小学奥数圆面积的典型题和解法复习过程
- 格式:docx
- 大小:203.03 KB
- 文档页数:8
圆面积的典范题息争法一、半径r 2替代法 题的特色:一般将正方形,三角形和圆放到一路,一般已知前提是正方形或三角形面积,求圆的面积.解法:一般设法求出r,或者求出r 2,★留意:园内直角三角形一般为等腰直角三角形,两腰等长,斜边是斜边上高的2倍.例1:已知下图暗影部分面积为8平方米,解:由已知前提可得r 2=8, 是以,圆的面积为:814.32⨯=r π 例2:ABCD 为正方形,已知AC 长6m,求暗影部分面积:解:△ACD 为等腰直角三角形,则S △ACD=6*3/2=9㎡AD=DC=rAD*DC/2=9是以,r 2 =18, 扇形DAC 的面积为:4/1814.34/2⨯=r π是以,暗影部分面积为:18-4/1814.34/2⨯=r π例3:求圆与圆内最大正方形的面积比值.解:△ABC 为等腰直角三角形,则S △ABC=22/2rr r =⨯正方形的面积是两个三角形面积和,为:22r圆的面积为:2r π,则圆与圆内最大正方形的比为:2/π演习题:1.已知下图暗影部分面积为5平方米,求圆的面积:2:.在右图扇形中,正方形面积为30平方米,求暗影部分面积:3:求正方形与正方形内最大圆的面积比值.二、图像平移弥补法题的特色:一般圆内由多个暗影部分面积组成,暗影由弧线和弧线组成,或者由弧线和直线组成.解法:留意不雅察面积雷同的部分,将雷同的部分移动调换,若碰到轴对称图形可测验测验扭转图形,记住罕有的面积平移图例.,例1:求暗影部分的面积:解:正方形外三角形底为6,和正方形内三角形底雷同,因为顶角雷同,所以两个三角形可以交换.暗影部分面积则为:正方形面积-1/4圆的面积例2:求暗影部分的面积:解:平移得到下图:则暗影部分面积为扇形面积-三角形面积例3:求暗影部分的面积:解:留意不雅察,:暗影部分面积为:1*1-1*1/2=1/2演习题:求暗影部分面积:三、图像联系关系扩大法题的特色:图有好几个部分组合而成,各部分之间消失着必定的关系.解法:留意不雅察图形,将图形离开或者结合起来斟酌问题.可以测验测验弥补图形或者删减图形.例1:甲比乙的面积大6cm2,求暗影部分面积.解:甲和乙单独斟酌难解决问题,将甲.乙和直角梯形放到一路斟酌甲=乙+6,甲+直角梯形面积=乙+直角梯形面积+6.可得,S长方形ABEF=S三角形BDF+6S长方形ABEF=4*6=24 所以S△BDF=18BF*DF/2=18 DF=6BF=DF 所以S△BDF为直角等腰三角形S扇形DFG=3.14*6*6/8暗影部分面积为:S△BDF-S扇形DFG例2:正方形边长为10cm,求暗影部分面积.解:直接难以求解,可测验测验将图形分化开解决问题,如下图:可以看小正方形两块空白区域相等.是以,大正方形外部空白区域和内部空白区域相等空白区域的面积:(10*10-3.14*5*5)*2暗影部分面积:10*10-(10*10-3.14*5*5)*2 例3.求暗影部分面积解:不雅察,暗影部分面积须要用两个小半圆面积-两个空白圆弧面积.两个空白圆弧面积=空白半圆的面积-三角形面积.2/2- 3*4/2暗影部分面积=3.14*22/2+2/2-两个空白圆弧面积演习题:1、△ABC为直角三角形,1比2小28cm2,AB长40cm,BC长若干?的度数.2.扇形ABC的面积是半圆ADB面积的4/3倍,求CAB3.求暗影部分面积:。
平面图形面积————圆的面积欧阳光明(2021.03.07)专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的3.144,而在圆内的最大正方形占所在圆的面积的23.14,这些知识点都应该常记于心,并牢牢掌握!例题1。
求图中阴影部分的面积(单位:厘米)。
【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。
62×3.14×1/4=28.26(平方厘米)练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答例题2。
求图中阴影部分的面积(单位:厘米)。
【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)练习21、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2例题3。
如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【分析】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)练习31、如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
答2、如图所示,AB=BC=8厘米,求阴影部分的面积。
第十六讲面积计算(二)第一部分:趣味数学两球间隙哪个大在兴趣小组活动中,老师给同学们出了这样一道题:假定我们给地球腰上打一个箍,也给小小的足球的腰上打一个箍,要求箍打得不大不小,刚好紧紧地套住球。
如果现在这两个箍的周长都增加了1米,试问把这两个箍分别套到这两个“球”上去时,“箍”和“球”之间的间隙哪个大?【答案】一样大第二部分:习题精讲【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)答:阴影部分的面积是107平方厘米。
练习一:1.如图所示,求阴影部分的面积(单位:厘米)2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。
求红蓝两张三角形纸片面积之和是多少?【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。
如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。
平面图形面积————圆的面积在正方形里的最大圆的面积占所在正方形的面积的3.144 ,而在圆内的最大正方形占所在圆的面积的23.14例题1。
求图中阴影部分的面积(单位:厘米)。
. 练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答1、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2. 练习41、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。
以AC、BC为直径画半圆,两个半圆的交点在AB边上。
