变压器差动保护培训内容
- 格式:ppt
- 大小:287.50 KB
- 文档页数:16
差动保护培训课件差动保护培训课件差动保护是电力系统中一项重要的保护措施,它可以有效地检测和保护电力系统中的故障,确保电力系统的安全稳定运行。
在电力系统中,各种故障可能会导致电流异常增大或异常减小,而差动保护的作用就是通过比较系统中的电流差异来判断是否存在故障,并及时采取保护动作,以避免故障扩大和对电力设备造成损坏。
差动保护的基本原理是根据电流的差异来判断系统中是否存在故障。
在差动保护系统中,通常会有一组差动保护继电器,它们通过接收来自电流互感器的电流信号,并进行比较和判断。
当系统中的电流差异超过设定的阈值时,差动保护继电器会发出保护信号,触发相应的保护动作。
差动保护的可靠性和准确性对电力系统的安全运行至关重要。
为了确保差动保护的有效性,需要进行相关的培训和学习。
差动保护培训课件就是为了满足这一需求而开发的教学材料。
差动保护培训课件通常包括以下内容:1. 差动保护的基本原理:介绍差动保护的基本原理和工作方式,包括电流互感器的使用、差动保护继电器的工作原理等。
2. 差动保护的类型和应用:介绍差动保护的不同类型和应用场景,包括线路差动保护、变压器差动保护、发电机差动保护等。
3. 差动保护的配置和设置:介绍差动保护系统的配置和设置方法,包括选择合适的互感器、设置保护阈值等。
4. 差动保护的故障分析和处理:介绍差动保护系统中常见的故障类型和处理方法,包括故障诊断、保护动作延时等。
5. 差动保护的维护和检修:介绍差动保护系统的维护和检修方法,包括定期检查、设备更换等。
通过差动保护培训课件的学习,人们可以了解差动保护的基本原理和工作方式,掌握差动保护的配置和设置方法,提高对差动保护系统的故障分析和处理能力,以及差动保护系统的维护和检修技能。
差动保护培训课件的开发和使用,不仅可以提高电力系统工作人员的技术水平和工作效率,还可以提高电力系统的运行安全性和可靠性。
通过培训和学习,人们可以更好地理解差动保护的重要性,掌握差动保护的操作技巧,提高对电力系统的保护能力,确保电力系统的安全稳定运行。
变压器差动保护原理及作用1.基础差动原理:当正常工作时,变压器的主绕组和副绕组的电流应当是相等的,即主绕组电流与副绕组电流之差为零。
而当存在绕组短路时,短路电流会流入接地电流,使主绕组电流与副绕组电流不再相等。
2.基本结构:变压器差动保护系统通常由电流互感器、电流比率继电器、差动继电器等组成。
电流互感器将主副绕组电流分别采集,然后经过电流比率继电器进行比较,最终由差动继电器实现差动保护功能。
3.过电流定向元件:为了防止外部故障信号对差动保护的干扰,还需要加入过电流定向元件。
过电流定向元件可以通过比较主绕组电流和副绕组电流的幅值和相位,确定差动电流方向,从而确保差动保护的准确性。
1.短路故障保护:变压器差动保护可以快速、可靠地检测变压器主副绕组之间的电流差异,及时发现变压器内部的短路故障,并迅速对故障区域进行保护。
这种保护措施能够避免短路电流继续加大,造成更严重的设备损坏,甚至危及人员生命安全。
2.电气设备保护:变压器差动保护不仅仅用于保护变压器本身,还可以对接在变压器绕组上的其他设备进行保护,如电动机、发电机等。
当这些设备发生短路故障时,差动保护能够迅速判断并隔离这些故障,保护其他设备不受到冲击。
3.滤波器保护:变压器差动保护还可以用于滤波器的保护。
在变压器的输入和输出侧都设置差动保护,可以有效地避免滤波器内部的短路故障对电网和变压器产生不利影响。
4.系统稳定性:通过及时发现和保护变压器内部的故障,变压器差动保护可以避免故障扩大,降低系统不稳定的风险。
同时,差动保护还可以提供故障信息,有助于运维人员及时采取措施进行维修,保证电网的运行安全和稳定。
总之,变压器差动保护是一种重要的保护装置,通过检测变压器主副绕组之间的电流差异,实现对变压器及相关设备的短路故障保护,不仅能够避免设备损坏和人员安全事故的发生,还有助于提高电网的稳定性和可靠性。
