函数图象过定点(1,﹣1);③若该函数图象开口向下,则m的取值范围为﹣2<m<﹣1;④当m>0,且﹣2≤x≤﹣1时,y的最大值为:9m+3;⑤当m>﹣1,且该函数图象与x轴两交点的横坐标x1,x2满足﹣2<x1<﹣1,1<x2<2时,m的取值范围为:﹣<m<.正确是()A.①②③B.①③④C.②③④⑤D.①②③⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①函数为二次函数,故m+1≠0,故m≠﹣1,正确;②当x=1时,y=(m+1)x2﹣2mx+m﹣2=﹣1,正确;③该函数图象开口向下,且与x轴有两个交点,故m+1<0,△=(﹣2m)2﹣4(m+1)(m﹣2)>0,解得:﹣2<m<﹣1,故③正确;④函数的对称轴为﹣=,当m>0时,﹣>0,故函数在x=﹣2时,取得最大值,当x=﹣2时,y=(m+1)x2﹣2mx+m﹣2=9m+2,故④错误;⑤由﹣2<x1<﹣1知,当x=﹣2和x=﹣1函数值异号,当x=﹣2时,y=9m+2,当x=﹣1时,y=4m﹣1,故(9m+2)(4m﹣1)<0,故m的取值范围为:﹣<m<,正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.13.已知点A(a﹣m,y1),B(a﹣n,y2),C(a+b,y3)都在二次函数y=x2﹣2ax+1的图象上,若0<m<b<n,则y1、y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【分析】逐次比较A、B、C三个点离函数对称轴距离即可求解.【解答】解:抛物线开口向上,对称轴为x=a,点A、B的情况:n>m,故点B比点A离对称轴远,故y2>y1;点A、C的情况:m<b,故点C比点A离对称轴远,故y3>y1;点B、C的情况:b<n,故点B比点C离对称轴远,故y2>y3;故y1<y3<y2,故选:B.【点评】本题的关键是找到二次函数的对称轴;掌握二次函数y=ax2+bx+c(a≠0)的图象性质.14.对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点.若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.﹣3<c<﹣2C.﹣2<c<D.c>【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由△>0且x=1时y>0,即可求解.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,且x1、x2都小于1,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根知:△>0,即1﹣4c>0①,令y=x2+x+c,画出该二次函数的草图如下:而x1、x2(设x2在x1的右侧)都小于1,即当x=1时,y=x2+x+c=2+c>0②,联立①②并解得:﹣2<c<;故选:C.【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.15.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2,x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=>3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.【点评】主要考查图象与二次函数系数之间的关系,解题的关键是利用韦达定理处理根和系数之间的关系.16.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,m),与y轴的交点在(0,﹣4),(0,﹣3)之间(包含端点),下列结论:①a+c<0;②1≤a ≤;③c=a+m;④关于x的方程ax2+bx+c+1﹣m=0没有实数根.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=2时,y=4a+2b+c<0,故a+c<0,正确,符合题意;②函数的对称轴为x=1,故b=﹣2a,x=﹣1时,y=a﹣b+c,故a=﹣c,而﹣4≤c≤﹣3,故1≤a≤,正确,符合题意;③由②知,b=﹣2a,c=﹣3a,所以m=a+b+c=﹣4a,则a+m=﹣3a=c,故③正确,符合题意;④y=ax2+bx+c向上平移m个单位时,抛物线顶点在x轴上,故ax2+bx+c+﹣m+1=0,无实数根,故④正确,符合题意;故选:A.【点评】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,不符合题意;B.函数的对称轴为直线x=﹣=1,则b=﹣2a,∵从图象看,当x=﹣1时,y=a﹣b+c=3a+c=0,而a<0,故4a+c<0,故B错误,符合题意;。
压轴题 经典难题〔1〕1、:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.〔初二〕2、:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .〔初二〕3、如图,四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.〔初二〕4、:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题〔二〕D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BA FG CEBO D A P C D BF1、:△ABC 中,H 为垂心〔各边高线的交点〕,O 为外心,且OM〔1〕求证:AH =2OM ; 〔2〕假设∠BAC =600,求证:AH =AO .〔初二〕2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .〔初二〕3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .〔初二〕4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .〔初二〕2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .〔初二〕3、设P 是正方形ABCD 一边求证:PA =PF .〔初二〕4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .〔初三〕经典难1、:△ABC 是正三角形,P 是三角形内一点,PA求:∠APB 的度数.〔初二〕2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .〔初二〕3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .〔初二〕 经典难题〔五〕1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题〔一〕⊥AB,连接EO 。
