(完整)高一三角函数诱导公式练习题精选
- 格式:doc
- 大小:165.36 KB
- 文档页数:5
三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。
三角函数定义及诱导公式练习题2015-05-171.将120o 化为弧度为( )A .B .C .D .3π23π34π56π2.代数式的值为( ) sin120cos210 A. C. D.34-32-143.( )tan120︒=A B ..4.已知角α的终边经过点(3a ,-4a)(a<0),则sin α+cos α等于( )A. B. C . D .-515751-575.已知扇形的面积为2cm 2,扇形圆心角θ的弧度数是4,则扇形的周长为( )(A)2cm (B)4cm (C)6cm (D)8cm6. 若有一扇形的周长为60 cm ,那么扇形的最大面积为 ( )A .500 cm 2 B .60 cm 2 C .225 cm 2D .30 cm 27.已知,则的值为( )3cos()sin()22()cos()tan()f ππ+α-αα=-π-απ-α25()3f -πA .B .-CD . 12128.已知3tan()4απ-=,且3(,)22ππα∈,则sin(2πα+=( )A 、45 B 、45- C 、35 D 、35-9.若角的终边过点,则_______.α(sin 30,cos30)︒-︒sin α=10.已知点P(tanα,cosα)在第二象限,则角α的终边在第________象限.11.若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限.12.已知,则的值为.tan 2α=sin()sin()23cos()cos()2ππααπαπα+-+++-13.已知,,则_____________.(0,)2πα∈4cos 5α=sin()πα-=14.已知,则_________.tan 2θ=()()sin cos 2sin sin 2πθπθπθπθ⎛⎫+-- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭15.已知tan =3,则 .α224sin 3sin cos 4cos sin cos αααααα+=-16.(14分)已知tan α=,求证:12(1)=-;sin cos sin cos a a a a -3+53(2)sin 2α+sin αcos α=.3517.已知.2tan =α(1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.18.已知sin(α-3π)=2cos(α-4π),求的值.52322sin cos sin sin παπαπαα⎛⎫⎪⎝⎭(-)+(-)--(-)参考答案1.B 【解析】试题分析:,故.180oπ=21203oπ=考点:弧度制与角度的相互转化.2.A.【解析】试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°)=-=,选A. 34-考点:诱导公式的应用.3.C 【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由C.tan120tan(18060)tan 60︒=︒-︒=-︒=考点:诱导公式.4.A 【解析】试题分析:,,.故选A.σσ55-==r 53cos ,54sin -===σσr y 51cos sin =+∴σσ考点:三角函数的定义5.C【解析】设扇形的半径为R,则R 2θ=2,∴R 2=1R=1,∴扇形的周长为⇒2R+θ·R=2+4=6(cm).6.C【解析】设扇形的圆心角为,弧长为cm,由题意知,αl 260l R +=∴211(602)3022S lR R R R R ==-=-2(15)225R =--+∴当时,扇形的面积最大;这个最大值为. 应选C.15R cm =2225cm 7.A 【解析】试题分析:,==()()()sin cos cos cos tan f αααααα--==--25()3f -π25cos 3π⎛⎫- ⎪⎝⎭===.25cos3πcos 83ππ⎛⎫+ ⎪⎝⎭cos 3π12考点:诱导公式.l l t h 8.B 【解析】试题分析:3tan()4απ-=.又因为3(,)22ππα∈,所以为三象限的3tan 4α⇒=α角,.选B.4sin()cos 25παα+==-考点:三角函数的基本计算.9.【解析】试题分析:点即,该点到原点的距离为(sin 30,cos30)︒-︒1(,2,依题意,根据任意角的三角函数的定义可知1r ==sin y rα===考点:任意角的三角函数.10.四【解析】由题意,得tanα<0且cosα>0,所以角α的终边在第四象限.11.四【解析】由sinθ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.12.-3【解析】sin()sin()23cos()cos()2ππααπαπα+-+++-sin cos tan 1213sin cos tan 121αααααα------====----13.35【解析】试题分析:因为α是锐角所以35=考点:同角三角函数关系,诱导公式.14.2-【解析】试题分析:,又()()sin cos 2sin sin 2πθπθπθπθ⎛⎫+-- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭2cos 22sin cos sin 1tan 1cos θθθθθθ==---,则原式=.tan 2θ=2-考点:三角函数的诱导公式.15.45【解析】试题分析:已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得2cos α.2224sin 3sin cos 4tan 3tan 4933454cos sin cos 4tan 43ααααααααα++⨯+⨯===---考点:弦化切16.证明: (1)=-.(2)sin 2α+sinαcosα=.sin cos sin cos a a a a -3+5335【解析】(1)原式可以分子分母同除以cosx,达到弦化切的目的.然后将tanx=2代入求值即可.(2)把”1”用替换后,然后分母也除以一个”1”,再分子分母22cos sin x x +同除以,达到弦化切的目的.2cos x 证明:由已知tan α=.