网络RTK支持下的无验潮水深测量方法及其应用
- 格式:pdf
- 大小:414.09 KB
- 文档页数:2
GPS-RTK定位技术在航道水深测量中的应用摘要:本文介绍应用GPS-RTK 技术进行无验潮航道水深测量的基本方法、思路及精度分析,对实践操作中的一些误差来源进行分析。
关键词:GPS RTK技术;航道水深测量;无验潮;中图分类号:O353.5 文献标识码:A一、引言水下地形测量就是测定水下地形点的平面坐标和高程(本文指航道水深测量)。
传统的水下地形测量采用常规仪器或GPS 测定水下地形点的平面坐标,而水下地形点的高程数据则需要通过测深数据和水面高程数据求得。
水面高程数据由测区内2—3 把水尺的水位数据通过内插的方式求得。
随着先进的高精度测量仪器和测绘技术的引进,实时动态测量(RTK)GPS 定位技术瞬时获得GPS 天线盘的坐标,平面和高程精度可达2—5 厘米。
正是因为RTK 技术的高精度,同时又具有全球性、全天候、方便快捷等特点。
我们可以在航道测量中采用RTK 技术进行无验潮水下地形测量。
无验潮水下地形测量的最大特点在于水下地形点的高程的获取不需要水位数据,而直接采用RTK 测得的高程值和测深数据求得。
二、无验潮航道测量的理论基础现场测量作业时,GPS 天线与测深仪换能器在同一垂线位置,即测深点与定位位置的平面坐标完全重合。
如图所示。
h 为测深仪探头吃水线到GPS 天线的高度,Zo 为设定吃水,Z 为测得的水深值。
Zm 为测量点水深,H 为RTK 测得的高程,Hs 为水底高程。
则:Zm=Z+Zo --------(式1)Hs=H-Z-h--------(式2)当水面由于潮水或者波浪升高时,测深仪探头吃水线到GPS 天线的高度h 不变,RTK 测得的高程H 增大,相应地测得的水深值Z 也增加相同的值,根据式(1),测量点水深Zm也增加相同的值,根据式(2),测量的水底高程Hs 将不变。
GPS 的主要功能有三个方面:定位、导航、授时。
这三方面在航道领域均有运用。
目前GPS 系统的平面定位的精度越来越高,高程定位的精度在一定程度上也在实践操作应用中得到验证。
CORS RTK在甬江航道无验潮水深测量中的应用摘要:RTK技术在水深测量中的广泛应用,使得无验潮水深测量成为可能,但因差分改正信号尚受到作业区域长度的限制;随着近年来城市CORS站的建立,覆盖范围较广,网络RTK能更便利地实现无验潮带状内河航道水下地形测量。
关键词:CORS RTK;无验潮;水深测量0 引言随着测绘技术的发展,GPS RTK技术的应用,RTK结合数字测深仪在电脑测深软件帮助下实现自动化测深,极大地提高了工作效率、测量精度;RTK技术的不断成熟,并被用于无验潮水深测量,减少了水位观测的工作量,但传统RTK尚受到工作距离的限制,对于宁波市弯曲狭长的甬江航道测量工作存在美中不足,近年来宁波市建立的NBCORS系统,为宁波GPS用户提供了极大的方便,由于其宁波市全覆盖、24小时连续观测,能更好更稳定地给用户提供差分信号,NBCORS系统支持下的网络RTK能便利地实现甬江航道的无验潮水深测量。
1 CORS RTK的组成CORS RTK 的组成包括:参考站系统,数据服务中心,数据通信系统,用户应用系统等。
参考站系统:是固定的GPS接收系统,可以布设一个或多个固定基准站。
站与站之间距离可控制在60公里以内,使用数字移动通信数据链,通过无线网络(GPRS/CDMA)方式访问数据服务中心。
数据服务中心:数据服务中心包括一台上网的服务器型电脑及相关数据处理软件,负责接收、管理、分析、运算参考站和用户终端发来的数据,并发送差分信息供用户终端接收。
数据通信系统:参考站、用户终端与数据服务中心之间的通信通过无线网络(GPRS/CDMA)方式。