求图中阴影部分的面积。
答例题5。
在图中,正方形的边长是10厘米,求图中阴影部分的面积。
.1、求下面各图形中阴影部分的面积(单位:厘米)。
答2、求右面各图形中阴影部分的面积(单位:厘米)。
答3、求右面各图形中阴影部分的面积(单位:厘米)。
答.例题6。
在图的扇形中,正方形的面积是30平方厘米。
求阴影部分的面积。
练习61、如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
答圆的面积与组合圆积专题训练一、填空题1.算出下面圆内正方形的面积为 .2.右下图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.左下图三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米6.如右下图,阴影部分的面积为2平方厘米,7.157平方厘米,这个扇形的圆心角是 .度。
8.图中扇形的半径OA=OB=6厘米.45=∠AOB , AC 垂直OB 于C,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.10.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.11.左下图在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)12.右上图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).13.如左下图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π14.如右下图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .15. 如左下图已知:ABCD 是正方形, ED=DA=AF=2厘米,阴影部分的面积是 .16.右下图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB 是 度.。
小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。
画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。
通过圆心,并且两端在圆上的线段叫做直径。
在同一个圆中,所有的直径都相等,且等于半径的2倍。
圆心决定圆的位置,半径决定圆的大小。
任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。
如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。
π是一个无限不循环小数,π=3.14159265358979323846…。
圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。
圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。
需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。
(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。
解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。
时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。
例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。
图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。
为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。
学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。
设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。
以下是一道有关圆知识点的奥数题:
题目:在一个半径为8米的圆形花坛周围铺设一条宽1米的石子小路。
这条石子小路的面积是多少平方米?
分析:为了计算石子小路的面积,我们需要先计算圆形花坛的面积和包含石子小路的更大圆的面积。
然后,我们将更大圆的面积减去圆形花坛的面积,得到的就是石子小路的面积。
解:
1.圆形花坛的半径为8米,所以其面积为:π × 8^2 = 64π 平方米。
2.包含石子小路的更大圆的半径为8米+ 1米= 9米,所以其面积为:π × 9^2 = 81π 平
方米。
3.石子小路的面积= 包含石子小路的更大圆的面积- 圆形花坛的面积= 81π - 64π =
17π 平方米。
因此,这条石子小路的面积是17π平方米。
注意:π是一个无理数,通常取近似值3.14进行计算。
所以,石子小路的面积约为
17 × 3.14 = 53.38平方米。
这道题考察了圆的面积公式和圆环面积的计算方法,同时也需要学生具备一定的代数运算能力。
小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。
答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。
答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。
答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。
圆(二)圆的面积知 知识梳理1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S 表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽圆的周长的一半 = 长方形的长因为: 长方形面积 = 长 × 宽所以: 圆的面积 = 圆周长的一半 × 圆的半径S 圆 = πr × r圆的面积公式: S 圆 = πr 2 r 2 = S ÷ π4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。
(R =r +环的宽度.)S 环 = πR²-πr² 或环形的面积公式: S 环 = π(R²-r²)。