(1) ===-.12sin cos sin cos a a a a -3+tan tan a a -3+11-321+1253(2)sin 2α+sinαcosα====.sin sin cos sin cos a a a a a 222++tan tan tan a a a 22++12211⎛⎫+ ⎪22⎝⎭1⎛⎫+1 ⎪2⎝⎭3517.(1);(2);(3)812-【解析】试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以转化cos a 为只含的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有tan a ,得sin 2cos αα=,再利用同角关系22sin cos 1αα=+,又因为α是第三tan 2a =象限角,所以;cos 0a <试题解析:⑴3sin 2cos 3tan 2sin cos tan 1αααααα=--++ 2分322821⨯==-+. 3分⑵()()()()()()()()()()cos cos()sin()cos sin cos 22sin 3sin cos sin sin cos ααααααααααααπ3ππ----=π-ππ---+++ 9分cos 11sin tan 2ααα=-=-=-. 10分⑶解法1:由sin tan 2cos ααα==,得sin 2cos αα=,又22sin cos 1αα=+,故224cos cos 1αα=+,即21cos 5α=, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分解法2:222222cos 111cos cos sin 1tan 125ααααα====+++, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分考点:1.诱导公式;2.同角三角函数的基本关系.18.34-【解析】∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴sinα=-2cosα,且cosα≠0.∴原式=5253322244sin cos cos cos cos cos sin cos cos cos αααααααααα+-+===--+---。
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。
高一数学三角函数的诱导公式试题1.的值是()A.B.C.D.【答案】A【解析】根据诱导公式有.【考点】本小题主要考查三角函数值的求解,考查学生的运算求解能力.点评:正确灵活地利用诱导公式是正确求解此类题目的关键.2.已知sin(α-)=,则cos(+α)的值为()A.B.-C.D.-【答案】D【解析】cos(+α)=sin(-α).=-sin(α-)=-.3.若A、B是锐角△ABC的两个内角,则点P(cos B-sin A,sin B-cos A)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cos B<sin A,sin B>cos A,故cos B-sin A<0,sin B-cos A>0,选B.4.化简=________.【答案】cos20°-sin20°【解析】原式===|sin20°-cos20°|=cos20°-sin20°.5.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,则=________.【答案】【解析】由已知得sinα=-.∵α是第三象限角,∴cosα=-=-.∴原式===.6.若P(-4,3)是角α终边上一点,则的值为________.【答案】-【解析】由已知得sinα=,原式===-=-.7.已知x∈R,n∈Z,且f(sin x)=sin(4n+1)x,求f(cos x).【答案】cos(4n+1)x.【解析】f(cos x)=f=sin=sin=sin=cos(4n+1)x.8.函数f(x)=cos (x∈Z)的值域为()A.B.C.D.【答案】B【解析】对x依次赋值0,1,2,3,4,…,很容易选出.9.若|sin(4π-α)|=sin(π+α),则角α的取值范围是________.【答案】[2kπ-π,2kπ],(k∈Z)【解析】∵|sin(4π-α)|=sin(π+α),∴|sinα|=-sinα,∴sinα≤0,∴2kπ-π≤α≤2kπ,k∈Z.10. sin,cos,tan,从小到大的顺序是________.【答案】cos<sin<tan【解析】∵cos=cos=-cos,tan=tan=tan>sin>0,∴cos<sin<tan.。
诱导公式练习题一、基本概念题1. 写出三角函数的诱导公式:正弦、余弦、正切函数的周期性公式。
2. 利用诱导公式,将sin(π α)转换为基本三角函数的形式。
3. 将cos(3π/2 + β)用基本三角函数表示。
4. 利用诱导公式,将tan(2π + γ)简化。
5. 已知sinθ = 1/2,求cos(π/2 θ)的值。
二、化简题6. 化简表达式:sin(π + α) cos(π/2 α)。
7. 化简表达式:tan(2π β) + tan(π + β)。
8. 化简表达式:sin^2(π/2 γ) + cos^2(π/2 γ)。
9. 化简表达式:cos(2π 2θ) sin(2π + 2θ)。
10. 化简表达式:tan(π 3α) tan(π + 3α)。
三、应用题11. 已知sinα = 3/5,求cos(π/2 α)的值。
12. 已知cosβ = 4/5,求sin(π β)的值。
13. 已知tanγ = 1,求tan(π + γ)的值。
14. 已知sinθ = √3/2,求cos(2π + θ)的值。
15. 已知cosφ = √2/2,求sin(π/2 φ)的值。
四、综合题16. 已知sinα + cosα = 1,求sin(π/2 α)的值。
17. 已知sinβ cosβ = 0,求cos(π β)的值。
18. 已知tanγ = tan(π/4 γ),求sin(2π + γ)的值。
19. 已知sinθ = cos(π/2 θ),求tan(2π θ)的值。
20. 已知cosφ = sin(π/2 φ),求sin(π + φ)的值。
五、拓展题21. 利用诱导公式证明:sin^2α + cos^2α = 1。
22. 利用诱导公式证明:tan(π + α) = tanα。
23. 利用诱导公式证明:sin(π 2α) = sin2α。
24. 利用诱导公式证明:cos(2π 2β) = cos2β。
25. 利用诱导公式证明:tan(π/2 γ) = cotγ。