参考站通过无线网络(GPRS/CDMA)将数据首先发送到数据服务中心,数据服务中心的数据通过无线网络(GPRS/CDMA)发送到用户应用终端。
用户应用系统:主要是包括一台或者多台带有数字移动通信数据链功能的GPS接收机,通过无线网络(GPRS/CDMA)方式将自身的实时信息发送给数据服务中心,并接收数据服务中心发送来的差分信息进行实时数据采集。
GPS—RTK无验潮测深技术在内河水深测量中的应用本文将对GPS-RTK无验潮测深技术的工作原理及其在水深测量中的应用优势进行阐述,并结合案例进行探讨;对影响测量精度的因素进行分析并提出相应的解决对策。
标签:GPS-RTK无验潮测深技术内河水深测量0引言近年来,随着GPS技术在测绘中的应用,GPS-RTK无验潮测深技术在内河水深测量中已被逐渐的应用起来。
传统内河水深测量一般采取交会定位,受到时空等诸多限制,而GPS技术不受时空等限制实现全天数据采集。
在内河水深测量中适宜的工况下应用GPS-RTK无验潮测深技术,大幅提高了作业效率,实现了操作自动化,提升了测量精度,有效降低了测量人员的工作强度。
1内河水深测量的相关概述1.1 GPS-RTK的工作原理GPS通过精准的定位,把实时性的载波进行相位差分并获得实时动态。
基准站需要观测记录GPS数据,并将坐标数据传输至流动站;流动站同步跟踪观测GPS数据,并把收到的基准站数据输入系统进行分析和处理。
对采集和接收的数据进行实时载波相位差分处理,最后计算出精准的定位信息。
差分处理法是RTK 技术中最为主要的数据处理方法。
1.2 GPS-RTK无验潮测深技术无验潮测深技术包括GPS RTK定位系统和测深系统,定位系统负责采集天线相位中心的当前平面坐标,并根据天线相位中心的高程推算换能器底部的高程;数字化测深仪负责测量换能器底部至河床的水深,通过简单的数学运算即可算出河床底部测量点的平面坐标及高程。
便携式计算机用于设置测深、定位设备进行同步观测记录,内业通过改正形成水下地形图。
2GPS-RTK无验潮测深技术在内河水深测量中的优势GPS-RTK无验潮测深技术大大提高了作业效率和测量精度,实现了厘米级的精度。
无验潮测深技术也不用再进行验潮站的水位记录,对潮位起伏大的水域其测量精度和准度更高。
3某内河水深测量分析3.1测区情况某地区为保护居民和行船的安全拟建一座防波提。
上海华测水下地形测量RTK无验潮推荐方案上海华测导航技术有限公司中国上海目录一 RTK技术原理 (3)二水下地形测量无验潮原理 (3)三具体施工流程 (4)1. 测量前的准备工作 (4)2.施工区域内参数的获取 (5)3.水下地形测量的实施 (5)4.内业数据的处理 (5)5.设备安装及界面示意图 (6)四.X900双频RTK性能介绍及主要指标 (10)(一)产品简介: (11)(二)产品优势: (11)(三)技术参数 (12)五.华测D330单频测深仪性能及技术指标 (15)六.标准配置清单: (16)七.华测售后服务承诺 (18)八:上海华测水上经典客户(排名不分先后) (19)水下地形测量推荐方案(RTK无验潮)目前RTK-GPS技术作为新一代的卫星导航定位方法已经很成熟,因其具备全天候、精度高、作用距离远、效率高的特点,与传统的测量方式相比有着巨大的优势,已被广泛的应用于各种工程测量之中。
特别是水上施工定位、水下地形测量的广泛应用,使得GPS成为海上船舶定位必不可少的选择,极大的提高了工作效率,解决了常规仪器不能解决的问题。
一RTK技术原理RTK GPS实时动态定位技术是一项以载波相位观测为基础的实时差分GPS测量技术。
其系统组成主要有GPS接收设备、无线电数据传输系统及支持实时动态差分的软件系统三个部分组成。