一、选择题(每题5分,共50分)1. 若 \(a > 0\),\(b < 0\),则以下不等式中正确的是:A. \(a + b > 0\)B. \(a - b < 0\)C. \(ab > 0\)D. \(a \div b > 0\)2. 函数 \(y = 2x - 1\) 的图像是一条:A. 斜率为正的直线B. 斜率为负的直线C. 水平直线D. 垂直直线3. 在等腰三角形ABC中,底边BC=8cm,腰AB=AC=10cm,那么顶角A的度数是:A. 30°B. 45°C. 60°D. 75°4. 若 \(x^2 - 5x + 6 = 0\),则 \(x^2 + 5x + 6 =\)?A. 0B. 1C. 2D. 35. 在平面直角坐标系中,点A(2, 3),点B(-3, -4),那么线段AB的中点坐标是:A. (-1, -1)B. (-1, 1)C. (1, -1)D. (1, 1)6. 若 \(a, b, c\) 是等差数列的前三项,且 \(a + b + c = 12\),\(abc = 27\),则该数列的公差是:A. 1B. 2C. 3D. 47. 在直角坐标系中,点P(1, 2)关于原点对称的点是:A. (1, -2)B. (-1, 2)C. (-1, -2)D. (1, 2)8. 若 \(x^2 + y^2 = 25\),\(x + y = 5\),则 \(x - y\) 的值为:A. 3B. 4C. 5D. 69. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数是:A. 75°B. 105°C. 135°D. 165°10. 若 \(a, b, c\) 是等比数列的前三项,且 \(a + b + c = 27\),\(abc = 27\),则该数列的公比是:A. 1B. 3C. 9D. 27二、填空题(每题5分,共50分)11. 若 \(x^2 - 4x + 3 = 0\),则 \(x^2 + 4x + 3 =\)________。
一、选择题(每题5分,共25分)1. 已知函数f(x) = x^2 - 2x + 1,若f(x)的图像关于直线x=1对称,则f(x)的顶点坐标为()A. (1, 0)B. (0, 1)C. (2, 0)D. (1, 2)答案:A解析:因为f(x)的图像关于直线x=1对称,所以f(1)是f(x)的最小值。
将x=1代入f(x),得f(1) = 1^2 - 21 + 1 = 0。
所以顶点坐标为(1, 0)。
2. 若a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. -1C. 1D. 无法确定答案:A解析:由等差数列的性质知,a+b+c=3b。
因为a+b+c=0,所以3b=0,解得b=0。
3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 8答案:A解析:由勾股定理知,AB^2 = AC^2 + BC^2。
将AC=3,BC=4代入,得AB^2 = 3^2 + 4^2 = 9 + 16 = 25。
所以AB=√25=5。
4. 若a、b、c是等比数列,且a+b+c=0,则b的值为()A. 0B. -1C. 1D. 无法确定答案:D解析:由等比数列的性质知,a、b、c成等比数列,所以b^2 = ac。
因为a+b+c=0,所以a=-b-c。
将a=-b-c代入b^2 = ac,得b^2 = (-b-c)c。
化简得b^2 + bc -c^2 = 0。
因为a、b、c是等比数列,所以b≠0。
所以b^2 + bc - c^2 = 0有唯一解,即b的值无法确定。
5. 已知等差数列{an}的前n项和为Sn,且S5=15,S10=50,则第15项a15的值为()A. 5B. 10C. 15D. 20解析:由等差数列的前n项和公式知,S5 = (a1 + a5) 5 / 2,S10 = (a1 + a10) 10 / 2。
因为S5=15,S10=50,所以(a1 + a5) 5 / 2 = 15,(a1 + a10) 10 /2 = 50。
一、
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,
,解得,
故抛物线为y=﹣x2+2x+3
又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得
,解得
故直线AC为y=x+1;
(2)作N点关于直线x=3的对称点N',则N'(6,3),
由(1)得D(1,4),
故直线DN'的函数关系式为y=﹣x+,
当M(3,m)在直线DN'上时,
MN+MD的值最小,则m=﹣×=;
(3)由(1)、(2)得D(1,4),B(1,2)
∵点E在直线AC上,设E(x,x+1),
①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,
∴x+3=﹣x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)
由F在抛物线上∴x﹣1=﹣x2+2x+3
解得x=或x=
∴E(,)或(,)
综上,满足条件的点E为E(0,1)、(,)或(,);(4)方法一:过点P作PQ⊥x轴交AC于点Q;
过点C作CG⊥x轴于点G,如图1设Q(x,x+1),
则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x﹣1)=-x2+x+2
又∵S△APC=S△APQ+S△CPQ=PQ·AG=(-x2+x+2)×3=-(x﹣)2+
∴面积的最大值为.