三角函数定义及诱导公式练习题代数式sin 120o cos21C °的值为(A.6 .已知 tan( ) 4 A 、4B5A. B. C. D.2. tan120 A.、.3.■■ 3贝U sin a+ cos a 等于()7 5a 的终边经过点 B.753. A.154. 已知扇形的面积为2cm,扇形圆心角B 的弧度数是4,则扇形的周长为( 已知角 (3a ,— 4a)(a <0), C . -15D .(A)2cm(B)4cm (C)6cm (D)8cm5 .已知f ()cos(— 2 cos(3 )si n()2,则 f( )tan()25§ )的值为(3“),则sin( ?)10. (14分)已知tan a =—,求证: /八 sin a cosa ⑴ 二_ _ ;sin a cosa(2)sin 2 a+ sin a COS a = - .11 .已知 tan 2.(1)求 3sin 一2CO 二的值; sin coscos( )cos( )sin()⑵求品盘窗勺的值;(3)若 是第三象限角,求cos 的值. 312.已知 sin ( a — 3n ) = 2cos( a — 4n ),求 si (2si n— — si n(—二)+ 5cos (2 —3-的值. )f(25 )=cos 325 325 =cos- 3 = cos 8 1 —=cos —= 3 3 2参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- ^ x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 603,选 C.考点:诱导公式• 4. A【解析】 试题分析:r 55 , sin —-, cos -, sin cos r 55考点:三角函数的定义 5. C【解析】设扇形的半径为R,则错误!未找到引用源。
三角函数诱导公式练习题一、选择题(共21 小题)1、已知函数 f( x)=sin , g(x) =tan(π﹣ x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数, g( x)是奇函数2、点 P( cos2009 ,° sin2009 )°落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若 tan160 =a°,则 sin2000 等°于()A、B、C、D、﹣5、已知 cos(+α)=﹣,则 sin(﹣α) =()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣ 3B、﹣ 2C、D、﹣ 17、本式的值是()A、 1B、﹣ 1C、D、8、已知且α是第三象限的角,则cos( 2π﹣α)的值是()A、B、C、D、9、已知 f(cosx) =cos2x,则 f ( sin30 )°的值等于()A、B、﹣C、 0 D、110、已知 sin( a+ ) = ,则 cos( 2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知 cos( x﹣) =m,则 cosx+cos( x﹣) =()A 、 2mB 、 ± 2mC 、D 、14、设 a=sin ( sin20080),b=sin ( cos20080),c=cos ( sin20080),d=cos ( cos20080),则 a ,b , c , d 的大小关系是()A 、 a <b <c < dB 、 b < a <d < cC 、 c < d < b < aD 、 d < c < a < b15 、在△ ABC 中,① sin ( A+B )+sinC ;② cos (B+C )+cosA ;③tantan ;④,其中恒为定值的是()A 、②③B 、①②C 、②④D 、③④16 、已知 tan28 =a °,则 sin2008 =°( )A 、B 、C 、D 、17、设 ,则 值是( )A 、﹣ 1B 、 1C 、D 、18、已知 f ( x ) =asin (π x+ α)+bcos ( π x+)β+4(a , b , α,β 为非零实数),f ( 2007) =5,则 f ( 2008 ) =()A 、 3B 、 5C 、 1D 、不能确定19 、给定函数① y=xcos ( +x ),② y=1+sin 2( π+x ),③ y=cos ( cos ( +x ))中,偶函数的个数是()A 、 3B 、 2C 、 1D 、 020 、设角的 值等 于()A 、B 、﹣C 、D 、﹣21 、在程序框图中,输入 f 0( x ) =cosx ,则输出的是 f 4( x )=﹣ csx ()A 、﹣ sinxB 、 sinxC 、 cosxD 、﹣ cosx二、填空题(共 9 小题)22、若(﹣ 4,3)是角终边上一点, 则Z 的值为 .23、△ ABC 的三个内角为 A 、B 、 C ,当 A 为°时, 取得最大值,且这个最大值为 .24、化简:=25 、化:= .26 、已知, f( 1)+f( 2) +f( 3) +⋯ +f( 2009 )= .27 、已知tan θ =3,(π θ)= .28 、sin(π+) sin(2π+) sin( 3π+)⋯ sin( 2010 π+)的等于.29 、f( x)= , f( 1°)+f(2°)+⋯ +f( 58°)+f( 59°) = .30 、若,且, cos(2π α)的是.答案与评分标准一、选择题(共21 小题)1、已知函数f( x)=sin,g(x)=tan(π﹣x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数,g( x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