具体做法是:在基准点上设置参考站,连续接收可见GPS卫星信号,并通过数据链电台实时地将测站坐标及观测数据传送到流动站。
流动站在接收GPS卫星信号的同时,根据参考站传输来的数据,由软件系统根据相对定位的原理进行差分解算,实时的得出流动站的三维坐标及精度。
二水下地形测量无验潮原理水下地形测量的主要任务是确定水下某一点的泥面标高, 即A点的平面坐标(X, Y,Z)GPS(x,y,h0)水面A点(x,y,z )换能器ha s H其中:h=天线高a=吃水H=水深b=杆长b水底其中水底高程Z 只和h0及S 相关,与潮位无关,从而达到无验潮。
网络RTK验潮技术在水上测量的应用研究【摘要】网络RTK验潮技术是利用基准站的载波相位观测数据,与流动站的观测数据进行实时差分处理,并解算整周模糊度,从而能够达到厘米级精度。
是GPS应用的重大里程碑。
本文主要对网络RTK 验潮技术在水上测量的应用进行了分析。
【关键词】GPS;CORS;RTK验潮技术;水上测量随着科学技术的进步,GPS 定位技术的进步及定位设备在海洋测绘领域的广泛应用,采用GPS 技术进行验潮得以实现。
传统RTK验潮通过测得一段时间内水面载体(如测船或浮球)上的GPS 天线的系列高程值,计算得出潮位。
传统GPS验潮模式主要采用了GPS RTK的定位模式,受到通信链路的影响,作用的距离非常有限,通常在10km以内,致使远离参考站的海域无法采用这种模式。
随着近年来城市CORS站的建立,覆盖范围较广,网络RTK能更便利地实现无验潮结合回声测深系统进行水深测量。
以往由于一些工程上的特殊需要或特定区域地形的限制,在海洋测绘中通常会遇到使用常规潮位观测来进行水深改正的误差问题。
如:(1)山区河道短距离内水位落差较大,河道左右岸存在较大比降,这些落差和比降变化并非线性和规则的,有时平缓有时突变,在这种情况下,单纯利用一个或几个水位站观测水位来改正水深值会造成较大的误差,即使在测区内根据这些具体变化建立数目繁多的水位观测站,虽然在一定程度上减小了误差,但必须投入几倍的人力、物力,工效将大打折扣。
(2)当测量项目远离海岸线十几公里甚至几十公里时,常规的做法是在离测区最近的岸边设置潮位站,用它来代替测区内的潮位进行水深改正,因此即使不考虑相差几十公里潮位的差值,就两地的波浪和涌浪的差异也远远超出了测量的精度要求,虽然可以通过长期验潮确定潮汐参数,采用潮面外推方法来消除一定误差,但花费大,成本高。
因此如何解决这些问题,寻找一种实时潮位改正来取代常规潮位观测,对海洋测绘尤为重要,而网络RTK验潮技术的应用很好的解决了这些难题。
RTK技术在水深测量中的应用随着RTK技术的出现,使得水上测量可以采用GPS无验潮方式进行工作(RTK方式)成为可能。
大大减少了测量人员的劳动强度,自动化程度高,省工省时,精度高,全天候,提高了工作效率。
标签:RTK GPS 水深测量0 引言RTK技术在陆域测绘的应用中已经较为成熟了,在水深测量中的应用也已经兴起。
以往的水深测量多采用交会定位,故测量工作受气象的影响较大,精度难以控制,测量工作难度大,外业测量人员也很艰苦,且内业成图时间长。
使用RTK技术后,这些困扰水上测量工作的问题就简单了。
随着RTK技术的出现,使得水上测量可以采用GPS无验潮方式进行工作(RTK方式)成为可能。
大大减少了测量人员的劳动强度,自动化程度高,省工省时,精度高,全天候,提高了工作效率。
下面针对南方GPS(S80)与南方测深仪结合水深测量过程简单说明。
1 无验潮水深测量的理论基础如(公式1)所示,I为测深仪探头吃水线到GPS天线的高度,Z0为设定吃水,Z 为测得的水深度。
Zm为实际水深,H为RTK测得的高程。
