五年级下册数学《因数和倍数》质数和合数 知识点整理
- 格式:doc
- 大小:66.00 KB
- 文档页数:3
因数、倍数、质数、合数一、因数倍数的特征1、重点归纳(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身:一个数的倍数的个数是无限的,其中最小的因数是它本身,没有最大的因数:一个数,既是它本身的因数,也是它本身的倍数。
(2)2、3、5、9倍数的特征:2的倍数的特征:个位数字是0,2,4,6,8;5的倍数的特征:个位数字是0或5;同时是2、5倍数的特征:个位数字是0;3的倍数的特征:各个数位的数字之和是3的倍数;9的倍数的特征:各个数位的数字之和是9的倍数。
同时是2、3和5倍数的特征:个位数字是0,并且各个数位的数字之和是3的倍数(3)质数(素数)、合数最小的质数是2,2是唯一的偶质数,没有最大的质数。
最小的合数是4,没有最大的合数。
1既不是质数,也不是合数。
(4)分解质因数的方法用短除法,先用这个合数的质因数(通常从最小的开始)去除,一般先试2、3、5这几个数,除到得出的商是质数为止,把出书和商写成相乘的形式。
(5)奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数奇数X奇数二奇数奇数X偶数=偶数偶数X偶数=偶数2、典型练习(1)判断:因为48:8=6,所以说48是倍数,8是因数。
()因数和倍数的关系式相互依存的,不能说某一个数是因数或倍数,可以说“谁是谁的倍数,谁是谁的因数”。
(2)用a表示一个大于1的自然数,则a2一定是()。
A、奇数B、偶数匚质数D、合数二、两数互质的几种特殊情况:(1)两个不相同的质数一定是互质数。
如:7和13、17和19是互质数。
(2)两个连续的自然数一定是互质数。
如:4和5、13和14是互质数。
(3)相邻的两个奇数一定是互质数。
如:5和7、75和77是互质数。
(4)1和其他所有的自然数一定是互质数。
如:1和4、1和13是互质数。
(5)2和任意一个奇数都是互质数。
如2和1、2和9都是互质数。
(6)一个奇数和质因数只有2的偶数都是互质数。
五年级数学下册【质数和合数】知识点和练习题质数——一个数,如果只有1和它本身两个因数,那么这样的数叫做质数。
(或素数)如:2、3、5、7都是质数。
合数——一个数,如果除了1和本身还有别的因数,那么这样的数叫做合数。
(合数)如4、6、15、49都是合数。
▲1既不是质数,也不是合数▲最小的质数是2▲熟悉100以内的质数2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97探索两数之和的奇偶性奇数+偶数=奇数→奇数-奇数=偶数奇数-偶数=奇数奇数+奇数=偶数→偶数-奇数=奇数偶数+偶数=偶数→偶数-偶数=偶数一、填空。
(1)20以内既是合数又是奇数的数有()。
(2)能同时是2、3、5倍数的最小两位数有()。
(3)18的因数有(),其中质数有(),合数有()。
(4)50以内11的倍数有()。
(5)一个自然数被3、4、5除都余2,这个数最小是()。
(6)三个连续偶数的和是54,这三个偶数分别是()、()、()。
(7)50以内最大质数与最小合数的乘积是()。
(8)从1、0、8、5四个数字中选三个数字,组成一个有因数5的最小三位数是()。
(9)一个三位数,能有因数2,又是5的倍数,百位上是最小的质数,十位上是10以内最大奇数,这个数是()。
(10)两个都是质数的连续自然数是()和()。
(11)用10以下的不同质数,组成一个是3、5倍数最大的三位数是()。
(12)有两个数都是质数,这两个数的和是8,这两个数是()和()。
(13)有两个数都是质数,两个数的积是26,这两个数是:()和()。
(14)既不是质数,又不是偶数的最小自然数是( );既是质数;又是偶数的数是();既是奇数又是质数的最小数是( );既是偶数,又是合数的最小数是( );既不是质数,又不是合数的是( );既是奇数,又是合数的最小的数是()。
(15)个位上是()的数,既是2的倍数,也是5的倍数。
人教版五年级数学下册知识点归纳总结一、数与代数1. 因数与倍数因数和倍数是相互依存的关系哦。
比如说6÷2 = 3,我们就说6是2和3的倍数,2和3是6的因数。
这里面有个小秘密,一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
而一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数呢。
2、3、5的倍数特征也很有趣。
2的倍数特征是个位上是0、2、4、6、8的数;5的倍数特征是个位上是0或5的数;3的倍数特征是各位数字之和是3的倍数的数。
像123,1+2+3 = 6,6是3的倍数,所以123就是3的倍数啦。
质数和合数也很有讲究。
质数是只有1和它本身两个因数的数,像2、3、5、7等。
合数是除了1和它本身还有别的因数的数,4、6、8、9等都是合数。
1既不是质数也不是合数,它就像个特殊的小调皮。
2. 分数的意义和性质分数的意义可不能小瞧。