高中三角函数诱导公式习题一、选择题1.sin2 015°=( )A .sin35°B .-sin35°C .sin58°D .-sin58°2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .23.计算:cos1°+cos2°+cos3°+…+cos179°+cos180°=( )A .0B .1C .-1D .以上均不对4.在△ABC 中,cos(A +B )的值等于( )A .cos CB .-cosC C .sin CD .-sin C5.tan(π+α)=-2,则sin (-α)-cos (π+α)sin (π-α)+cos (-α)的值为( ) A .3 B .-3 C .2 D .-26.已知f (cos x )=cos2x ,则f (sin15°)的值为( )A.12 B .-12 C.32 D .-32二、填空题7.cos 2600°=________.8.化简函数式sin 2500°+sin 2770°-cos 2(1620°-x )的结果是________________.(其中x ∈(π,2π)).9.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是________.三、解答题10.求下列三角函数值:(1)sin(-1320°);(2)cos ⎝ ⎛⎭⎪⎫-263π;(3)tan 176π.11.化简下列各式:(1)sin(2π-α)·cos(π+α)cos(π-α)·sin(3π-α)·sin(-π-α);(2)cos(α-π)sin(π-α)·sin(α-2π)·cos(2π-α);(3)cos2(-α)-tan(360°+α) sin(-α).12.若k∈Z,则sin(kπ-α)cos(kπ+α)sin[(k+1)π+α]cos[(k+1)π-α]=________13.已知1+tanα1-tanα=3+22,求cos2(π-α)+sin(π+α)cos(π-α)+2sin2(α-π)的值.1.sin2 015°=( )A .sin35°B .-sin35°C .sin58°D .-sin58°答案:B解析:sin2 015°=sin(5×360°+215°)=sin215°=sin(180°+35°)=-sin35°.故选B.2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .2答案:D解析:原式=(-sin α)2-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.3.计算:cos1°+cos2°+cos3°+…+cos179°+cos180°=( )A .0B .1C .-1D .以上均不对答案:C解析:cos1°+cos179°=0,cos2°+cos178°=0,…,cos89°+cos91°=0,原式=cos90°+cos180°=-1.4.在△ABC 中,cos(A +B )的值等于( )A .cos CB .-cos CC .sin CD .-sin C答案:B解析:cos(A +B )=cos(π-C )=-cos C5.tan(π+α)=-2,则sin (-α)-cos (π+α)sin (π-α)+cos (-α)的值为( ) A .3 B .-3C .2D .-2答案:B解析:sin (-α)-cos (π+α)sin (π-α)+cos (-α)=-sin α+cos αsin α+cos α=-tan α+1tan α+1又tan(π+α)=-2,tan α=-2,∴原式=3-1=-3. 6.已知f (cos x )=cos2x ,则f (sin15°)的值为( )A.12 B .-12C.32 D .-32答案:D解析:f (sin15°)=f (cos75°)=cos150°=-32. 二、填空题 7.cos 2600°=________.答案:12解析:cos 2600°=|cos120°|=|-cos60°|=⎪⎪⎪⎪-12=12. 8.化简函数式sin 2500°+sin 2770°-cos 2(1620°-x )的结果是________________.(其中x ∈(π,2π)). 答案:-sin x解析: 原式=sin 2140°+sin 250°-cos 2(1620°-x )=sin 240°+cos 240°-cos 2x =1-cos 2x =sin 2x9.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是________. 答案:{-2,2}解析:当k 为偶数时,由诱导公式得A =sin (k π+α)sin α+cos (k π+α)cos α=sin αsin α+cos αcos α=2 当k 为奇数时,则有A =sin (k π+α)sin α+ cos (k π+α)cos α=-sin αsin α+-cos αcos α=-2. 三、解答题10.求下列三角函数值:(1)sin(-1320°);(2)cos ⎝⎛⎭⎫-263π; (3)tan 176π. 解:(1)sin(-1320°)=sin(-1440°+120°)=sin120°=32. (2)cos ⎝⎛⎭⎫-263π=cos ⎝⎛⎭⎫-8π-23π=cos 23π=-cos π3=-12. (3)tan 176π=tan ⎝⎛⎭⎫2π+56π=tan 56π=-tan π6=-33. 11.化简下列各式:(1)sin (2π-α)·cos (π+α)cos (π-α)·sin (3π-α)·sin (-π-α); (2)cos (α-π)sin (π-α)·sin(α-2π)·cos(2π-α); (3)cos 2(-α)-tan (360°+α)sin (-α). 解:(1)原式=(-sin α)·(-cos α)(-cos α)·sin α·sin α=-1sin α; (2)原式=-cos αsin α·(sin α)·cos α=-cos 2α; (3)原式=cos 2α+tan αsin α=cos 2α+1cos α.能力提升12.若k ∈Z ,则sin (k π-α)cos (k π+α)sin[(k +1)π+α]cos[(k +1)π-α]=________ 答案:-1解析:若k 为偶数,则左边=sin (-α)cos αsin (π+α)cos (π-α)=-sin αcos α(-sin α)(-cos α)=-1;若k 为奇数,则 左边=sin (π-α)cos (π+α)sin αcos (-α)=sin α(-cos α)sin αcos α=-1.13.已知1+tan α1-tan α=3+22,求cos 2(π-α)+sin(π+α)cos(π-α)+2sin 2(α-π)的值. 解:∵1+tan α1-tan α=3+2 2,∴tan α=2+2 24+2 2=22. ∴cos 2(π-α)+sin(π+α)cos(π-α)+2sin 2(α-π)=cos 2α+sin αcos α+2sin 2α=cos 2α(1+tan α+2tan 2α)=cos 2αcos 2α+sin 2α(1+tan α+2tan 2α)=1+tan α+2tan 2α1+tan 2α=1+22+11+12=4+23.。
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