则:水深水位=H-hS=水位-Z0-Z =(H-I)-Z (公式1)当水面由于潮水或者波浪升高时,H增大,相应地Z也增加相同的值,根据(公式1)式,Zm将不变。
因此从理论上讲,RTK无验潮测深将消除波浪和潮位的影响,是一种理想的水上测量方法。
2 水深测量的基本作业步骤水深测量的作业系统主要由GPS接收机、数字化测深仪、数据通信链和便携式计算机及相关软件等组成。
测量作业分三布来进行,即测前的准备、外业的数据采集测量作业和数据的后处理形成成果输出。
2.1 测前的准备2.1.1 根据所测水域情况,见意将GPS基准站架设在任意有利的未知点上,这种架站方式灵活,且受控制点位置影响较小。
2.1.2 将GPS移动站分别架设在已知点A,B上,设置好参考坐标系、差分电文数据格式、接收间隔,有了固定解后求得四参数,然后校正求得三参数,设站成功,2.1.3 将GPS接收机、数字化测深仪和便携机等连接好后,打开电源。
GPS RTK无验潮水下地形测量的应用
姜信东
【期刊名称】《西部探矿工程》
【年(卷),期】2017(029)011
【摘要】介绍了GPS RTK+超声波回声探测仪无验潮水下地形测量的基本原理及作业流程.该方法不用专门测定潮位,直接利用GPS RTK+超声波回声探测仪测量技术,辅之以姿态改正和补偿,从而获得高精度的水底地形点的平面位置和高程.以万科(惠东平海双月湾项目)双月湾内、外海的水下地形测量及内海淤泥厚度的测量工程为例,GPS RTK无验潮+超声波回声探测仪水下地形测量结果进行了分析.结果表明,综合运用GPS RTK无验潮+超声波回声探测仪技术进行水下地形测绘,其精度达到规范要求,工作效率和经济效益明显得到大幅度提高.
【总页数】3页(P145-147)
【作者】姜信东
【作者单位】深圳市工勘岩土集团有限公司,广东深圳518057
【正文语种】中文
【中图分类】P22
【相关文献】
1.GPS-RTK无验潮技术在水下地形测量中的应用 [J], 陈奇;周淑波
2.GPS-RTK无验潮水下地形测量技术在牟山湖整治工程中的应用 [J], 郑建;方碧云
3.GPS-RTK无验潮水下地形测量技术在牟山湖整治工程中的应用 [J], 郑建;方碧云
4.GPS RTK无验潮法在水下地形测量中的应用 [J], 汤道运;刘胜华
5.GPS RTK无验潮法在水下地形测量中的应用 [J], 汤道运;刘胜华
因版权原因,仅展示原文概要,查看原文内容请购买。
基于CORS的无验潮模式在水深测量中的应用研究摘要:本文基于现有仪器设备构建基于网络RTK 无验潮水深测量系统,介绍了GPS-RTK无验潮水下地形测量基本原理方法,采用江苏Cors进行校正,分析中海达HD-MAX测探仪无验潮模式在水深测量中的应用,阐述了水深测量作业应注意的问题。
关键词:CORS;无验潮;水深测量通过测深技术对河道定期勘察,枯水期前测量能客观的反映自然状况,为提高船舶通航能力等提供水深资料,便于有针对性的对河道水库进行管理整治。
随着科技的发展,GPS-RTK技术广泛应用于水深测量中,无验潮模式水下地形测量优点明显,在沿海大面积水深测量中,常规验潮方式需要按距离分块布设潮位观测点,观测点配备工作人员进行潮位观测,不易求出准确的潮位数据,无验潮模式改进了水下地形测量的工序,在GPS-RTK信号覆盖良好地区,可满足测量规范水深精度要求。
GPS-RTK采用大地高,需要对转化后的高程精度评价。
一、无验潮模式水深测量技术研究水深测量发展与相关领域发展联系密切,水深测量在读图的测绘环境中逐步形成了独立的发展体系。
定位技术是水深测量技术的重要部分,根据离岸距离,水上定位方法分为光学定位,无线定位等,光学定位以交会法为主,早期的后方交会法多采用六分仪,但点位精度较低,前方交会法使用普遍,广泛应用于近岸港口水下地形测量中。