把单位“1”平均分成若干份,表示这样一份或几份的数就叫分数。
比如把一个蛋糕看作单位“1”,平均分成4份,其中的1份就是1/4。
分数的基本性质超有用。
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
这就像魔法一样,可以把分数变得我们想要的样子,方便计算呢。
约分和通分是分数运算里的小技巧。
约分就是把分数化成最简分数,分子分母同时除以它们的最大公因数。
通分是把异分母分数化成和原来分数相等的同分母分数,通常是找分母的最小公倍数。
二、图形与几何1. 长方体和正方体长方体和正方体的特征要记牢。
长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有12条棱,相对的棱长度相等;有8个顶点。
正方体是特殊的长方体,它的6个面都是正方形,12条棱长度都相等。
表面积和体积的计算可不能搞错。
长方体表面积=(长×宽+长×高+宽×高)×2,体积= 长×宽×高。
人教版五年级下册数学第二单元知识点总结第一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
【×】改正:6是3和2的倍数,3和2是6的因数。
练习:【1】8×5=40,【】和【】是【】的因数,【】是【】和【】的倍数。
【2】因为36÷9=4,所以【】是【】和【】的倍数,【】和【】是【】的因数。
【3】在18÷6=3中,18是6的【】,3和6是【】的【】。
【4】在14÷7=2中,【】能被【】整除,【】能整除【】,【】是【】的倍数,【】是【】的因数。
【5】若A÷B=C【A、B、C都是非零自然数】,则A是B的【】数,B是A的【】数。
【6】如果A、B是两个整数【B≠0】,且A÷B=2,那么A是B的,B是A的。
【7】判断并改正:因为7×6=42,所以42是倍数,7是因数。
【】因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
【】5是因数,15是倍数。
【】甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
【】【8】甲数×3=乙数,乙数是甲数的【】。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:【1】有5÷2=2.5可知【】A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数【2】36÷5=7……1可知【】A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数【3】属于因数和倍数关系的等式是【】A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有【】。
质数与合数的认识知识点总结质数和合数是数学中的两个重要概念。
质数是指只能被1和自身整除的正整数,而合数则是除了1和自身外还能被其他数字整除的正整数。
在数论中,了解质数和合数的性质和特点对于解决数学问题和应用领域具有重要意义。
本文将对质数和合数的认识进行知识点总结。
一、质数的特点质数是大于1的自然数中,除了1和自身外没有其它正因数的数。
以下是质数的一些特点:1. 质数只有两个因数,即1和自身。
2. 2是质数中唯一的偶数,其他质数都是奇数。
3. 质数不能被其他数整除,即在质数的倍数中无法找到其他质数。
二、合数的特点合数是大于1的自然数中,除了1和自身外还可以被其他正整数整除的数。
以下是合数的一些特点:1. 合数有至少三个因数,包括1、自身和其他正因数。
2. 合数可以分解成两个或多个较小的数的乘积。
3. 合数可以被质数或其他合数整除。
三、质数与合数的关系质数和合数是数论中的两个重要概念,它们之间存在一定的关系:1. 除了1之外,所有的数字都可以归类为质数或合数。
2. 质数与合数是互斥的,即一个数要么是质数,要么是合数,不会同时具备两种性质。
3. 所有的合数都可以被质数分解为若干个质数的乘积。
四、质数与合数的应用质数和合数在数学和实际应用中具有广泛的应用,以下是一些常见的应用领域:1. 密码学:质数的特性被广泛用于加密算法,保护数据的安全性。
2. 网络通信:质数的特点被应用于生成公钥和私钥,用于加密和解密网络通信。
3. 数学证明:质数和合数的性质被广泛应用于数学证明和推断,解决一些数论问题。
4. 数据分析:质数和合数可以用于数据分析中的分组和分类,帮助整理数据。
总结:质数和合数是数学中的两个重要概念,质数是只能被1和自身整除的正整数,合数是除了1和自身外还能被其他数字整除的正整数。
质数和合数之间存在着互斥的关系,所有的合数都可以被质数分解为若干个质数的乘积。
质数和合数在密码学、网络通信、数学证明和数据分析等领域具有广泛的应用。
部编人教版小学五年级数学下册知识点总结五年级下册数学重点知识总结第一单元《因数和倍数》因数和倍数的意义:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数数和商的倍数,除数和商是被除数的因数。