习题精炼一、选择题1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312.3、0.4、0三、解答题1、7.2、25.3、22)41(=g , 5312()1,()s i n ()1,6233g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得2242()2(1)2f x x x x x =-=-+=22112()24x --+,当22x =时,max 1.f =。
高一数学三角函数的诱导公式练习题1.如果|cosx|=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π(k ∈Z ) B .-2π+2k π≤x ≤2π3+2k π(k ∈Z ) C . 2π+2k π≤x ≤2π3+2k π(k ∈Z ) D .(2k+1)π≤x ≤2(k+1)π(k ∈Z ) 2.sin (-6π19)的值是( ) A . 21B .-21C .23D .-23 3.下列三角函数:①sin(n π+3π4);②cos(2n π+6π);③sin(2n π+3π);④cos[(2n+1)π-6π]; ⑤sin[(2n+1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A+B )=cosCB .sin (A+B )=sinC C .tan (A+B )=tanCD .sin 2B A =sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 7.sin 2(3π-x )+sin 2(6π+x )=_________.8.若α是第三象限角,则)πcos()πsin(21αα---=_________.9.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.10.求值:sin (-660°)cos420°-tan330°cot(-690°).11.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.12.已知cos α=31,cos (α+β)=1,求cos (2α+β)的值.13. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.14、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.参考答案一、选择题1.C 2.A 3.C 4.B 5.B 6.B二、填空题7.1 8.-sin α-cos α 9.289 三、解答题10.43+1. 11.证明:左边=θθθθ22sin cos cos sin 2-1-- =-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++, 右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.12.解:∵cos(α+β)=1,∴α+β=2k π.∴cos(2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31. 13.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+ =︒-︒︒︒-70sin 70cos 70cos 70sin 21 =︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1. 14.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边, ∴原等式成立.。
一、选择题1.如果 |cosx|=cos ( x+π),则 x 的取值集合是( )A .- π+2k π≤x ≤π+2k πB .- π +2k π≤x ≤3π+2k π22 2 2C . π +2k π≤x ≤3π+2k π D .( 2k+1) π≤x ≤2(k+1) π(以上 k ∈ Z )2 2 2. sin (- 19 π)的值是( )6A .1B .-1C .3D .- 322 223.下列三角函数:4 ππ π ) π-π]; ①sin ( n π+);② cos ( 2n π+ );③ sin ( 2n π+ );④ cos [( 2n+16 363⑤ s in [( 2n+1) π- π]( n ∈ Z ).3 其中函数值与 sin π的值相同的是( )3 A .①② B .①③④C .②③⑤D .①③⑤4.若 cos ( π+α) =-10 ,且 α∈(- π ,0),则 tan ( 3 π+α)的值为( )522A .-6B .633C .-6D .6225.设 A 、 B 、C 是三角形的三个内角,下列关系恒成立的是()A . cos ( A+B )=cosC B . sin ( A+B ) =sinC C . tan ( A+B ) =tanCD . sinAB=sinC226.函数 f (x ) =cosπx( x ∈ Z )的值域为()3A . { - 1,- 1, 0, 1, 1}B . { - 1,- 1, 1, 1}2222C . { - 1,-3,0,3, 1}D . { - 1,-3 , 3, 1}2222π+α )=3,则 sin(3π-α)值为(7.已知 sin( )4241 B. —1 3 3 A.C.D. —22228.化 :1 2sin(2) ?cos( 2) 得()A.sin2+cos2B.cos2-sin2C.sin2-cos2D. ±(cos2-sin2)9.已知 α和 β的 关于 x 称, 下列各式中正确的是()A.sin α =sin βB. sin( 2β- α ) =sinC.cos α =cos βD. cos( 2-α ) =-cos β二、填空10. tan α =m , sin(α 3 ) cos(π α).sin( α)- cos(π α)11. |sin α |=sin (- +α), α的取 范 是.12.若 α是第三象限角,1 2 sin(π) cos(π ) =_________ .222213. sin 1°+sin 2°+sin 3° +⋯ +sin89°=_________ .14. tan1 tan 2 tan 3tan 89.15. 若 sin3 cos0 ,cos 2sin 的.2 cos3 sin16. cos( 945 ).17.化 sin 2sin 2sin 2 sin 2cos 2 cos 2.三、解答18.求 : sin (- 660 °)cos420 °- tan330 cot °(- 690 °).19. 