卫星定位利用全球卫星导航系统进行定位,以其高精度,全天候,多功能等优点,广泛应用于水深测量定位工作。
80年代开始,GPS卫星定位技术逐渐普及,随着美国GPS广泛应用,欧洲Galileo系统逐步建立,美国WAAS等广域差分增强系统建立,全球卫星导航系统可用卫星达到80颗,多频率多星组合导航定位克服使用单GPS系统图的局限,在观测环境较差的区域得到稳定的定位结果[1]。
目前CORS系统建设逐渐规范化,但仍存在一些问题,主要包括系统稳定性有待检验,大多采用国外系统,只能提供WGS-84高程,与我国国家高程基准存在高程偏差。
测量软件设置(1)设置——》记录设置——》航迹记录按实地行走距离记录(根据比例尺和实际海底地形等不同要求而定,一般3米或5米)(2)记录——》记录限制——》RTK固定解(3)记录——》开始记录——》确定测线名(测线名由字母,数字自由组合,不得大于六个字符)(4)注意测的时候测线接近1000个定位点时,要点击快速换线,以节省内存(5)测完点击“停止记录”——》点击存储测深设置(1)设置——》探头吃水设置(一般为0.40或0.50米,看测杆每格十公分)(2)声速计算——》用测深软件点测深,看到的为实测深度;再用看比对板绳子上的深度(比较原始的方法还有用竹竿测一下,用卷尺量),这个为比对深度,输入,然后点击计算。
反复这样做,直到实测深度跟比对深度很接近(5CM以内)为止(3)其他设置勾为全部为自动——》点确定(4)点测深——》点纪录(这时会自动生成一个以日期为文件名的水深文件,记得查看文件的存储路径,方便测完后拷数据)(5)测完后点击停止纪录水上作业完毕注意:(1)建任务:一般要先在室内建好测量任务,包括:确定坐标系统,投影方式及中央经线,转换参数(平面转换四参数),图定义(图幅名称,图比例尺,长宽,左下角坐标)(2)布计划线:海上测量跟陆地测量不一样,海底的地形我们是不知道的,需要布计划线,测量时船以计划线为指导,均匀扫遍所要测得区域。
计划线和区域可以通过CAD作好图,也可以通过海洋测量软件来完成,这里简要介绍测量软件做计划线的软件操作:工作方式——》作图——》坐标库——》新建坐标库文件(.wp)——》输入测区外围折点坐标(第一点和最后一点坐标要一样,才能构成闭合区域)——》坐标作图——》区域布线——》保存任务。
(3)测深仪里转换参数求法:固定基准站发射,移动台连接上测深仪,在测区附近两个已知点上对中整平,手工抄出测深仪显示的平面X,Y坐标;(如果之前RTK手簿也没有求转换参数,顺便在每个已知点上手簿也要连接上移动站,采集一下已知点的坐标,求出参数)。
第09卷 第6期 中 国 水 运 Vol.9 No.6 2009年 6月 China Water Transport June 2009收稿日期:2009-04-07作者简介:李小强,台州市经纬测绘有限公司。
中海达V8 RTK与HD-27T无验潮法 在水深测量中的应用李小强(台州市经纬测绘有限公司,浙江 台州 318000)摘 要:介绍中海达V8 RTK 与HD-27T 无验潮法在水深测量中的应用,阐述了V8 RTK 参考站架设在未知点上HD-27T 测量软件的设置,以及水深测量作业时应注意的若干问题。
关键词:V8 RTK;HD-27T;无验潮;水深测量中图分类号:P712 文献标识码:A 文章编号:1006-7973(2009)06-0261-02一、引言GPS RTK 最早应用于水深测量时,方法仍同DGPS 一样,用来获得平面定位数据,只是定位精度提高了很多,很长一段时间GPS 只是作为确定平面位置的方法。
近几年随着RTK 的普及和水下导航测量软件的成熟,一种新型的水上测量方式得到推广,并渐渐成为日后发展的趋势,这就是无验潮水下地形测量方法。