变压器的纵联差动保护众所周知,纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。
它可以用来反映变压器绕组的相间短路故障、中性点接地侧绕组的接地故障以及引出线的相间短路故障、中性点接地侧引出线的接地故障。
但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。
纵差保护还受到互感器采集不平衡电流的影响,在本章将研究纵差保护的基本原理、不平衡电流的产生及克服方案。
1变压器纵差保护基本原理按照反应电流和电压量变化构成的保护装置,测量元件限于装设在被保护元件的一侧,无法区别被保护范围末端和相邻范围始端的故障。
为了保证动作的选择性,在整定动作参数时必须与相邻元件的保护相配合,一般采用缩短保护区(降低灵敏度)或延长动作时限(降低速动性)的方法来获得选择性。
但从保证系统稳定运行和减轻故障变压器的损失及避免扩大事故的要求来看,希望能快速切除被保护范围内任意地点发生的故障。
如果保护装置的测量元件能同时反应被保护设备两端的电量时,就能正确判断被保护范围区内和区外的故障。
被保护元件发生内部和外部故障时,其各侧功率方向或电流相位是有差别的,因而根据比较被保护元件各端电流大小和相位差别的方法而构成的纵联差动保护,获得了广泛的应用。
采用差动继电器作保护的测量元件,用来比较被保护元件各端电流的大小和相位之差,从而判断保护区内是否发生短路。
由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。
但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。
由于受助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,对于发电机、变压器及母线等,则可广泛采用纵联差动保护实现主保护。
第三节变压器纵差动保护一、变压器纵差动保护工作原理由于变压器的高压侧和低压侧的额定电流不,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两二次电流相等。
要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比,此区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
图6-2 (a)双绕组变压器正常运行时的电流分布(b)三绕组变压器区内故障时的电流分布图6-3纵差保护特殊问题-引起不平衡电流增大原因:变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流。
引起不平衡电流增大原因:(1)变压器两侧绕组接线方式不同;(2)变压器、电流互感器的计算变比与实际变比不同;(3)变压器带负荷调节分接头;(4)电流互感器传变误差的影响;(5)变压器励磁电流产生的不平衡电流;(6)变压器励磁涌流。
二、励磁电流的影响正常运行时,励磁电流仅为变压器额定电流的3%~5%,所以对保护无影响。
当变压器空载合闸或外部故障切除后电压恢复过程中,由于变压器铁心中的磁通急剧增大,使变压器铁心瞬时饱和,出现数值很大的励磁涌流。
励磁涌流可达变压器额定电流的 6~8 倍,如不采取措施变压器纵差保护将会误动。
涌流产生原因: 铁芯中的磁通不能突变。
图6-4稳态时,磁通滞后电压90°;当 U=0 时投入变压器,铁心出现磁通–Φm,铁心中磁通不能突变,必须产生+Φm的非周期分量,以抵消–Φm 使得Φ=0 ,考虑到剩磁Φsy的影响,半个周波后,铁心中的磁通达到最大值,严重饱和,对应的励磁涌流此时也达到最大。
图6-5单相变压器励磁涌流的特征:(1)数值较大,可达额定电流的6~8倍,偏于时间轴一侧;(2)含有较大的直流分量;(3)励磁涌流中含有大量的谐波分量;(4)励磁涌流的波形中有间断。
图6-6防止励磁涌流方法:在变压器纵差动保护中防止励磁涌流影响的方法有;采用具有速饱和铁心的差动断电器;鉴别短路电流和励磁涌流波形的差别;利用二次谐波制动等。