明:2 sin(π) cos1tan(9 π ) 1 .1 2 sin 2tan(π )120.已知 cos α=1, cos ( α+β) =1,求 : cos ( 2α+β) = 1.3321. 已知 sin() 1,求 sin(2 )cot() cos的 .2422. 已知 sin. 求 cos 和 tan 的 .523. 已知 sin()1 ,求 tan(2) tan1 2sin 2900 cos430024. 化 :. (sin 2500cos7900 ) 225.sin 2 () cos() cot(2 )化 :tan() cos3( ).26.求证: tan(2 π) sin( 2 π) cos(6 π) =tanθ.cos(π) sin(5 π)tan cotsin cos27. 求证:cscsec2 cos3sin2 (2 π)sin( π) 3π28.设 f (θ) =2cos2 (π2,求 f()的值 .2)cos( )3三角函数公式1.同角三角函数基本关系式sin2α+ cos2α =1sinαcosα =tanαtanα cotα =12.诱导公式(奇变偶不变,符号看象限)(一)sin(π-α )= sinαsin( π +α) =-sin αcos(π-α )= -cosαcos(π +α )= -cosαtan(π-α )=-tanαtan(π +α )= tanαsin(2π-α )=-sin αsin(2π +α )= sinαcos(2π-α )= cosαcos(2π +α) = cosαtan(2π-α )= -tanαtan(2π +α) =tanα(二)ππsin(-α )= cosαsin( 2+α)=cosα2ππcos( 2-α )= sinαcos( 2+α )= - sin αππtan( 2-α ) =cotαtan( 2 +α )= -cotα3π3πsin( 2-α )=-cosαsin( 2+α )= -cosα3π3πcos( 2-α )= -sinαcos( 2+α) =sinα3π3πtan( 2-α )= cotαtan( 2+α )= -cotαsin(-α )=- sinαcos(-α )=cosαtan(-α )= -tanα3.两角和与差的三角函数cos(α +β )=cosα cosβ- sinα sinβcos(α-β )=cosα cosβ+ sinα sinβsin (α +β )=sin α cosβ+ cosα sinβsin (α-β )=sinα cosβ- cosα sinβtanα +tanβtan(α +β )=1- tanα tanβtan(α-β )=tanα- tanβ1+ tanα tanβ4.二倍角公式sin2α =2sin α cosαcos2α =cos2α- sin2α= 2 cos2α- 1= 1- 2 sin2α2tanαtan2α=1-tan2α5.公式的变形(1)升幂公式: 1+ cos2α= 2cos 2α 1— cos2α= 2sin 2α(2) 降幂公式: cos 2 α=1+ cos2α sin 2α= 1- cos2α2 2 ( 3) 正切公式变形: tan α +tan β= tan(α +β)(1- tan α tan β) tan α- tan β= tan(α-β ) ( 1+ tan α tan β )(4)万能公式(用 tan α表示其他三角函数值)2tan α1- tan 2α2tan αsin2α= 1+tan 2α cos2α= 1+tan 2αtan2α= 1- tan 2 α6. 插入辅助角公式asinx + bcosx= a 2+b2bsin(x+ φ ) (tan φ = a)特殊地: sinx ± cosx = 2sin(x ± π)47. 在三角形中的结论若: A +B +C=π , A+B+Cπ= 2 则有2tanA + tanB + tanC=tanAtanBtanCABBCCAtan 2 tan 2 + tan 2 tan 2 + tan 2 tan 2 = 1。
三角函数的诱导公式(一)一、选择题(每题4分,共16分)1.已知sin(π+θ)<0,cos(θ-π)>0,则下列不等关系中必定成立的是()(A)sinθ<0,cosθ>0 (B)sinθ>0,cosθ<0(C)sinθ>0,cosθ>0 (D)sinθ<0,cosθ<0【解析】选B.∵sin(π+θ)=-s inθ<0,∴sinθ>0,cos(θ-π)=cos(π-θ)=-cosθ>0,∴cosθ<02.(2009²全国Ⅰ)sin585°的值为()【解析】选A.si n585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=.4.在直角坐标系中,若α与β的终边关于y轴对称,则下列等式恒成立的是()(A)sin(α+π)=sinβ (B)sin(α-π)=sinβ(C)sin(2π-α)=-sinβ (D)sin(-α)=sinβ【解析】选C.∵α与β的终边关于y轴对称,∴α+β=π,即α=π-β,又因为sin(α+π)=sin(2π-β)=sin(-β)=-sinβ,故A错;sin(α-π)=sin(-β)=-sinβ,故B错;sin(-α)=sin(β-π)=-sinβ,故D错;sin(2π-α)=sin(π+β)=-sinβ,故C正确二、填空题(每题4分,共8分)5.sin315°-cos135°+2sin570°的值是_______.【解析】原式=sin(360°-45°)-cos(180°-45°)+2sin(360°+210°)=-sin45°+cos45°+2sin210°三角函数的诱导公式一、选择题(每题4分,共16分)1.sin95°+cos175°的值为()(A)sin5°(B)cos5°(C)0 (D)2sin5°【解析】选C.原式=sin(90°+5°)+cos(180°-5°)=cos5°-cos5°=0.2.已知sin10°=k,则cos620°的值等于()(A)k (B)-k (C)±k (D)不能确定【解析】选B.cos620°=cos(720°-100°)=cos100°=cos(90°+10°)=-sin10°=-k.3.已知f(cosx)=cos3x,则f(sin30°)的值等于()(A)-1 (B)1 (C)(D)0【解析】选A.f(sin30°)=f(sin(90°-60°))=f(cos60°)=cos180°=-1.二、填空题(每题4分,共8分)5.若|sinα|=cos(+α),则角α的集合为________.【解析】|sinα|=cos(+α)=-sinα,∴sinα≤0.∴角α的集合为{α|π+2kπ≤α≤2π+2kπ,k∈Z}.答案:{α|π+2kπ≤α≤2π+2kπ,k∈Z}[探究创新]9.(10分)如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2对应三个内角的正弦值,那么(1)试判断△A1B1C1是锐角三角形吗?(2)试借助于诱导公式证明△A2B2C2中必有一个角为钝角.【解析】(1)由条件知△A1B1C1的三个内角的余弦值均大于0,即cosA1>0,cosB1>0,cosC1>0,从而△A1B1C1一定是锐角三角形.(2)由题意可知若A2、B2、C2全为锐角,则又A2、B2、C2不可能为直角,且满足A2+B2+C2=π,故必有一个角为钝角.。