其中中海达V8 RTK 配套中海达测绘权威的海洋测量及测深仪一体机HD-27T,轻松实现水下地形测量工作,彻底改变传统的水上测量作业模式,获得了众多测量用户的好评。
本文结合实践经验,介绍中海达V8 RTK 与HD-27T 无验潮水深测量方法应用,以供参考。
二、无验潮水下地形测量基本原理无验潮水深测量的基本原理是利用RTK 测得的GPS 天线精确的三维坐标(X,Y,H),其中X、Y 确定定位点的平面位置,RTK 高程结合由测深仪同步测得的水深换算出同一平面位置上的水下泥面的高程或水深值,从而获得水下地形数据,见图1。
用户可以测得的数据: h:GPS 天线到水面的高度H:GPS 接收机测得的高程(水准高) S:测深仪测得的水面到水底的深度 用户需要得到的最终数据: B:水底到水准面的距离 即通常说的水深值 C:水准面到水底的距离 即通常说的水底高程由图1得出:C=(H–h)–S;B=S–(H–h) 当水面由于潮水或者波浪升高时,h 增大,相应地H 也增加相同的值,根据(1)式,C 将不变。
基于网络 RTK的无验潮水库水下地形测量摘要:本文主要介绍了基于网络RTK的无验潮水下地形测量原理,并详细介绍了无验潮水下地形测量的作业流程,最后通过主检测线比对结果确定了无验潮水下地形测量作业方式的可行性。
关键词:网络RTK、水下地形、无验潮、连续运行参考站水库是拦洪蓄水和调节水流的水利工程建筑物。
水库发挥着防洪、蓄水、灌溉、水土保持、改善环境等多种功能,在促进区域经济社会发展和维持生态平衡中发挥着重要作用,具有重要的社会、经济和生态意义。
由于上游来水携带泥沙、水库护坡坍塌等因素使水库淤积,造成水库库容减少,水情测报不准,入库出库流量不符,给水库的科学管理、安全运营带来了诸多隐患,因此,开展水库水下地形测绘,获取水库水下地形基础地理信息数据,实现库区水上水下基础地理信息数据的无缝衔接,可以为水库科学管理、安全运营、水资源的高效利用、水环境保护、防洪排涝及重大水利工程建设提供数据支撑。
水深测量过程中受到涌浪、潮汐等因素的影响,实测的水深数据需要经过吃水改正、声速改正、姿态改正和潮位改正后才能得到基于某一基准面的水深数据。
传统水深测量采用人工或自动验潮方法直接获取水位,严重制约了水深测量的效率和精度。
随着卫星定位、计算机网络、数字通讯、气象分析等技术的快速发展,连续运行卫星定位参考站网系统(CORS)得到广泛应用,为无验潮水深测量提供了技术支撑。
山东省卫星定位连续运行综合应用服务系统(SDCORS)在全省范围内建立101个GNSS连续运行参考站,构成全省新一代网络化的大地基准和空间数据采集服务系统。
SDCORS实时定位的内符合精度可以达到平面0.020m,高程0.030m的精度,实时定位外符合精度可以达到平面0.030m,高程0.080的精度[1],定位精度满足无验潮水深测量的技术要求。
一、无验潮水下地形测量原理网络RTK可实时获取厘米级的三维坐标,但其获取的高程是基于参考椭球面的大地高,而高程系统一般采用基于似大地水准面的正常高系统,将实时获取的WGS-84大地高经过似大地水准面精化转化为1985国家高程而不需要人工验潮对水深数据进行潮位改正,这种方法就是无验潮水下地形测绘。
无验潮技术在水深测量中的运用摘要:GPS-RTK测量技术最早用在陆上地形测量,由于其具有精度高,操作便利的特性以越来越多由于水上测量。
于本文主要详细阐述无验潮水深测量即GPS-RTK在水深测量中的运用,以及传统验潮方法作对比,说明无验潮水深技术测量优越性。
关键词:无验潮GPS-RTK 测深运用概述传统水下地形测量大多使用差分GPS解决平面定位问题,采用验潮数据将测深仪采集的水深数据进行改正,归算到所需要的当地理论基面。
再通过时间将平面位置和水底标高匹配,获得测区三维数据。