(2)如果a×b=c(a、b、c都不为的整数),那么a、b就是c的因数,c就是a、b的倍数。
数与倍数的关系:因数和倍数是相互依存的。
找一个数的因数的方法:用这个数除以1、2、3…..能整除时,所得的商和除数就是这个数的因数。
找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与1、2、3…..相乘,所得积就是这个数的倍数。
一个数倍数的特征:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的特征:因数的个数是有限的,最小的因数是1,最大的因数是它本身。
注:一个数最小倍数和最大因数都是它本身2、3、5的倍数的特征2的倍数的特征:个位上是、2、4、6、8的数都是2的倍数。
5的倍数的特征:个位上是或5的数都是5的倍数.。
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数既是2又是5的倍数的特征:个位上是数都是2、5的倍数.。
同时是2、3、5倍数的特征:(1)个位上是的数,(2)个数各位上的数的和是3的倍数。
按是不是2的倍数可分为:奇数和偶数偶数:是2的倍数的数叫做偶数,(或个位上是、2、4、6、8的数),最小的偶数是。
奇数:不是2的倍数的数叫做奇数。
(或个位上是1、3、5、7、9的数)最小的奇数是1.注:自然数中除了偶数就是奇数。
数的奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
质数和合数按因数的个数把自然数(除外)可分为:质数、1、合数三类质数:一个数,假如只要1和它本身两个因数,如许的数叫做质数(或素数);合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
学科教师辅导教案授课类型复习(因数和倍数)教学目标理解因数和倍数的含义,掌握与最大公倍数和最小公因数相关实际问题星级★★★★考点图解知识梳理知识点一:因数和倍数1、几个非零自然数相乘,都叫它们积的因数,积是这几个自然数的。
因数与倍数是2、一个数最小的因数是,最大的因数是,一个数因数的个数是。
(找因数的方法:成对的找。
)3、一个数最小的倍数是它本身,最大的倍数。
一个数倍数的个数是。
(找一个数倍数的方法:从自然数 1、2、3、……分别乘这个数)4、一个数最大的因数等于这个数。
知识点二:质数和合数1按照一个数因数个数的多少可以把非 0 自然数分成三类①只有自己本身一个因数的②两个因数的数叫作质数(素数)。
最小的质数是。
在所有的质数中,是唯一的一个偶数。
③除了两个因数还有的数叫作合数。
(合数至少有个因数)最小的合数是。
按照是否是 2 的倍数可以把自然数分成两类。
最小的偶数是 .2. ,叫做这两个数的公因数,其中最大的一个,叫做这两个数的3. ,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的,用符号[ ,]表示。
两个数的公倍数也是的。
8、两个素数的积一定是。
举例:3×5=15,15 是合数。
4.两个数的最小公倍数一定是它们的最大公因数的。
举例:[6,8]=24,(6,8)=2,24 是 2 的倍数。
5.求最大公因数和最小公倍数的方法:()①倍数关系的两个数,是较小的数,是较大的数。
举例:15 和 5,[15,5]=15,(15,5)=5②的两个数,最大公因数是 1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1④一般关系的两个数,求最大公因数用,求最小公倍数用大数。
知识点三:质因数和分解质因数1.质因数:如果一个数的因数是,这个因数就是它的。
2. 数叫作偶数,叫作奇数。
相邻偶数(奇数)相差 2。
知识点四:2 、5、3的倍数的特征2 的倍数的特征:个位是5 的倍数的特征:个位是3 的倍数的特征:各位上数字的和一定是 3 的。
五年级下册数学质数和合数笔记知识点一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
如2,3,5,7都是质数。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
如4,6,15,49都是合数。
1不是质数,也不是合数。
100以内的质数表一位质数2开头,2,3,5,7要记熟;两位质数二十一个,找准规律容易记;十位见了4和1,个位准有1,3,7;十位若是2,5,8,个位3,9往上加;十位若是3和6,个位1,7跟在后;十位一旦被7占,个位1,3,9马上现;两位质数巧记忆,19,97莫忘记。
同步练习1.填空。
(1)1既不是(质数),也不是(合数)。
自然数中,最小的质数是(2),最小的合数是(4)。
(2)在自然数1~20中,质数有(2,3,5,7,11,13,17,19),合数有(4,6,8,9,10,12,14,15,16,18,20),既是偶数又是质数的数是(2)。
(3)两个质数的和是22,积是57,它们分别是(3)和(19)。