三角函数 诱导公式专项练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.()sin (‒600∘)=A . B . C .D .‒32‒1212322.的值为( )cos 11π3A . B .C .D .‒32‒1232123.已知,则cos (60°–α)的值为sin(30°+α)=3A . B .12‒12C .D . –32324.已知,且 ,则()cos(π2+α)=‒35α∈(π2,π)tan (α‒π)=A .B .C .D .‒34‒4334435.已知sin(π-α)=-,且α∈(-,0),则tan(2π-α)的值为( )23π2A .B . -C . ±D .255255255526.已知,则=( )cos (π4‒α)=24sin(α+π4)A .B .C .D .‒3414241447.已知,,则()sinα=35π2<α<3π2sin (7π2‒α)=A .B .C .D .35‒3545‒458.已知 ,则( )tanx =‒125,x ∈(π2,π)cos(‒x +3π2)=A .B .-C .D .-513513121312139.如果,那么cos(π+A)=‒12sin (π2+A)=A .-B .C . 1D . -1121210.已知,则( )cos(π2‒α)‒3cosαsinα‒cos (π+α)=2tanα=A .B .C .D . 15‒2312‒5∘A .B .C .D .12‒1232‒3212.的值是( )cos (‒585°)A .B .C .D .2232‒32‒2213.已知角的终边经过点,则的值等于 αP(‒5,‒12)sin (3π2+α)()A .B .C .D .‒513‒1213513121314.已知,则( )cos (π+α)=23tanα=A .B .C .D .52255±52±25515.已知的值为( )cosα=15,‒π2<α<0,则cos (π2+α)tan(α+π)cos (‒α)tanαA .B .C .D . 26‒26‒61261216.已知则 ()sinα=13,α∈(π2,π)cos (‒α)=A .B .C .D .13‒13223‒22317.已知,且是第四象限角,则的值是( )sin(π+α)=45αcos(α‒2π)A .B .C .D .‒3535±354518.已知sin =,则cos =( )A .B .C . -D . -19.已知cos α=k ,k∈R,α∈,则sin(π+α)=( )A . -B .C . ±D . -k20.=( )A . sin 2-cos 2B . sin 2+cos 2C . ±(sin 2-cos 2)D . cos 2-sin 221.的值为sin 585∘A .B .C .D .22‒2232‒3222.( )sin (‒1020°)=1‒13‒323.若,,则的值为( )α∈(0,π)sin(π‒α)+cosα=23sinα‒cosαA .B .C .D .23‒2343‒4324.已知且,则( )α∈(π2,π)sin (π+α)=‒35tan α=A .B .C .D .‒344334‒4325.已知,则()sin(π2+θ)+3cos (π‒θ)=sin (‒θ)sinθcosθ+cos 2θ=A . B . C . D .1525355526.若,且,则( )sinθ‒cosθ=43θ∈(34π,π)sin(π‒θ)‒cos(π‒θ)=A .B .C .D .‒2323‒434327.已知,则( )sin(π2+θ)+3cos (π‒θ)=sin (‒θ)sinθcosθ+cos 2θ=A . B . C . D .1525355528.已知,则的值为( )sin (2015π2+α)=13cos (π‒2α)A .B .C .D .13-1379‒7929.若,,则的值为( )α∈(0,π)sin(π‒α)+cosα=23sinα‒cosαA .B .C .D .23‒2343‒4330.已知,则的大小关系是( )a =tan (‒π6),b =cos (‒23π4),c =sin25π3a,b,c A .B .C .D . b >a >c a >b >c c >b >a a >c >b31.cos 7500=A .B .C .D .3212‒32‒1232.的值等于( )sin (‒236π)A .B .C .D .32‒1212‒3233.的值的( )sin 300°+tan 600°+cos (‒210°)A . B .C .D .‒30‒12+3212+3234.已知,,则等于().α∈(π2,3π2)tan(α‒π)=‒34sinα+cosαA .B .C .D .±15‒1515‒75A .B .C .D . a ‒a 1‒a 2‒1‒a236.点在直角坐标平面上位于( )A (cos 2018∘,tan 2018∘)A . 第一象限 B . 第二象限C . 第三象限D . 第四象限37.如果,那么等于( )sin (π‒α)=13sin (π+α)‒cos (π2‒α)A .B .C .D .‒2323223‒22338.已知角的终边过点,若,则实数α(a,‒2)tan (π+α)=3a =A . B .C .D .6‒23‒62339.cos (2π+α)tan (π+α)sin (π‒α)cos (π2‒α)cos (‒α)=A .B .C .D . 1‒1tan α‒tan α40.已知,则的值为( )sin (‒α)=-53cos (π2+α)A .B .C .D .53‒5323‒23参考答案1.D 【解析】【分析】直接运用诱导公式,转化为特殊角的三角函数值求解。
一、选择题
1.如果|cos x |=cos (x +π),则x 的取值集合是( ) A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2
π
3+2k π C .