近几年随着RTK的普及和水上导航测量软件的成熟,一种新型的水上测量方式得到推广,并渐渐成为日后发展的趋势,这就是无验潮水下地形测量方法。
采用GPS-RTK技术,就可以不需要潮位数据,直接获得所需要的三维数据。
1无验潮水深测量原理1.1无验潮水深测量系统组成无验潮水深测量系统主要由GPS-RTK、测深系统、水上导航采集软件三部分组成。
测深系统里面有测深仪、换能器。
1.2无验潮水深测量系统工作原理如图所示,设在某一时刻测深仪采集的水深h2加上船的动吃水h1,就是这一时刻海面到海底的深度,也就是测深仪上显示的数据。
L为GPS天线相位中心到测深仪换能器底部的长度。
这一时刻GPS-RTK可获得该点的的三维坐标数据(X,Y,h3)。
由图很容易计算出这一时刻的海底标高h=[h3-(h1+h2)-L]。
此时提取的(X,Y,h)就是该点的三维数据,也就是最终需要的数据。
式中L 是固定不变的,h1+h2是测深仪实时采集的数据,X,Y,h3是GPS实时采集的数据。
2无验潮水深测量步骤2.1测区内七参数求取求取七参数方式主要有两种。
一种是通过各地的测绘主管部门获得数据。
因为他们了解各个区域的数据资料,可以通过他们是数据计算获得该地区的转换参数;另一种方式是自行求取。
具体做法是在靠近测区的岸边选取不少于4个的控制点,一般5个。
这些控制点应该尽量选取在平坦地区,而且均匀分布在测区内。
GPS RTK无验潮测深在水下地形测量中的应用摘要:GPS RTK无验潮测深在水下地形测量中的应用,大大减少了测量人员的劳动强度,自动化程度高,省工省时,精度高,全天候,提高了工作效率,使工程变得更经济。
本文首先阐述了GPS RTK技术水下地形测量的原理,其次,分析了RTK无验潮水深测量时的注意事项。
同时,以一应用实例为例,对其进行深入的探讨,具有一定的参考价值。
关键词:GPS RTK;无验潮测深;水下地形测量1.前言无验潮水下地形测量是利用GPS RTK技术结合数字测深仪测量水深的一种方法。
该方法可按距离或时间间隔,自动采集RTK确定的三维位置及水深数据,只要将GPS天线高量至水面,对测深仪进行吃水深度改正,便可高精度、实时、高效地测定水下地形点的三维坐标。
不用进行验潮改正大大减少了测量人员的劳动强度,自动化程度高,省工省时,精度高,全天候,提高了工作效率,使工程变得更经济。
2.GPS RTK技术水下地形测量的原理GPS RTK(Real Time Rinematic)实时动态定位技术是一项以载波相位观测为基础的实时差分GPS测量技术,它是利用2台或2台以上的GPS接收机同时接收卫星信号,其中1台安置在一个固定的地方以作为基准站,其它作为流动站,这样基准站的电台连续发射差分数据,流动站上连续接收数据,流动站上就可实时计算出其准确位置,通过计算机中软件获取测深仪的数据,并自动滤波,形成水下地形原始数据,这种方法测量的平面位置精度能够达到厘米级,高程精度一般能够达到小于10 cm,对于测量水底地貌完全足够。
3.RTK无验潮水深测量时的注意事项RTK无验潮测深技术虽已逐步被使用,但是要想得到精确的水深测量图成果,需要考虑诸多因素的影响,只有有效控制每一项影响精度的因素,最终的成果质量才能得到保障。
在使用RTK进行无验潮水深测量时有以下几点注意事项:(1)内河进行无验潮水深测量时应沿河道在已知控制网点上进行比测。
浅析无验潮水下地形测量方法1、引言随着科学技术的发展,GPS RTK被广泛应用于工程测量。
近些年随着RTK的普及和水上导航测量软件的日渐成熟,一种新型的水上测量方式得到推广,并渐渐成为日后发展的趋势,这就是无验潮水下地形测量方法。
本文结合实践经验,介绍无验潮水下地形测量方法应用,以供参考。