二、
已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M
交OC于D、E,连结AD、BD、BE。
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形。
_____________________,______________________
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点。
①写出顶点B的坐标(用a的代数式表示)___________。
②求抛物线的解析式。
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,
使得⊿PAN与⊿OAD相似?若存在,求出点P的坐标;若不存在,说明理由。
图1 图2
1)△OAD∽△CDB. △ADB∽△ECB
(2)①(1,-4a)
②∵△OAD∽△CDB
∴
∵ax2-2ax-3a=0,可得A(3,0)
又OC=-4a,OD=-3a,CD=-a,CB=1,
∴∴∵∴
故抛物线的解析式为:
③存在,
设P(x,-x2+2x+3)
∵△PAN与△OAD相似,且△OAD为等腰三角形∴PN=AN 当x<0(x< -1)时,-x+3=-(-x2+2x+3),x1=-2,x2=3(舍去),∴P(-2,-5)当x>0(x>3)时,x-3= -(-x2+2x+3), x1=0,x2=3(都不合题意舍去)
符合条件的点P为(-2,-5)
三、
如图,在平面直角坐标系中,点C在x轴上,∠OCD=∠D=90°,AO=OC=10cm,CD=6cm.
(1)请求出点A的坐标.
(2)如图2,动点P、Q以每秒1cm的速度分别从点O和点C同时出发,点P沿OA、AD、DC运动到点C停止,点Q沿CO运动到点O停止.设P、Q同时出发t秒.
①是否存在某个时间t(秒),使得△OPQ为直角三角形?若存在,请求出t的值;若不存在,请说明理由.
②若记△POQ的面积为y(cm2),求y(cm2)关于t(秒)的函数关系式.
解:(1)如图1,作AE⊥OC于E.
∴AE∥CD,
∵∠OCD=∠D=90°,
∴AD∥OC,
∵CD=6cm,
∴AE=DC=6cm,
∵OA=OC=10cm,
∴OE=8cm,
∴A(8,6);
(2)作AN⊥OA,设与OC的延长线交于N点,延长DA,与y轴交于点M.
①如图2,
∵AD∥OC,
∴AM⊥OM,
∴DM∥OC,
∵A(8,6),
∴AM=8cm,OM=CD=6cm,
∴∠AON=∠MAO,
∵∠AMO=∠OAN=90°,
∴△OMA∽△NAO,
∴
OM
AN
=
MA
AO
=
OA
ON
,
∵OM=6cm,AM=8cm,OA=10cm,
∴AN=
15
2
cm,ON=
25
2
cm,
如图,若∠OPQ=90°,则△OPQ为直角三角形,∴PQ∥AN,
∴
OP
OA
=
OQ
,
∵P,Q两点的运动时间为t秒,OC=OA=10cm,∴
t
10
=
10-t
25
2
∴t=
40
9
,
如图,若∠OQP=90°,则△OPQ为直角三角形,∵∠AON=∠QOP,
∴∠AON∽△QOP,
∴
OP
ON
=
OQ
OA
,
∴
t
25
2
=
10-t
10
,
∴t=
50
9
cm,
∴当t=
40
9
cm或者t=
9
cm时,△OPQ为直角三角形;
②如图3,作QH⊥OA于H.∵AN⊥OA,
∴QH∥AN,
∴
QH
AN
=
OQ
ON
,
∵OQ=10-t,AN=
15
2
,ON=
25
2
,
∴QH=
30-3t
5
cm,
∵OP=t,
∴S△OPQ=
QH•OP
2
=
30t-3t2
10
,
∴S=-
3
10
t2+3t(0<t<10).
四、
如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.
(1)求点D的坐标;
(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;
(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.
(1)设OD=x,则AD=CD=8-x
Rt△OCD中,(8-x)2=x2+42得x=3
∴OD=3
∴D(3,0)
(2)由题意知,抛物线的对称轴为直线x=4
(3)∵D(3,0),∴另一交点E(5,0)
(3)若存在这样的P,则由S梯形=20,得S△PBC=·BC·h=20.∴h=5
∵B(8,-4),C(0,-4),D(3,0)
∴该抛物线函数关系式为:y=-x2+x-4.
顶点坐标为(4,)
∴顶点到BC的距离为4+=<5
∴不存在这样的点P,使得△PBC的面积等于梯形DCBE的面积.。