2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6
π
19)的值是( ) A .
2
1 B .-
2
1 C .
2
3 D .-
2
3 3.下列三角函数: ①sin (n π+
3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6
π
]; ⑤sin [(2n +1)π-3
π
](n ∈Z ). 其中函数值与sin 3
π
的值相同的是( ) A .①② B .①③④
C .②③⑤
D .①③⑤
4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2
π3+α)的值为( ) A .-36 B .3
6
C .-
2
6
D .
2
6
5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( ) A .cos (A +B )=cos C B .sin (A +B )=sin C C .tan (A +B )=tan C
D .sin
2B A =sin 2
C
6.函数f (x )=cos 3
πx
(x ∈Z )的值域为( ) A .{-1,-21,0,2
1
,1} B .{-1,-21,21
,1} C .{-1,-
23,0,2
3
,1}
D .{-1,-
23,2
3
,1} 7.已知sin(
4π+α)=23,则sin(4
3π-α)值为( )
A.
21 B. —2
1
C. 23
D. —23
8.化简:)2cos()2sin(21-•-+ππ得( )
A.sin2+cos2
B.cos2-sin2
C.sin2-cos2
D.± (cos2-sin2) 9.已知α和β的终边关于x 轴对称,则下列各式中正确的是( ) A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ
二、填空题 10.tanα=m ,则
=+-+++)
cos(-sin()
cos(3sin(απα)απ)απ .
11.|sinα|=sin (-π+α),则α的取值范围是 .
12.若α是第三象限角,则)πcos()πsin(21αα---=_________. 13.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.
14. =⋅⋅⋅⋅⋅⋅︒
︒
︒
︒
89tan 3tan 2tan 1tan . 15. 若0cos 3sin =+αα,则
α
αα
αsin 3cos 2sin 2cos -+的值为 .
16. =-︒
)945cos( .
17. 化简=+-+βαβαβα2
22222cos cos sin sin sin sin .
三、解答题
18.求值:sin (-660°)cos420°-tan330°cot (-690°).
19.证明:
1)πtan(1
)π9tan(sin 211cos )πsin(22++-+=
--⋅+θθθ
θθ. 20.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=3
1
.
21. 已知2
1
)sin(=+απ,求απααπcos )cot()2sin(⋅---的值. 22. 已知5
4
sin -
=α. 求ααtan cos 和的值 . 23. 已知1)sin(=+βα,求证 0tan )2tan(=++ββα
24. 化简:.
25. 化简:)
(cos )tan()
2cot()cos()(sin 3
2πααππααππα--⋅+--⋅+⋅+. 2
000
0)790cos 250(sin 430cos 290sin 21++
26. 求证:)
π5sin()πcos()
π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.
27. 求证:ααα
αα
αcos sin csc sec cot tan -=+-
28.设f (θ)=)cos()π(2cos 23
)2π
sin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3
π)的值.
三角函数公式
1. 同角三角函数基本关系式 sin 2α+cos 2α=1 sin α
cos α
=tan α tan αcot α=1
2. 诱导公式 (奇变偶不变,符号看象限)
(一) sin(π-α)=sin α sin(π+α)=-sin α
cos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α (二) sin(π2 -α)=cos α sin(π
2
+α)=cos α
cos(π2 -α)=sin α cos(π
2 +α)=- sin α
tan(π2 -α)=cot α tan(π
2 +α)=-cot α
sin(3π2 -α)=-cos α sin(3π
2 +α)=-cos α
cos(3π2 -α)=-sin α cos(3π
2 +α)=sin α
tan(3π2 -α)=cot α tan(3π
2
+α)=-cot α
sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α
3. 两角和与差的三角函数
cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=
tan α+tan β
1-tan αtan β
tan(α-β)=
tan α-tan β
1+tan αtan β
4. 二倍角公式 sin2α=2sin αcos α
cos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α
1-tan 2α
5. 公式的变形
(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α (2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α
2
(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)
tan α-tan β=tan(α-β)(1+tan αtan β) (4) 万能公式(用tan α表示其他三角函数值)
sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α
1-tan 2α
6. 插入辅助角公式
asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b
a )
特殊地:sinx ±cosx = 2 sin(x ±π
4 )
7. 在三角形中的结论
若:A +B +C=π ,
A+B+C 2 =π
2
则有 tanA +tanB +tanC=tanAtanBtanC tan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A
2
=1。