2、无验潮水下地形测量基本原理当前GPS实时动态相位差分(RTK)的定位精度普遍为:平面10mm+1ppm,高程20mm+1ppm。
无验潮水下地形测量的基本原理是利用RTK测得的GPS天线精确的三维坐标(X,Y,H),其中X、Y确定定位点的平面位置,RTK高程结合由测深仪同步测得的水深换算出同一平面位置上的水下泥面的高程或水深值,从而获得水下地形数据,见图1。
用户可以测得的数据:h:GPS天线到水面的高度H:GPS接收机测得的高程(水准高)S:测深仪测得的水面到水底的深度用户需要得到的最终数据:B:水底到水准面的距离即通常说的水深值C:水准面到水底的距离即通常说的水底高程由图1得出:C= (H – h)– S ; B= S –(H –h )3、港池航道水深测量的应用水深测量的作业系统主要由GPS接收机、数字化测深仪、数据通信链和便携式计算机及相关软件等组成。
测量作业分三步来进行,即测前的准备、外业的数据采集测量作业和数据的后处理形成成果输出。
在西光渔工地港池扫浅水深测量中,为满足施工图使用的需要,根据项目设计要求,需对该港池进行1∶500水下地形图测量。
测区内早期施测的I、II级导线点和IV等水准点,可以作为1∶500水下地形图测绘控制点。
本作业采用的主要仪器设备软件有:中海达公司生产的V8CORS RTK接收机2台套,其中1台作为岸台(基准站),1台为船台(流动站),中海达HD370全数字变频测深仪1台,便携式计算机1台,中海达海洋导航测量成图软件1套和南方CASS6.0成图软件1套。
3.1 测前的准备(1)建立任务,设置好坐标系、投影、转换参数及图定义。
第25卷第5期2005年9月海 洋 测 绘HYDROGRAPHIC SUR-.YI/G A/D CHAR0I/G-12.25,/1.5S34.,2005收稿日期:2005-04-13;修回日期:2005-07-20作者简介:栗志刚(1965-),男,河南汝南人,工程师,主要从事海道测量研究。
RTK GPS 在无验潮水深测量中的应用栗志刚,孙仁权(中交第二航务工程勘察设计院,湖北武汉 430071)摘要:介绍了应用全球定位系统实时动态测量(RTK GPS )技术进行无验潮水深测量的基本方法,并在实际工作中进行了验证。
关键词:全球定位系统;实时动态测量;水深测量中图分类号:P228.4 文献标识码:B 文章编号:1671-3044(2005)05-0046-031 前 言实时动态测量(RTK )技术在陆地测量和放样的应用中已经比较成熟,在海洋测量和海洋工程中的应用也已经兴起。
RTK 在水深测量上的应用分为两大类:无验潮方式和验潮方式。
验潮方式就是在测量船上由RTK 实时测定平面位置,由测深仪同步测出此时的水深,再由岸上人员定期观察水位值,随后根据水位和水深的数据计算出每个测点的高程值。
这种方式已经广泛应用于江河湖海水面的水深测量之中,并形成了成熟的操作模式。
无验潮方式就是在测量船上直接用RTK 测出某点的三维坐标来,而不需要岸上人员观测水位,它在水深测量中有着独特的优越性。
特别是在海洋的大面积水域测量中,由于水位存在坡降比,要在测区内按距离分块设几处水位观测点,每个点至少要配一个工作人员。
这样不容易求出准确的水位数据,且工作效率不高。
而无验潮方式改进了测量工序,减少了测量人员,提高了工效。
此外,RTK 测量高程精度的提高也为这种模式提供了技术上的保证。
2 无验潮测水下地形的基本原理和方法RTK GPS 技术的实施方式是,利用GPS 基站和流动站,进行平面和高程观测。
假定:相对于某项目的高程基准面,流动站的天线高为H 2,换能器的瞬间高程为H 3,水底点O 的高程为H 0,H 为测深仪测出的水深值(图中的-H 0表示大小和H 0一样,但方向相反)。