1.1《变化率与导数》课件(新人教选修1-1)
- 格式:ppt
- 大小:1.25 MB
- 文档页数:34
23.变化率与导数教学目标 班级____姓名________1.通过具体的自然现象,认识函数的平均变化率.2.掌握变化率的基本概念.3.理解变化率的物理意义及几何意义.教学过程一、变化率的概念.1.反映变化快慢的量,就是我们要研究的变化率.2.定义:我们把1212)()(x x x f x f --称为函数)(x f y =从1x 到2x 的平均变化率. 习惯上,用x ∆表示12x x -,即12x x x -=∆.(x ∆是相对于1x 的变化量,可能大于0,可能小于0,但不能等于0.)类似12y y y -=∆. 平均变化率可表示为x y ∆∆或x x f x x f ∆-∆+)()(11. 3.变化率的两个应用:(1)物理意义:平均速度.(2)几何意义:割线斜率.二、导数.1.瞬时变化率:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x ∆-∆+→∆)()(lim 000,我们称它为函数)(x f y =在0x x =处的导数,记作)('0x f 或0|'x x y =,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(l i m l i m )('00000. 2.瞬时速度:tt s t t s v t ∆-∆+=→∆)()(lim 1101. 3.切线斜率:xx f x x f k x ∆-∆+=→∆)()(lim 110. 三、例题分析.1.求平均变化率.例1:求函数652+=x y 在[2,4]内的平均变化率.练1-1:已知函数532)(2-+=x x x f ,当41=x ,1=∆x 时,求函数增量y ∆和平均变化率xy ∆∆.练1-2:某盏路灯距离地面高8m ,一个身高2m 的人从路灯下出发,以1m/s 的速度匀速沿直线离开路灯,求人影长度的平均变化率.2.求函数在某处的导数.例2:利用导数的定义,求函数x x x f 3)(2+-=在2=x 处的导数.练2:求函数x x y 232-=在1=x 处的导数.作业:求32)(2+-=x x x f 在4=x 处的导数.。