(4)两个质数的积是33,和是14,它们分别是(3)和(11)。
(5)两个质数的积是39,差是10,它们分别是(3)和(13)。
(6)100以内最大的质数是(97),最小的合数是(4)。
2.将下面各数分别填入指定的方框里。
1 13 25 41 51 19 91 5283 61 89 71 87 49 24 2823.在括号里填上合适的质数。
(部分空答案不唯一)16=( 3 )+(13 )=( 5 )+(11 )32=(13 )+(19 )58=(17 )+(41 )70=( 2 )×( 5 )×(7 )14=( 3 )+(11 )=(19 )-( 5 )4.一个长方形的长和宽都是以厘米为单位的质数,它的周长是40cm,它的面积最大是多少平方厘米?40÷2=20(cm)20=3+17=7+13要使面积最大,长与宽的差必须最小,此时面积为13×7=91(cm2)。
小学数学五年级质数合数知识点总结1、自然数按因数的个数来分:质数、合数、1、0四类.(1)、质数(或素数):只有1和它本身两个因数。
(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)、1:只有1个因数。
“1”既不是质数,也不是合数。
注①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③除了2和5,其余质数的各位都是1、3、7、9④质数和合数研究的范围是除0以外的自然数⑤20以内的质数:有8个分别是:(2、3、5、7、11、13、17、19)⑥100以内的质数有25个分别是:(2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 )2、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13,的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数5和7两个合数的互质数8和9一质一合的互质数7和85、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;6、判断质数1、尾巴判断法,排除末尾是0,2,4,6,8,52、和判断法,排除数位上的数字和是3的倍数3、试除判断法,试除质数,被除数逐个从小到大除以质数,直到到商<除数为止。
注意:148,143、179,135,243是不是质数。
三、注意事项把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;短除法是除法的一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数。
质数和合数
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
()51加速度学习网整理
一、本节学习指导
本节要理解质数和合数的概念,虽然在平时考试中所占分值不大,但是我们要抱着完善知识体系来学习它。
此外要掌握树状图的优势,以后很多数据分析利用树状图法都是重要手段。
二、知识要点
1、自然数按因数的个数来分:质数、合数、1、0四类.
(1)、质数(或素数):只有1和它本身两个因数。
(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)、1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)
④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
2、100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数
3、常见最大、最小
A的最小因数是:1;最小的奇数是:1;
A的最大因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图
例:
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×3
5、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:
分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。
具体步骤是:
6、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
7、两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
三、经验之谈:
书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;
短除法是除法额一种简化,利用短除法分解质因数时,除数和上都不能是1,因为1不是质数
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
()51加速度学习网整理。