5、扇形的面积计算公式: S 扇 = πr 2×360n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
7、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
8、(选学)两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶99、常用平方数典题探究例1 填空1.鼓楼中心岛是半径 10米的圆,它的占地面积是( )平方米。
2.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米3.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。
精心整理页脚内容 圆面积的典型题和解法一、半径r 2替代法题的特点:一般将正方形,三角形和圆放到一起,一般已知条件是正方形或三角形面积,求圆的面积。
解法:一般设法求出r ,或者求出r 2,★注意:园内直角三角形一般为等腰直角三角形,两腰等长,斜边是斜边上高的2倍。
例1:已知下图阴影部分面积为8平方米,求圆的面积:解:由已知条件可得r 2=8,因此,圆的面积为:814.32⨯=r π例2:ABCD 为正方形,已知AC 长6m ,求阴影部分面积:解:△ACD 为等腰直角三角形,则S △ACD=6*3/2=9㎡AD=DC=rAD*DC/2=9因此,r 2=18,扇形DAC 的面积为:4/1814.34/2⨯=rπ 因此,阴影部分面积为:18-4/1814.34/2⨯=r π例3:求圆与圆内最大正方形的面积比值。
解:△ABC 为等腰直角三角形,则S △ABC=22/2r r r =⨯正方形的面积是两个三角形面积和,为:22r圆的面积为:2r π,则圆与圆内最大正方形的比为:2/π练习题:1、已知下图阴影部分面积为5平方米,求圆的面积:2:、在右图扇形中,正方形面积为30平方米,求阴影部分面积:3:求正方形与正方形内最大圆的面积比值。
二、图像平移填补法题的特点:一般圆内由多个阴影部分面积构成,阴影由弧线和弧线构成,或者由弧线和直线构成。
解法:注意观察面积相同的部分,将相同的部分移动替换,若遇到轴对称图形可尝试旋转图形,记住常见的面积平移图例。
,例1:求阴影部分的面积:解:正方形外三角形底为6,和正方形内三角形底相同,由于顶角相同,所以两个三角形可以互换。
阴影部分面积则为:正方形面积-1/4圆的面积例2:求阴影部分的面积:解:平移得到下图:则阴影部分面积为扇形面积-三角形面积例3:求阴影部分的面积:精心整理页脚内容 解:注意观察,:阴影部分面积为:1*1-1*1/2=1/2练习题:求阴影部分面积:三、图像关联扩张法题的特点:图有好几个部分组合而成,各部分之间存在着一定的关系。
小学奥数圆面积的典型题和解法
圆面积的典型题和解法
一、半径r2替代法
题的特点:一般将正方形,三角形和圆放到一起,一般已知条件是正方形或三角形面积,求圆的面积。
解法:一般设法求出r,或者求出r2,
★注意:园内直角三角形一般为等腰直角三角形,两腰等长,斜边是斜边上高的2倍。
例1:已知下图阴影部分面积为8平方米,求圆的面积:解:由已知条件
可得r2 =8,
因此,圆的面积为:r2 3.14 8
例2:ABCD为正方形,已知AC长6m,求阴影部分面积:
解:△ ACD为等腰直角三角形,则S A ACD=6*3/2=9tf
AD=DC=r
AD*DC/2=9
因此,r2 =18,扇形DAC的面积为:r2/4 3.14 18/4
因此,阴影部分面积为:18- r2/4 3.14 18/4
例3:求圆与圆内最大正方形的面积比值。
解:△ ABC为等腰直角三角形,则S A ABC=2r r/2 r2
正方形的面积是两个三角形面积和,为:2r2
圆的面积为:r2,则圆与圆内最大正方形的比为:/2
练习题:
1、已知下图阴影部分面积为5平方米,求圆的面积:
2:、在右图扇形中,正方形面积为30平方米,求阴影部分面积:
3:求正方形与正方形内最大圆的面积比值。
、图像平移填补法
题的特点:一般圆内由多个阴影部分面积构成,阴影由弧线和弧线构成,或者由弧线和直线构成。
解法:注意观察面积相同的部分,将相同的部分移动替换,
若遇到轴对称图形可尝试旋转图形,记住常见的面积平移图例
例1:求阴影部分的面积:
解:正方形外三角形底为6,和正方形内三角形底相同, 由
于顶角相同,所以两个三角形可以互换。
阴影部分面积则为:正方形面积-1/4圆的面积
62X344X1/4-28,20 (平方申 *)
例2:求阴影部分的面积:
解:平移得到下图:
则阴影部分面积为扇形面积-三角形面
2 2
4 /4 4 2/2 8.56cm
积
例3:求阴影部分的面积:
解:注意观察,:
1
阴影部分面积为:1*1-1*1/2=1/2
练习题:求阴影部分面积:
三、图像关联扩张法
题的特点:图有好几个部分组合而成,各部分之间存在着一定的关系。
解法:注意观察图形,将图形分开或者联合起来考虑问题。
可以尝试补充图形或者删减图形。
例1:甲比乙的面积大6cm2,求阴影部分面积。
解:甲和乙单独考虑难解决问题,将甲、乙和直角梯形放到一起考虑
甲二乙+6,甲+直角梯形面积=乙+直角梯形面积+6。
可得,S长方形ABEF=S三角形BDF+6
S 长方形 ABEF=4*6=24 所以 S A BDF=18
BF*DF/2=18 DF=6
BF=DF 所以S A BDF 为直角等腰三角形
S 扇形 DFG=3.14*6*6/8
阴影部分面积为:S A BDF-S 扇形DFG
解:直接难以求解,可尝试将图形分解开解决问题,如下图: 小正方
形两块空白区域相等。
大正方形外部空白区域和内部空白区域相等
空白区域的面积:(10*10-3.14*5*5 ) *2
阴影部分面积:10*10- (10*10-3.14*5*5 ) *2
例3、求阴影部分面积
解:观察,阴影部分面积需要用两个小半圆面积
两个空白圆弧面积=空白半圆的面积-三角形面积。
因此:两个空白圆弧面积 =3.14*2.52/2- 3*4/2
阴影部分面积=3.14*22/2+3.14*1.52/2-两个空白圆弧面积 练习题:
1、△ ABC 为直角三角形,1比2小28cm , AB 长40cm ,BC 长多少?
例2:正方形边长为10cm ,求阴影部分面积
-两个空白圆弧
2、扇形ABC的面积是半圆ADB面积的4/3倍,求CAB的度数
3、求阴影部分面积:
10.如图,&AK的面积肚5平方歴粕平
AE=ED. BD-2X.附呦盼的总面积是方锂漾“
A。